• Nie Znaleziono Wyników

On the motions of an ocean car ferry, Part II: Ship tests on the effectiveness of a fin stabilizer and her roll characteristics

N/A
N/A
Protected

Academic year: 2021

Share "On the motions of an ocean car ferry, Part II: Ship tests on the effectiveness of a fin stabilizer and her roll characteristics"

Copied!
29
0
0

Pełen tekst

(1)

iriMUlf 3I'fil* *124 W,"ttJIM 016f1:150W O7)

44

7 _m

apilAilthEr3ti-t-La9t

CO 2Q)-TODZXRY.

OVatitDc-M-1-.

Vir}MIR

rkqi\* Pti7)_. 1.4-r

-n]]

On the Motions of an Ocean Car Ferry

(Part II) Ship Tests on the Effectiveness of

a Fin Stabilizer and her Roll Characteristics

By

Akihiro OGAWA, Iwao WATANABE and Yumiko FUKUDA

Summary

In the former paper" the results of model test and theoretical calculations on the

motions of an ocean car ferry boat in oblique waves were reported. At the same time, the

actual ship tests have been carried out on the same ship.

The paper presents the ship test results on the effectiveness of the fin stabilizer of

lift-control type, comparing the "stand-by" and "lift-control" conditions of the fin, and on the roll characteristics of the ship, estimated by an impulsive forced oscillation technique

in calm sea applying the fin stabilizer.

In the test, picth, roll, roll rate, vertical and transverse accelerations at bow and fin

lift are measqed and analyzed by spectral and statistical methods. The following conclusions are obtained from the analysis.

The fin-stabilizer has considerable effect in case of beam or quartering seas, in which the rolling of the ship becomes significant.

The fin-stabilizer has neglegible effect on the vertical motions such as pitching and

vertical acceleration.

It is difficult to judge the general effectiveness of the fin stabilizer quantitatively for

various conditions.

The roll response function of the ship can be estimated by the impulsive forced oscil-lation method applying the fin-stabilizer.

In this case, the duration of the impulse and the timing of control alteration of the

fin from "stand-by" to "lift-control" have considerable effect on the results.

The damping coefficient of the ship in navigation estimated by this method are ; 0. 25-0. 28, which is a little bigger than that of model test result.

* arthittitai ** (t)lijIiA(tfit%) 10a.411- ffWf-149 12/118 El

i(1)

(2)

1.

MI

2. OptEEW 2- 1

tvilTa)%tr6

2.2

rItaa Juan-Hang

3_

74

s./ 4l'--0-30JAcIRN-ZifAtfi' 3-2 fgtRMA 3. 3t1.73110)51C 3. 3. 1 7 4 YOLtrgic--Do-c 3. 3. 2 74 YOZAZtliZC-DO-C. 3. 3. 3 'fin4 i,b1.101*(g4

a 4 Kt

4.

71

7.3t 4

-

-f111111., t.:Z111tgiVtiftca IffW 4.1 fgtfi-4.42 fOTIRIVR

4.3 MAOAV,

4-4 mt,t, 5., Mr-1., M-4- x.9

-

0"At411Wc L., " -CUR

i'AiPRffl, Rar.)>IMIN1IX

firs

-7 0W31- L H--#11M0DAtIlt-Dtivrgirdli3Oftt 41g, tuagt4ataili L ,V141M,4/tat 1-111n40 7-c -./7 -1)=-MRYRItt-CtoZ0)---C, - 0)103 fropAlicc.rk _hf,--P- YC 7

4 --iy-41.1-c-M-§$11

trits

o tL,

0)N6-MAta;, 'VligoDRIPM, 7-f

s./ -f - thiliNt.r.AIMZ751 ZfIntnA Mt; -D cM,m-Dto-CA*1-Z.

2.1 MViatilaYli

zKuRopt&L utzwt, ingt-miviagoitix

®AftL Acc3ei-tt,.--k -5 cc, 1E1 .20'13. 7 9 -0)(;)

"Uti.L cJi," Rzirtrli fflo "gio

Table 1 /10

up-vicio--triNtcttyli

(,,-c 2 IttitM

4C-DO-C1--ftS.-Dizo1 1ataktut, LA

(111±1-1.,:-.9)111r1R- ), Wag. t (1MARfreA), %2

o

Table, 1 Princlpal Dimensions

Table 2 Tested Conditions

L560 Avog-A0DVD

tt

Table 2 IC 1.01`11.0**t. AtINOR MMODZR4kgiCktrc:Inift < -D "CO WS 1 DtariA0X1Rii, Fl 2K±i4b5A%EiC 1513 ID aLk8141-1,--c'fgRA0M1--c6- to &40441-411 4.1 11-TXt&MI1::M, 1A1Pcts.7--c*P1M**± Shiretoko-maru Erimo-maru Length (0. A.) Length (B. P.) Breadth (Mid.) Depth (Mid.) Draft (Mid.) Displacement Gross Tonnage Net Tonnage Dead Weight 153. 55m 142. 00m 22.80m 8. 00m 6. 02m 10, 349 t, 7, 875 ton 3,751 ton 3, 264 t

-_

154. 33m 142. 00m 22.80m 8. 00m 6. 02m 1 10, 349 t 7, 858 ton 3, 722 ton 3, 172 t Main Engine : Kawasaki-MAN V9V 40154

.MCR 2 x 10, 000 ps x 430/200 rpm NR 2 X 8, 500 Ps X 407 rpm

Propeller : Kawasaki-Escherwiss 4B-1230 x2 1

Dia. 3, 850mm x Pitch 3, 850mm (Variable) Classification : JG-Coasting Service

Service Speed : 20. 3 kt Service Distance : 2, 800 n. m. Passenger Complement Truck. Car 761 p. 61 p: 114 sets 110 sets 761 P. 63 p. 1 114 sets I 115 sets Fin Stabilizer : Sperry Gyro Fin Stabilizer

Type 3-C

1st Test 2nd Test 1

Shire-toko Erimo Erimo i

Shire-toko Passenger 151 p - 404 p'..

-

38 P. 102 P. Truck 85 67 71 78 Car 45 42 13 23 Draft(Fore) 5..65m 6. 10m 5. 59m 6. 07m Draft(Aft) 6. 15m 6. 22m 6- 43m 6. 10m Draft (Mean) 5. 90m 6. 16m 6. Olm 6. 09m i Mean Speed 1 19kt 18. 5kt 19kt I 18. 5kt 1 7 Ftah±tlotPi2J:EVWfl-L, 4 2. : : : : .

