• Nie Znaleziono Wyników

A method for solving rectangular beams and discs = Metoda rozwiązywania prostokątnych ortotropowych belek i tarcz

N/A
N/A
Protected

Academic year: 2021

Share "A method for solving rectangular beams and discs = Metoda rozwiązywania prostokątnych ortotropowych belek i tarcz"

Copied!
12
0
0

Pełen tekst

(1)

No. 1 2005

A METHOD FOR SOLVING RECTANGULAR BEAMS AND DISCS

Maria OLEJNICZAK Department of Structural Mechanics,

Faculty of Civil and Environmental Engineering ATR, prof. S. Kaliskiego St. 7, 85-796 Bydgoszcz, Poland

An analytic method for solving two-dimensional elasticity problems of orthotropic body has been worked out. A solution for rectangular elements of the beam or disc type has been developed. This solution satisfies the fundamental equations of the elasticity theory of two-dimensional body exactly and the boundary conditions with large accuracy.

Keywords: thick plate, beam, disc, orthotropy, analytic method

1. FORMULATION OF THE PROBLEM

Beams and discs are widely used as structural members. Depending on the kind of reinforcement they may divided into two groups: isotropic or orthotropic. The former comprise all homogenous members like, for instance, steel elements. The reinforced members may be treated as orthotropic with varying degree of orthotropy. Typical examples are beams and discs made of wood, composite fibres and concrete.

Fig.1. A beam as a plate strip 2a3

2a1

2a2

x 3

x1

x2

© University of Zielona Góra Press, Zielona Góra 2005 ISBN 83-89712-71-7

(2)

This work focuses on development of a method for solving of orthotropic structural members: beams and discs. Beams are treated as strips cut out of a thick orthotropic plate subject to cylindrical bending (fig. 1). Under axial stretch we face the membrane state.

Equilibrium of such a strip, treated as a beam or a disc depending on the way it is loaded, is governed by a system of two homogeneous differential equa- tions [2,5]:

(

31 55

)

1,31 33 3,33 0

11 , 3

55u + b +b u +b u =

b , (1)

(

13 55

)

3,31 55 1,33 0 11

, 1

11u + b +b u +b u =

b ,

where: uj (j=1,3) are the components of the displacement vector and )

5 , 3 , 1 , (k l=

bkl correspond to the components of the stiffness tensor for an orthotropic material. Specifically, in (1) the following convention has been adopted: b11=b1111, b13=b1133=b31, b55=b1313, b33=b3333.

2. METHOD OF SOLUTION

Following the approach taken in [1,4], we assume the solution to a non- symmetrical problems in the form:

{

=

+ +

=

1

3 ] 3 [

) ( 1 ] 1 [

) ( 1 3 ] 3 [

) ( 1 ] 1 [

) ( 2

1 ( )cos( ) ( )sin( )

m

m m

m

m x x f x x

f

u δ δ

}

) sin(

) ( ) cos(

)

( 3 ([1]) 1 1[(3]) 3 ([1]) 1

] 3 [

) (

2 x x f x x

f m δm + m δm

+ ,

{

=

+ +

=

1

3 ] 3 [

) ( 1 ] 1 [

) ( 3 3 ] 3 [

) ( 1 ] 1 [

) ( 4

3 ( )cos( ) ( )sin( )

m

m m

m

m x x f x x

f

u δ δ (2)

}

) sin(

) ( ) cos(

)

( 3 ([1]) 1 3[(3]) 3 ([1]) 1

] 3 [

) (

4 x x f x x

f m δm + m δm

+ ,

where the functions: f[ ]( )

( )

xj , p=1,4 j

m

p are the unknowns and: [ ]

( )

j j

m a

m 2

1

2 π

δ =

the parameters.

Substituting (2) to (1), and separating the variables, we obtain a system of ordinary differential equations for unknown functions fp[(jm])(xj):

( ) ( ) ( )

{

=

+ + +

3

1

) 3 ]( [

) ( 3 ] [

) ( )

3 ]( [

) ( 2 ] [

) ( )

3 ]( [

) ( 1 ] [

) ( r

j j r m j

m kr j j r m j

m kr j j r m j

m

kr f x B f x C f x

A

( ) }

0

) 3 ]( [

) ( 4 ] [

)

( =

+Dkrjm f jm r xj , k=1,4 ,r=1,3. (3)

(3)

The coefficients: Akr[j(]m),Bkr[j(]m),Ckr[j(]m),D[krj(]m) in (3) can be expressed via the components of the stiffness tensor for the orthotropic material and appropriate parameters:

[ ]( )

[ ]( ) ,

, 131 55 [(3])2

11 1

11m b A m b m

A = =− δ

[ ]( )

[ ]( )

[ ]( ) ,

, ) (

, 221 13 55 ([3]) 231 55 ([3])2

11 1

21m b C m b b m B m b m

B = = + δ =− δ

[ ]( )

[ ]( )

[ ]( )

, ,

) (

, 321 13 55 ([3]) 331 33 ([3])2

55 1

31m b B m b b m C m b m

C = =− + δ =− δ

[ ]( )

[ ]( )

[ ]( )

, ,

) (

, 421 13 55 ([3]) 431 33 ([3])2

55 1

41m b A m b b m D m b m

D = = + δ =− δ (4)

[ ]( )

[ ]( )

[ ]( ) ,

, ) (

, 123 13 55 ([1]) 133 11 ([1])2

55 3

11m b D m b b m A m b m

A = =− + δ =− δ

[ ]( )

[ ]( )

[ ]( )

, ,

) (

, 223 13 55 ([1]) 233 11 ([1])2

55 3

21m b C m b b m B m b m

B = = + δ =− δ

[ ]( )

[ ]( )

[ ]( )

, ,

) (

, 321 13 55 ([1]) 331 55 ([1])2

33 1

31m b B m b b m C m b m

C = =− + δ =− δ

[ ]( )

[ ]( )

[ ]( ) .

, ) (

, 423 13 55 ([1]) 433 55 ([1])2

33 3

41m b A m b b m D m b m

D = = + δ =− δ

The remaining parameters have zero values.

We seek the following particular solution to (3):

( ) [

j

]

j m j

m p j j m

p x R x

f[(]) = [(])expλ([ ]) , (5) where Rp[(j]m) are unknown parameters. The quantities λ[(jm]) are the roots of the characteristic equation [4]:

, 0 )

( ) )(

(b11λ[21(]m2)b55δ([m3])2 b55λ[21(]m2)b33δ([m3])2 