(3)

( )1Time (Outward )

-->(

Time (Homeward) 1(17th ,Oct.) (23:55) 'Tokyo 121 th Oct..)11[9:303 Sendai' 14e I (06:00)(19 th) To mak oma 02:0011'20 thl (0245) ,(01:25) (1540) Vs=18.5kt Dei0121t111 8403 g:/9 OC)1 24:00) (2330)\1T No. 101-110 (18th) 1 (19:40) (22:00) [12003 VS185 kt 04:20)

/

T. No. 4 (4) 1)5(.25) P T. No.5,6 Sea 'HvF3m Swell

Fig. 1 Tested route and sea conditions at the 1st test

Vs=19 kt [Calm I = 6 m/s: 4CP 38° Sea Swell( Hw 2-3m 36° N 42° 3 E IT. No. 3 1

(4)

) Time (Outward) Time (Homeward (03:10) (02:30) Vw=1m/s (26th Nov.)(23.55)Tokyo C1 st Dec3t22 103

I Swell

(Occasionally High) Sendai Vs=19 kt [T. No. 9-11 (19:303 \ (19:05) (11:05) . (06:00) (28th) Tomakornal 04:25] (30th)

(V1111...

(14:00) (13:05) (10:43) [11:14) (11:341 (14:36) Vw=20m/s 08:503 [19:303 V (05:57] Vs=18kt (01:41) IT. No.18 T. No.15,16 Sea hiw=3 m T. No.17 I Vw=6.5m Is

Fig. 2 Tested route and sea conditions at the 2nd test Vs=20kt N 42° (High) 40° 38° 36° Vs=16'kt, Vw=20m/s Sea Swell

(5)

Ig%EOF-N-C, At)AbEatlLb

to

M. 2

Hile.*It,

-C < (3)

b Cfr- LT ft < ct

ts.Ncts,,ttb,

It &OIT I9 AbAbgi.bs'AO WR,""C'

toWjt

t StIOAXIEbiRit L ts. tiI; El 1.,,

OFI.IcF1175iN < 6.7M. Abit%to

tkg-C 6 -,to

ZAIIVDEAR0'.14g0.704):51'A- Fig. 1 NJ.); Fig.

2 Ath4b& < 1:11

L,lL114-114M-4" c

Ate Ltc

;1.11111Gt Lt t111*-bitct 5ts4)ZiRrt::0

2.2 11-AJIAR tnt5fing

L It, 43' 1 1-41MMI.li,b,' "2

ygt, 7 4

7/Aft, ti )kAigNE-c'6

2 Eti

7 1- ilYA_LT/i5A5, AIIILVNAft

Enti/P:1111L 1.,--Cka-1-11-YW/C:MVSWEOR b,-DfAisM4'PM0)11-E4 ADV-7,fib&VL- 1-',

:VA L t

tag

-a1-4 -C AtS -ft 0,1111

KI2053.11.10DAMEM 1

3TLCO,

4 )1,0)J7 ATI-.

Ic[12,ki I., 1111_, T., 4 Dijor)MrAtioD9ZIR72

, .3.E1;11-11.IlZ /0 6 o-c, 1 ZR WiloYEU-eZ 1LIMA® . t.t g-fti First Test Second Test Item Fin Lift Fin Angle Roll Vel Roll Pitch Vert. Acc. Trans. Acc. Pick - up (Pick- u Rate Gyro Vertical Gyro Foil Gauge)-1 Foil Gauge 5 V

4tEiilZl7b,MR.4

Ea71- /Cl/1.11LO 4 1AR 4-1,--c z 0

2

LIODIT1C

9

9" 0)

L, %VA- r,qi)EH --c ts, cifi, -MIA ,

91N,

Op) Fig. 3

atiglAPVTA

11I7 4

3z 4 -if 0)IlitlihREd

z rg]

IC, M 2 ITIIUM-YgNAISt ,1-111111-4-

t

/C 5--° 7 #

(E deck) Ina® Bos'n store

IC t TP7J--F6 L, ataizc i;ts(,)ct5 lc

ADE g-1-0.1N0A1iPTOWiliM0)4511e6 Fig. 4

lCi0taptritiRVIffaclilttrvibi

F. P.

J52

m,

/

O. 6m triVi

, WriinU

F.P. iitiS/1,1F.17.5m oNaa- 4

ts.37-c/Mtuf-EgRaptoN,--coz.

3. 7 -4 5 ODZA

RITZ#*

3.1 KIRI

EkkoNifru,

ifjohRtmttycc

tz. ActhoRtt,

-c,

mml.clztzt,

-tf-,1* 14Mi

4WIROTiti1c-D t,

-teIc91

ION

Instrument

Demod-ulator

Fig. 3 Measured items, instruments and recorders

Recorder Channel No. at 1st Test Channel No at 2nd Test 1 Visible 2 E. M. O. j Recorders' Channel No. D. P M.

Low-

-Filter

2 3 Data Recorder

)1,ft,

, -, , I-L Inv. Inv.

(6)

,

MINIIMIO.

` .14 Y.! f A EN

40k-

Tj-1244 1E2) AD tt-E- optm7T-;-tt. TItT-ii-rATIATVIL-CftiMt Z. -9-4 42-4's-C 1 b>

L, .F-5/ ttu

000 -&14EL

td,

MIT < V.tiKtriAl'etti4tZ

?am, 4V.

bq-- :iiii-690) 5 -5 Mkt Lk_ /9, filiM&11-14.

ZI,t:

Mire,

WS. Y31

-

pts

t

t,t L.

1,atc

05-=' A4auopt],fg. .-.E 4'

A 5- -i,11m-e.i2,

Ytat-r-

aic,t

-4---<t90L 1,, Window it W2 ffltiNt..r.,,

ACD3)-EL4AZ.Y) t,:260)VOM &ratan,

iaicAttii-cA

Att,t):cts,L) wz,

,T7--ODYNIEItiia/L,Lta:<tszgaiaa wH

gtV:7°13LI5Z 5 ic

t 51413`,TicU cor. =0, wiz = co icL

a0C.t zaba4offiofi-higi rivs

TA5Yitr.4

t,:toptZ.

MI-11MT a, 1 3?

12 A ODY4R RODV-Effi L, 0)*V411, 2 A T- 41-A (OVA

A), OVigt3-)4F

Rayleigh -)q-ii-co

tz. I:: -V 12 1:/ A (1)*Y-414V1-84.0' Peak-to-peak 0

T.if3-fiVt117-.3R2r5,,iIii

1_2 ifitatiA

A 2,11.1Y6iC,:k

-D,--Cf141;tttc.x-

4,XTe94T-CVO

tp.= L. LI 2.0)1A2- Fig. 5-10 ic-/-Tcre Fig. 5

6 a% 1 I:WM-VD t opt, ea

GoifVV.LVs.-zamut,:a-4r4--ce', Fig. 5 (T. No. 4710-5) it 7 4

3? E., 4 -If Y14:1-xo

tag =121& s B. Hq-$-) iC Utz*, Fig. 6 (T. No. 4710

6) itritftaill 024*. L. C.

optmc

0, .E-4--t/fttlib,; 7 ,r

11.)0 , 7 4

it,

)14] Aft,

)5

to Fig.. 7--10 (T. No. 4711--10, 11, 15,

16) it

2 INaRik-110t0D-C, T. No. 1011, T. No. 15

160"Dr-Viti.Eti,-E-'ttifilt40/k4-E- 7 4 % S. B. 11-4

c.

7 -1.if], 77:1-0

gatg6z.t...,--c4;t1tAlkwoogo)-7oDA

Fig. 11-13 IOctte;tizriacip

4Ropiki"-L ITE11-05' 3? VT] tot:. tOD-E-,

illqb& 7 4 'Y S. B. 114, 11/1./b1L. C. ri05-)45-Z't

ifir1,*;EMic11)-tz 41, GfriOfi-MOD.ItS. t 0

1c-Dt.o-t: Table 3---6 lo ktio)

tiEit Table 7 IC1-A19"-

0 t

Fin condition OfICI .11Q

j

4OY, T. No,

3,0 I N illk}f*P4 icir4413 Utz

g*-1-0 t

E7 4

S. B. C. 0.1.tV6D AireAtttl-iiiCL 75&, ftoDAILWETitit:hdlYt 75iiti

1,L to), ---EU/Lre6Z0)42,

iiiTIM-A4L-Rill./r S. B.

L. C. 01:LO:bigi*Z (Fig. 1 RY Fig. 2 tz.J1()c.

Fig. 5-43 T-ii:Ltz:042,. 00 lfggiStAtrop

011-e215

!I

at First Test

at Second( Test

Fig. 4 Position of instruments

----ODial<L , L 4 L F L 42, L.

(7)

r:1.00 SEC

tl/SECI SIG., 0,766

733 0 90

f1/SECA 1.5

Fig. 5 Spectra and correlogranis in case of fin stand-by

.:. ": 1 -30 60 90 'SIG, 1.205 30 GO 93 Sla.. -3.067 f1/5EC) 1.5 4 7

T. No. 471 0-- 5

24-1 559 LN:93

WITH FIN STANDBY

1 0,20- (ton2 sec) C 0.15- -1 0.10- 0,05-0 0,5 OMEIG,A _ FIN ANGLE

4.so (deg2 sec)

-1 3,00 1.50-0.5 0 II 0 6 A 1.0 7,60- ROLL RAM - (deg2/sec) 1,50- 1,00- 0.50-0 0,5 .OrIE6A 13 40,0 ROLL ANGLE 30.0 (deg2 sec) 20,0- 10.0-o 0,E;

000 GA

1.0 40 30 20 12 10 itSECA 0.2b F 2100

N,//

(8)

300,0_, FIN LIFT 240,0 (ton2 sec) 1S0 >0 c

300

FIN..PtsGLE 24,0-- (deg2 sec) 18,0-

12.0-

60--0 0,25 ROLL RATE: 0,2o 0,05 -(deg2/sec) 0 ROLL FINCLE 1,2p . (deg2 sec)

0,sa

OZO 0-.30 0

T. M.

LI 71 0-

13 O1.1,000 SEC

WITH FIN LIFTCONTROLLED

; 0,5 OM[iI.A 1O I. 00 3b 2h IS i2 lb ri 0 0. (1/SEC3 1,3 0/SECI U 0.5 OMEGR (1/SCCi 30 60 SIG,. l3,54 SIG,. 3,93S SIG,- 0,4220

Fig. 6 Spectra and correlograrns in case of fin lift-controlled

4 0,.9.302 30 60 90 m 0 Fl 1,0 (1/SECI SO 4 7 (SU: ! -32

(9)

0 0.ois V. ACC AT P.P. (g2 sec) 0.003 0.008 0.003 0.00080- ACC AT F.P. 0.0004b-0.000:30 (g2 sec) n.s OMEGA 1.0 il/SEC1 30 18 1'2 lb 8 T(SEC1 1-3

Fig. 7 Spectra and correlograrns in case of fin stand-by

30 GO SO VAR.= .0.3121 VAR.' 0.004842 30 GO SO VAR.= 0.000482

-4 11/11/1111

9 T, Nu. 471 1 -- 1 CD DI, 278 LN,50 DT=1.000 sm

1000- . ROLL PNGLE. WITH FIN STAND-BY 1 -v

0.60- - (deg2 sec) 0.60-0.40 , 30 !JAR. GO 0.5281 SO 0.20-OMEGA 140 t1,SEC1 I .5 0.5 OMEGA 1.0 11 -'SEC) 145 0 e 4 I i 4 0.5 OMEGA 1.0 (1/SEC1 1.5 1.20- PITCH ANGLE 0.00015 015 I

(10)

00304o- (g2 sec) 0.00033_V 0,00020 -0,03310 7.-0.5 0

:Aft,

k_q, i- et=r- 1-1

-1I

99 GO SO VAR.. 0.000431 f I 1 OMEGA 1 1 .5 0.40 0.30

T. No. 471 1-1 1

993 LN.:90 01-.1.000 SEC

POLL ANGLE WITH FIN

(deg2 sec) LIFT-CONTROLLED 30 60 90 VAR.. 0.2930 0.10-r f 1 1 0.5 1 1 1 1 1 OMEGA 1.0 -.SEC) 1.5 0.40 PITCH ANGLE 1 0.30 (deg2 sec) so 60 so 0.20 VAR.= 0.2294 0.10

\---11-

-1--

1 1 If I 1 1 1 -0.5 0 ri E G A 1,0 0/GEC1 1.5 0.0050- V. ACC HI F .P. 0.0040 (g2 sec) 0.0020 30 60 90 0.0020 V. 0.004420 0.0010 Ft 1 1 0.b 1 1 1 0 11 I C A 1.0 1 1 1 (1/SEC) 1,,5 LT,gaT.,9 - T. rCc AT F.P. 1T sb 310 20 i ib lb jiSEC1

Fig. 8 Spectra and correlogranns in case of fin lift-controlled

1.3 (1 /SEC.

-0 0 I I 1

(11)

-11

U0-061

0 It0E.

0

ots,20 PITCH ANGLE.

2 t deg- sec) 01,'0060 V. ACC 1 -ode 0010, seco)I 0,0030 002a'jtt 000'1 0 0,0009111..,T. ACC AT FP:t 0,00060- (g2 sec)

-

_ 0,5 ! 4 !

0,SM.EGA

0 is t -GA E.GA

it4ott

W 30 20 15 12 10 cTI5E.C)

Fig: 9 Spectra and correlograms in case of fin stand-by

30 GO 90 1 1 /Sal SO -S:'CGS60 -(1%5EC.1 ,i -7 .30 60

SIG0.;02075

"

1 -4 4 .6 OE

OME69

1 :0 /SC.C6 tr,ts 5

9i

LNyt50 _ UN 1 :all _SEC

T. No. 4711-15

i0

T:00 ROLL ANGLE WITH FIN STAD-BY

U400 l(tcleg2 se d,)1 It

0407

SIG: 0.5536 Int) C1 /KO 210 5tJ SIG.,. 0,2902 0 0.00020-0 M 0.20 0.15 (g2 1,5

(12)

1.20 0.90- (deg2 sec) 0.60-0.30 0 012 PITCH F1CLE 0.06- 0.03-0 0.010-0.00S 0.006 0 0.0C4--0 ROLL ANGLE V, ACC AT FP-(g2 see)sec) 0,00030 T. ACC AT F.P, 0,00024- (g2 sec) '3.00015'-0,00012 D,OCCOG 0 I I SO 30

I. H. 471 1 16

999 LN.90 nr=1oo3SEC

WITH FIN LIFT-CONTROLLED

1S 112 lb '12, TUT) 6

SIG=. 0.4158

Fig. 10 Spectra and correlogranns in case of fin lift-controlled

1 1.0 0,S OMEGA fl/SEC1 009- (deg2 sec) 1,5 1,0' (1/SEC) 0,S OMEGA OMEGA (11/SPC1 4 20

(13)

0/0 0/0 20 20-50 0/0 20 FIN ANGLE FIN LIFT 0/. 20 I ROLL RATE 0/0 20 20°

Fig. 11 Histograms and Rayleigh distributions of double amplitudes

13

left

FIN STAND- BY right : FIN LIFT - CONTROLLED

(T. No 5)

T. No. 6 ) 50 100 ton ton 2 3 4 5 1 2 deg/sec deg/sec

I

0 :

(14)

°JO 20 0/. 20 0.1 1° 2° ROLL ANGLEI 1 0° 0.2 0.3 PITCH ANGLE VERT. ACC. 0 0/0 20

9 04

0 0/0 20 5° 0.3

Left : FIN STAND- BY right : FIN LIFT-CONTROLLED

( T. No. 10 ) (T. No.11 )

0.1 0.2 0.3 0 0.1 0.2

°3g

Fig. 12 Histograms and Rayleigh distributions of double amplitudes

30 o° 1° 2° 3° 0.1 0.2 JO 201-°/0 20 0/0 0/0 20 - 20 50 TRANS: ACC .1 0 0

(15)

010 20 0.1 0.1 0.2 0.2 I ROLL ANGLEI PITCH ANGLEI VERT. ACC. I 0.3 [TRANS. ACC.I 0.3 JO 20 0 0.1 0.2

Fig. 13 Histograms and Rayleigh distributions of double amplitudes 0.3

15

Left FIN STAND- BY right : FIN LIFT - CONTROLLED

(1. No. 15 ) ( T. No.16 )

ig

0/0 20

(16)

19 Fin

Condition

IN

C' -S. B.

L. C.

L. C. = S. B. S. B. S. B.

L . C S B.

Table 4 Analyzed results of pitch

=L. C.

-L.C.

=L. C.

Test No. 8 9 10 11 13 14 15 16 17 18 S 1 No. of Data 999 960 278 999 942 960 999 999 999 390 P 2 wt. 0.07 0. 14 0. 10 0. 18 0. 18 0. 11 0. 11 0. 18 0.07 0.07 E C A 3 wrr 1. 33 1. 33 1.29 1. 29 1. 15 1. 01 1. 78 1. 64 1. 40 1. 68

TN 4

'is 0.40 0.42 0.55 0.46 0. 70 0. 48 0.26 0.31 0.40 0.39 R A A L 5 os 0. 35 0. 39 0. 32 0. 36 0. 61 0. 56 0. 47 0. 35 0. 37 0. 67

L Y 6

Tms 7. 05 6. 99 7. 44 7. 02 9.42 11. 03 5. 10 5. 26 5. 99 5. 79 S I 7 Tus 7. 51 7. 58 7. 86 7. 54 11.89 13. 36 5. 76 5. 62 6. 43 7. 83 S 8 Tp 7. 88 9. 03 8. 27 7. 92 12. 91 17. 06 5. 01 5. 38 6. 33 10. 12 S

9 N

247 235 61 19 126 131 291 314 269 77 T 10 Fl 0. 94 0. 99 1. 35 1. 36 1. 90 1. 21 0. 53 0. 64 0. 92 0. 90 A T , , T./ ii - 7.771.1 1. 06 1. 09 1. 53 1. 42 2. 09 1. 37 0. 59 0. 70 0. 99 1. 00 I 12 H1/3 1. 50 1. 53 2. 19 1. 82 2. 93 1. 96 0. 80 0. 98 1. 36 1. 34 S A 13 H1110 1.89 1.87 2. 50 2.07 3.60 2.48 1.01 1.23 1.63 1. 74 T N

I A 14 lima.

2. 61 2. 16 2. 64 2. 07 3.87 2. 84 1. 47 1. 50 2. 13 2. 97 C L 15 'Jr- 0. 37 0. 39 0. 54 0. 50 0. 74 0- 48 0. 21 0. 25 0. 35 0. 35 A Y L S 16 er 0. 48 0. 43 0. 59 0. 97 0. 78 0. 75 0. 58 0. 49 0. 56 0- 69 I 17 I'm 7.08 7.38 7.39 7.37 9.46 9.69 5.58 5.53 6. 16 7.34 S 18 To 8. 09 8. 17 9. 11 105. 16 14.95 14.66 6. 87 6. 36 7.43 10. 13 Fin 19 Condition

L C

"

L. C. = S. B. =L. C.

S. B. -L. C.

S. B. =L. C. L. C.

S. B.

Table 3 Analyzed results of roll

Test No. 3 4 5 6 8 9 10 11 13 14 15 16 17 18 No. of 1 Data 1000 1000 1000 1000 999 960 278 999 942 960 999 999 999 390 2 L 0.17 0. 17 0. 17 0. 17 0. 17 0. 17 0.00 0.21 0. 17 0. 17 0.21 0.00 0. 14 0. 10 CA 3 cox 0. 80 1. 01 0. 66 0. 94 1. 29 1. 15 0. 91 1. 19 0. 80 0. 80 1. 26 1. 61 1. 95 0. 87

TN 4

as 0. 61 0. 62 2. 98 0. 83 0. 34 0. 48 0. 70 0. 42 3. 43 0. 63 0. 43 0. 39 0. 23 1. 66 RA AL 5 0.41 0. 53 0. 32 0. 53 0.67 0- 61 0. 59 0. 59 0. 34 0. 43 0. 65 0. 88 0- 77 0. 38

L Y 6

Tms 12. 81 10. 28 14. 57 11. 23 7.92 8. 72 10. 81 7. 96 12.64 12. 00 8. 68 5. 37 4. 8111. 84 7

T.s

14.06 12. 16 15.36 13.27 10.62 11. 02 13. 36 9.83 13.45 13.29 11.37 11.24 7. 58 12. 78 8 Tp 14. 88 12. 08 16. 25 17. 86 12. 18 13. 20 14. 28 18. 26 13. 39 12. 25 14. 24 3. 39 31. 92 13. 98

9N

141 136 132 150 128 116 43 163 133 69 154 87 147 59 10 Fi 1. 60 1. 66 7. 62 2. 11 0. 99 1. 41 1. 68 1. 15 8. 88 1. 78 1. 07 0. 67 0. 56 4. 17 A 11

lir,.

1. 80 1. 85 8. 33 2. 32 1. 10 1. 54 1. 85 1. 25 9- 59 1. 98 1. 20 0. 74 0. 62 4. 65 SA TN

12 H,

13 Hum 2. 52 3. 39 2. 3. 56 28 11. 26 13. 30 3. 22 3. 88 1. 55 1. 98 2. 13 2. 64 2. 61 2. 91 1. 69 2.08 12. 87 15. 67 2. 75 3. 46 1. 66 2. 11 1. 02 1. 28 0. 87 1. 09 6. 57 8. 64

IA 14

Hmax 4. 35 4. 99 15. 73 5. 07 2. 74 3. 47 3. 01 2. 80 20. 35 3. 69 2. 92 1. 47 1. 64 10. 40 CL AY 15 a 0. 64 0. 65 2. 95 0. 82 0. 39 0. 55 0. 65 0. 44 3. 39 0. 70 0. 42 0. 26 0. 22 1.64

LS

Or 0. 79 0. 79 0. 35 0. 65 0. 90 0. 89 0. 66 0. 76 0. 35 0. 93 0. 78 0. 97 0. 90 0. 50 17 -7-'m 8. 73 8. 96 14- 17 10. 09 6. 91 7. 70 9. 71 7. 98 13- 25 10. 15 8. 15 5. 50 5.87 11. 44 18 "To 14. 18 14. 7115. 15 13. 33 15. 6116. 55 12. 93 12. 26 14. 17 27. 83 12. 97 22. 97 13. 59 13. 20 IP S T I 16 = L . C . . . . '

(17)

Table 5 Analyzed results of bow vertical acceleration

17

Table 6 Analyzed results of bow transverse acceleration

Test No. 8 9 10 11 13 14 15 16 17 18 S 1 No. of Data 999 960 278 999 942 960 999 999 999 390 P E 2 col, 0. 07 0. 07 0. 10 0. 18 0. 21 0. 07 0. 07 0. 18 0. 07 0. 11 C A 3 CO H 1.40 1. 54 1.64 1. 57 1.75 2.09 2.09 1.85 1.61 1. 99

TN 4

as 0.05 0.06 0.07 0.07 0.06 0.03 0.06 0.08 0.07 0.05 R A A L 5 es 0. 35 0. 40 0. 44 0. 39 0. 53 0. 69 0. 38 0. 29 0. 27 0. 47

L Y 6

Tms 6. 31 5. 93 6. 01 5. 89 5. 60 4. 63 4. 29 4. 74 5. 53 4. 47 S I 7 7'028 6. 72 6. 45 6. 70 6. 40 6. 63 6. 36 4. 65 4. 96 5. 74 5. 06 S 8 7'9 7. 79 7. 09 8. 21 7. 80 6. 39 12. 43 4. 99 4. 90 5. 83 4. 27 S

9 N

295 273 78 296 241 237 371 381 333 122 T 10 71- 0. 10 0. 13 0. 15 0. 15 0. 13 0.06 0. 10 0. 14 0. 15 0. 10 A T 11 H, ml IQ. 12 0. 15 0. 17 0. 16 0. 14 0. 07 0. 11 0. 15 0. 17 0. 10 I

12 H,3

0. 17 0. 20 0. 25 0. 22 0. 19 0. 10 0. 15 0. 22 0. 23 0. 14 S A T N 13 HI/10 0.22 0.25 0.33 0.27 0.24 0. 12 0.21 0.28 0.29 0. 17

I A 14 H.,,

0. 31 0.29 0. 37 0. 31 0. 35 0. 15 0. 29 0. 37 0. 36 0. 25 C L A Y 15 Cr 0. 04 0. 05 0. 06 0. 06 0. 05 0. 03 0. 04 0. 05 0. 06 0. 04 L S 16 Sr 0. 34 0. 48 0. 45 0. 38 0. 60 0. 66 0. 34 0. 26 0. 29 0. 48 I S 17 18 T,,,, To 6.36 6. 77 6. 19 7. 03 6.37 7. 13 6. 26 6. 75 6. 25 7. 82 6.07 8. 10 5.07 5. 39 5.07 5. 24 5.74 6. 00 5.60 6. 39 19 Fin Condition L. C.

L. C. =S. B. =L. C. S. B. -L. C.

S. B. =L. C. L. C. S. B. Test No. 8 9 10 11 13 14 15 16 17 18 1 No. of Data 999 960 278 999 942 960 999 999 999 390 CA 2 3 (az, 0.00 1.47 0.07 1- 75 0.14 1. 47 0.21 1. 75 0.21 1. 12 0.21 2. 44 0.07 3- 14 0. 18 3. 14 0. 14 2. 37 0. 18 1. 64

TN 4

as 0. 02 0. 02 0. 02 0. 02 0. 06 0. 02 0. 02 0. 02 0. 01 0. 04 RA AL 5 es 0. 79 0. 67 0. 61 0. 61 0- 52 0. 66 0. 72 0. 67 0. 69 0. 69

L Y 6

Tms 6. 35 5- 63 6. 39 5. 58 9. 49 3. 57 2. 73 2. 75 3. 84 6. 24 7 To2s 10.42 7- 59 8. 09 7. 03 11. 08 4. 77 3. 94 3. 70 5. 29 8.64 8 Tp 33.34 8.99 8.40 9. 06 13. 04 11. 94 14. 17 5. 85 6.31 13. 39

9N

63 135 63 243 122 231 237 294 166 83 10 17 0.03 0.05 0.05 0.04 0. 16 0.03 0.04 0.03 0.03 0.09 A 11 Hms 0.03 0.06 0.05 0.05 0. 17 0.04 0.04 0.04 0.03 0.10 12 H113 0.04 0.07 0.07 0.06 0.23 0.05 0.05 0.05 0.04 0. 14 SA TN 13 Hulo 0.04 0.09 0.09 0.08 0.28 0.06 0.07 0.06 0.05 0.18

IA 14

MURK 0.05 0. 15 0. 11 0. 11 0.36 0.08 0.13 0.08 0.06 0.23 CL AY 15 ar 0. 01 0. 02 0- 02 0. 02 0. 06 0. 01 0. 01 0. 01 0. 01 0. 04

LS 16

Sr 0. 98 0. 87 0. 69 0. 61 0. 79 0. 75 0. 74 0. 65 8. 85 0. 67 17 T'm 6. 10 6. 61 6. 37 6. 52 9. 41 5- 54 5. 64 5. 16 5. 61 7. 01 18 To 31. 71 14.22 8. 83 8. 22 15.44 8. 31 8.43 6. 80 12. 04 9. 40 19 ConditionFin L. C. L. C. = S. B. =L. C. S. B. - L. C. S. B. =L. C. L. C. S. B. S I

(18)

20°

.4

ROLL ANGLE

Fig. 14, 15, 16 /L1-1, opfll ic MIA0DZ S.

B. 1- L. C. =1.z1IMM, M4,1 (5/ 6) '-gL

02±t

*7-f0 3.3 Cr)ff,A

0

Ja±.01VIVIV9c-Do-cititot,M, co& t -5

c

(15/16) (10/11)____---/eAT.----.

°

I:1(10/9 ) 0o -0314>V; - , (

FIN L.C.)

TRANSVERSE ACC.

0(/3//4)

A (15/16) (10/11)__----.15 (5/6 ) .4 .2 oo

0"0

1° PITCH ANGLE (13/14) 0 .1 .2 (FIN ( FIN L.C.) VERTICAL ACC.

Fig. 14 Effect of fin-stabilizer upon double amplitudes

(10/9)(10111)

/

.3 .4

L.C. )

75&At10

tztf 1,7 :/oDZA0.1:Erdc-Dto-c

41)11fifi -Co -5 T. No. 5/6, 9/

10/11, 15/164CYS.

t: T. No. 13/14 Et, %Oti.lopi4V.ZiL

)ct,

7`.: T. No. 10 -Elt5-'tb&AbAb.1.-.1:t.1.1,1L05X .1 (10/9) 0 .CSA5<>' 0 .05 .1 0 (FIN L.C.) 0 o H1/10 H1/3

v

Us, -0

(19)

10 co a, 20 15 5 5 10 15 TRANSVERSE ACC. , /(13/14) ROLL ( FIN L.C.) 5 10 ( FIN L.C.) TO25 ATms "r0 Tin sec sec Abqb 0, liDcrh]oR-c

t

-5

<,0756z.

3.3.1 '7 4:10DieFla-DOZ 74 Y00.1., ,SW±L.- A-ire

z

cot-.-121/= c*a,5z c/,±1.Ats.00)--E,

C-097I--50 15 a, cn

10

ui LL 5 15 15 -10 PITCH

Fig. 15 Effect of fin-stabilizer upon mean periods

(10/9) (10/11) ++,'x

o)/

(13114) 91(15/16) 1 I r 5 10 15 ( FIN L.C.) VERTICAL ACC. (15/16) sec 5 10 15 sec ( FIN L.C. ) 19 T. No. 5 (Fig. 5) l-iiJ15 16fMtopkrzn#.9,111.1ntS. L

t:

.A.0)11D2 w 7)1

0.3-0.6 0101

TtZ. ctIACtlf,--C T. No. 6 (Fig. 6) 0)7 4 :/

mi], 7 4

t

ortAlltiU 0.3-0.7 L-Ab-Pi-aill&V*' ccMz5 ÷. tuci*,--c0 t, PyrifattiMt/.1\ < cri 20 7

(20)

Spectral Analysis

COL Lower limit of integration

Upper limit of integration CS Standard deviation

ES Band-width parameter= .V1m22/mom4

Tms Peak to peak period =2,, / M2IM4

Tins Zero cross period-2r Vmo/m, Tn Period of spectrum peak

.5 1

(FIN L.C.)

o Es

Er

Fig. 16 Effect of fin-stabilizer upon band-width parameter

Table 7 List of symbols

Statistical analysis:

Number of double amplitudes Mean double amplitude

Root-mean-square of double amplitudes 1/3 highest mean of double amplitudes 1/10 highest mean of double amplitudes

Maximum double amplitude Standard deviation= (1/2 Ari-).Hrm.

Band-width parameter= +/1(T./T.)2

Peak to peak mean period Zero cross mean period

ROLL PITCH

1

.5

(21)

Z751, tA/C1 b3.-D T:LIZ) 0 C qltifrillai3*.0)01#40DRZGC.t < &OJT--41A1C(1,1A7:i.til/i1, w 1)1 0.5-0: 7 OD < t-LZ 0 1, b, IYVcAtilf 7

YOjegtiattj

PZOD1153-h-VC5EL:-1.,-Ctil9, oDt5t-s.kj WA4T0 -)1,0)ffitCcGIA--2icAM.-bi6Z c Ltd

4'375Z:, tz:tc: Lith00-"A le.7 Pit}-6.±.-FNA

Mct-4-zrAMt,

oVrAaVazilit,i1RI--Ntli)tre

619,, gaiA

t37,V11,-Ntts.o4Z bi n- -c

.121±04V4I, ,tha7.4 :/fgit

7

-Cto1StoiV&, (Fig. 7-10) , c-Do-ctn-cut zo

LA,Utsti;,, 4-1110)Zkoalicctts.75,- t7:1&,

t75431.113IiiiMct-cAl-z.t -5 tsial,o/WIT-cGt,

tzA-Dtz.

z

3. 3. 2 7 4 .10YAAO*Ilt

_LEO )14/j 0) ODEL:b10 iCr41-4-Z

ItjAMRUYVIg,71

-0DIA;tIls-J-d-G1.1

Z.

.Zero-cross,. Peak-to-peak 2:tC L. C. -b120°611-11*titil < ts. -D-C-5 0, /o 1 ccid< ts -IsM310375.1t",93-} < 1P-5, --)14.1 1411. Mt, ot 5

VAL -c,

751 igiAZ

3-}01)J1IbiA.tIiZ< L

'Mirka 5-}bviA Lboli

cocL bN GAS

112 c 42,,

-)1,5ti,

t,

--)144A0DiA

ft ,t 0 Vs.

Laii[iALt/c1tRIJc3Zabi!-Ptso

c

Z 0 13.1..(X T. No. 5/6 (C-Dlo-Cri-)kftt

2:A51a2:k4-c-A6

Table 8 o

lc

AT, IL

10/C) 4111t0.0)*±=g-Milii;q0A)51*ictin

ty0D-r.,

0±A1S-ijn;lIJ

Jotso

z wfrafteo-}0w.,1*/toop.t

tsz

Table. 8 Reduction ratios of roll,

roll rate and roll acceleration

IC G.M4a*It04/cRatifiMaDVLA Lit 4t, _LT '1.;115:-IA0)*El.ti- -75s'al.--E-0DRIPJ -4-Z 13 -)1.411b1- (/'<h ts.±114"rtc/t PA/I -1/1C

2:t

<, "E-oplio/Ahniltbol.attatiYi

to--(5Z

7-i0)

-0JAVA,11(C0-..114si/M--(2 1-)1-041.-f-5-).TZ

1.3.3 ;4*

f_JR-Or41.g* < ts.Z 0)Ullhigi.-$3,414iPzoil.13,--e, 4-1

t -ft-4"

ittli-c.t L. c optpfgrc/ 7

:/ Es,. -if

41111c L

giltg&-cli -E-oft/o

L° 7 t&Id`k-D--c_ < z OiNift4C

7

37 E.", 4 -if ts,.(,1 (Fig. 14 OD T.. 'No. 9/10/11 2kU 15/16 ._;ffi).tt.1, Es 7 5-

I It

4jitS. <

CNInts*Wocck OD

0).1t1 IL, C?-4 itgazit-e 1., Ldhafigik NJ

to c taikAti3ottoge.Wc3RtArU6

Vika

Z-ElICILA, Plitiztsi,IbN

g fltkojgo

7 "Vahllititb 1 El

difth. <

<a(Ct

U20b>T1g.-ElittAt GNYYJN tg_

orge(tra.nt/a) 2 tiMi(J

j-tZ wig <, A-- 0)1-"Nti?-;-0*-MbNtsoJ:5-etZ. VAjtt 121VjRc5(41.,--c.'4V.Vc.z,,M10, R/cot

oct

ECEUotttz. i)T45.10)±.1-A t )6-C, < ts41./d, 74

4 --0)t-A4V604-j-z c

L(1WATNttZ

Mtre 7-c 31 4 - opiOfF3a550AmIRIt Ja±. opf(MIT-ic.,t (), &0)MitiV-44 ,(1)

74

37 4 -t'-of()JfV(t-M L

Z.

YODA.A42 4) i4Jfgt.10)Z-VVIkts.i,1,113VIRoDiThig;(c 4yoDZAd-- c.t.- --c- < &Z CDT',

-(cZE.AUT:fliZt

UITINT 7 4 YODfFINt L°' ±-FIIIIALC50)CICC 21

0

0

0

®

1S.B. /L.0 roll angle , roll rate --C)/C) =C)/®

H..

3. 1 2. 4 1. 29 1. 9 H113 3-5 2.6 1-35 1.9 FL 3.6 2-9 1.24 2.3 as 3,6 2.8 1.29 2.2 4 0 L 5

0,

0. 1 -C, ZilLtiaTofthtc, 3-4 7 4

(22)

* Max. Lift#40 ton

Vs-19. 0 knot, Course NNW,, Calm

4.

7 4

g 'E-5 1.1111, tz-_ )404#ffilittopliTth

.4.1 AMA

ZMI% 1 11M-RoltAllAccfrts. (Fig. 1

OD T. No. 101-110)0 COL /vlligb&7 4 -9VV-1] Lts < t 1°

Ja-FLO5tilt-C6-Dtz.tbtC,

t 076 Z.

.3.71KLIJ -231c6.11-7400)111(11*cc 7 3z 5 -9= 7-4g..z

c

* ODAJJ (7 4 Ygl,j1)

n(t), alt

(0 - )km,) s(t) L, .i-11.. tio) 5 7° 5 MSC, N (ico)

=S:

n(t)e-iadt

,S(i co) =Sow s(t)e-iwtdt AaafiVigaz 45Erti; R

R(ica) S(iw)N(ico) (2).

t

L7 4 :/-c1A-13 , ---q.g_Z*ftrib&P*ccMbl

*a4 :/,,A,ALAts.- -Zct 5 -C641.a,

R(ico)=S(ic)) 1(3

ISZ Magnification factor

Re[R(0)]=1 -C6 Zij1 1;, (3)4/CetC,

I'M)]

:terj<z

R h&A-Z61;4-t,Z Licts6.0

ZA (2 C 0) -5 cc L-cCrl:i0A00MIS'157,150,1t.

*&5 Alig ft T15-74:

6

Z.

OD t.,:15(C2, 7 .4 v dc4 -7,1Z-

..)/

h (it)

Lio

kInICIclqcc-E-0*()Pc:-

t

-, *a

Table 9 Fin conditions

( 1 )

fgccot to Is. -stlit/a)

ZZicc

--Dco-citfi/A1th4) (Olitt16 4.2 P1Mrti4

3 filMapa--CrT7S.-Dto C tit Table g

M7Th*C-f-t

J:t6deit.tott,*14tiriliidA--q- t- tap°

AbAbRiIiIIWARJA--q.g_tt00

±IcEoptAt3Cc 7

4 yvgitfigillic.ong_tz

0)0

to

ome,u OD Fig. 17(a)-4)

lto

friPROMX... . Fig. 18-21 4cTf.--4-,0 Fig. 18

4 :111-3,-,)3 ((1)4o N(ico)), Fig. 19 ar3A,A ((1)

S(iw)), Fig. 20 ttk:MkIR ((2)40) R(i(0))

0-). 1-1.1-tatiaBz.r.Yitifi--c%L. Fig. 21 tt fq*cc,

Oil( Lt. a ArZiP G2,-f.-1-41Lt ,V1U trc',

Fig. 2004.tALf41-ZSIOD

OD-C6z,

c

omp .5 -5, 71I'-7(C)

(c) Fin lift (2)0441

1- )141+5}MAt.

11)40DE45-},17-1S. j,7')11 7*(C)0) Fin lift(2) 0)7,-(11%V3ICNV.1

--C>R6t-tO-C630 Lt-_75&-D-C Fig. 19 ® 051.T (t )1, 7°012 2 N131011WifiA7514

tt,

(2) orA)A-141(otctS,4R-M4/, ifclancc -43.791111 41.

tikt0AiloriSMUtt"

4cts,

43 CIA(7) .

Fig. 19--21

7.COMMO e -

OtiEttl

c

ts, MA2AVRZI-IICT, OD I !Group 1 1 No.. 1 Initial roll

direction inpulsive force*Duration of

, Fin cond.

after impulse (18th Oct.Tested time'72)

,

_ .-- .

101 Starboard 2--3 sec Free (zero-control)lift 11: 30Pm

1 '

N

102 S. '1 " // 33 103 104 Port l' P. I ,.,/ V/

,

//` 37 40 -

---

-(B) 105 S. 6--.7 sec it 43 106 P. 1 ,/, 0, 47 (C) 107 S. Jr Lift control 51 109 P. 44

,

57 < 4

(23)

-T. No.104

0

T. No. 105

T. No.109

0)-.0"-COk=3-1A, R0qt*RaliCtODPINA --c-aft'AVZ bNG, MMIMAiglk4_-Tft'At-tZ c bi$*60

(B)-C12 Magnification factor 1) 3.5-4.0.

l'ft`t '1):E.-cliA&5EM=a1.Plk 0. 25-4). 28

ts

, a#1 Vgoffillib,

offEZIA -1AT

)k-.7(C)0)-5 SaDlitillit!0}.{-0.),GODIfit-Elt, C.11

,rt bilm:Gtz

c

ugli-JaV15t4

10 20

Fig. 17(a) Example of record in ,...se of short impulse

Fig. 17(b) Example of record in case of longer impulse

1 Roll angle Fin angle Fin lift 30 40 sec Roll angle Fin angle Fin lift Roll angle Fin angle Fin lilt 23

ffit&RMARRftid-c11,1c,<ts,---cozay-e,

o-rtuc

t,

5Mip c;r4 GIV.-_,JIS311t--chttrIA0DOVJ0.2 GC.1±, -C/._Pl..,)K00

Fig. 22,

LtzMitgr6t 1-3---totz c-PrJA L (2)

Z.

)1.-7°(c)o)5 SODTROSUM10)C','OD R1 (Fig. 20,

0 10 20 20 40 sec 50

Fig. 17(c) Example of record in case of lift control started just after the impulse

0 10 20 30 40 Se,

tt,

(24)

90 -90 -180 No.107,, N0.109 Fin lift (1) (Whole range) Orrt.P ( C ) 0.5 1.0 rtrOillec) 1.5 180 200 90 180-, .... Fin lift (2)

(IrnOulsive part only)

(c) (d)

Fig. 18 Fin lift

0.5 ar(l/sec) 1.5

-90

-180

No 105

Fin lift Fin lift

0.5 1.0 w(1/sen) 1.5 (a) (b) 90 ... 0.5 1.0 01(1/5et) 90 50.107 180L_ 0 0.5 1.0 or(11sec) 1.

(25)

N 180 E 90 -90 -180 Roll angle (c) 180 so

Fig. 19 Roll angle

0.5 1.0 to (1/sec)

(b)

i

25

(26)

100 90 -90 -180 1.0 0.5 180 90 -90 -180

Fig. 20 Roll response

Roll angle //in lift Roll angle / Fin lilt

(a) (b)

Roll angle/ Fin lift (1) Roil angle I Fin lift (2)

(e) (d)

10,5 1...No.102

No.101

4,(1/se0 1.

(27)

051 a cr -vNo.1 04 as tuft toed 1.5 .... 711 ... 05 w(11se.),

1.5-Fig. 21 Roll response calculated by roll rate

(d)

27

Roll date 7 APO in, IMO

0Roll rule / Iupef In MO

Group K

1%0 Group ,(.5.3,

(a) (b)

Roll rate '401w fin lift (10 Roll, rate /Cite., tilt (2 )0' Group ( CIA 1.0 0.5 90

\\

0.5 (c) 150 90

(28)

25

0

0.3

C4

ii 0.2

21tTED .it.ttttf, WSMUL 1,kt* Critical

damping (IC * Arr - alit) co:Nty3ciE<, 7

e,4A)2-00JAW-HINIIT:oZLtt4;11L.L.-luini5o74:/o0AoMEL-ItLtMALts

"Co tr-03, c-Efi]otz&Vx1:4R-L,--c, itil:, 7 4 Y 4 -9' -UT] 0-MS:Lts.M3110311 &a; 7 4 Ygi)jfifigif L, tstp

(DMA

(Mr114, Lo5}-144.2-E), AG op z,s,tiqtary ttl#13,t91)) V415-&*a,5

Z. co

.yy./..sts

7-11-

2.47WY-d--.Ftts. 5

obia

1;11 L. 111.;b16, fffilab&6Zo-"Ellt.r. 4..4 MA PLE.V8*1_,--Mott,V3Vgtz. (1)1. 7 Y e 4

-

L-c,, VoiVIZtz

INIgz --*R/57&I-5AT 6.

(2.) c VJZ.Vit P)14fit:WitI1 tESIMItb114,6tLZbi,,

1;41.Zf±*bsts.t,I0)--c =)t,ftib&d\ < MA0)

IS2V)&71: <

Z.

(3) VJAVAi]q-g_.7ii4r4mR< tsz L, op/j\ Ili ic#V703"6-bith*Z I:: 6, Z.S, MoDVI'Vviqg

0;1

.converted into model

Fig. 22 Linear damping coefficients and natural period of roil

tir4ZIPMfillf403,4*,

*Mao;

giMfavtc-OtM_L 4 Y

t--7 --)14ti 0

ft

ici:7--)14[13gLtv.tigiji.L-c Fda

,0-)AtAbli4G4-1,zb5,, 0), 0 0)010475-&.E111-E-6, < 0

COD/M/C.t-,--CA'ffiattlZUtz,--Zi4o)Wki*

artRrec;1,

K0. 25-0.28 oa'a--e,

fflttO)

iia#30.2dC 17)

7

7/73z t" 4 -9'-41, ,LOW.44-PM,MPleAC ft< 0, 5.

ti

9 GDMitttri MM-PZ?"

tt.:(6)9*MtlfifY-F, Lop;#,HtilML 1.-cTrts

oTt Z. ITINoRMZAL faNc, at8, 90 6 a

'9 -Mar_MMiziatt/ctgt

(1*) Tgib.eAclfTt L;a5 < SiV-1-z7xm-c'

aRoDIVML-C12) 7-c YrstaAtijill40tn5

1C0X-AltRgatAtV-47t0 elq/c14±, i4fi,

Mtiric(20,451o*MoRab,6,08i3bt.,-c

MgInCW71./C0-/Z:te, 7= 9 -V4..-A-0DI'Dtztrf. LAIMElliirEVAMIVM)Thrz

o 0 0 o 0 o .8 0

S

'Model Roll axis Kxx

o Car Ferry G 0.411

0 ., (with propeller) Free

(Actual shipin service) H I

x Container Ship G 0.355 02 0.3 0 0 1 0 2 01.3 Ffi

^ 2.7

a) 2.6 y , A

c

o

0 0 0

0 0 Fn

(29)

ci.Ainc.,,,yN G10_01/0:-LYA.

Liz o.

-f yi.)k

1-Lr, ,s, offjql--2, 0

TALK: 7*

'' Rlf.1/1;1*A*

4 :/ nCct

0-EA Z. 119

Alciti

j-175,GR.M#-?-511440)&cbtc-c-Vgts, :/

lcts.,--ceb 1;.,-ctso Loift

GC&26-C162141tZ MI-CA Z. tSt', ZRODIIIMiCd=iiarAf it#176:7*X#AF A C 0 M270-20 1) i1fx1r1M3L,

xma

A0011110101MaIMMIIIIIIIIIMMIIMUMMUUMIUMMWM11111 29

9 -0;11ttg c Mit z

GI 1 q)

&MVP& ourit, Nin" liJahmAgiamTrwt m-11 tiM 6 <1974)

2) 4Np' )dt.kr4,

Lt3FgVAtlitt--alk(M" 3 N)" TRW*, M9 t1_,0 3 -g-, (1972)

.3) /NI I 31,, gaba, /1, EIIXT "" -M100.1-)Kft

ZRo.f - 3711.4F7°13 ," 2," AahlafilWfZ3ilt

%11A% 1 (1974)

4) 4101*A

"i4 ?-.1aicim-pzvAaapAt

A cc v-c" rigA3116ta,3i..41-E-14-4 fX*741n&.

Cytaty

Powiązane dokumenty

Styl mówcy jest niekiedy „gwałtownym, zaciekłym szam otaniem się m yśli z krnąbrnym słowem, myśli, która musi być wypowiedziana, choć­ by na zgliszczach

[r]

1 pkt 1 możliwość żądania przez przedsię- biorcę, którego interes został naruszony lub zagrożony przez czyn nieuczciwej konkurencji, orzeczenia przez sąd nakazu

Cell binding assay on Mel-C and B16-F10 melanoma cells was used to evaluate melanin production and Sia overexpression to determine the best model for demonstration

Na zakończenie warto podkreślić, że praca om awiana jest absolutnie w olna od w szelkich przejawów tak bardzo jeszcze w Niem czech (i nie tylko w Niemczech)

Z niepełnych sprawozdań szkoleniowych znaj- dujących się w Centralnym Archiwum Wojskowym oraz w Archiwum Wojsk Lot- niczych i Obrony Powietrznej wynika, że w latach 1945-1949 w

A diffraction potential q is proportional to the amplitude of the diffracted wave and it is conceived5 that the diffraction amplitude of a progressing two dimensional wave

„Na Rubieży: czasopismo historyczno-publicystyczne Stowarzyszenia Upamiętnienia Ofiar Zbrodni Ukraińskich Nacjonalistów we Wrocła- wiu” 2016: nr 145, 146.. Endre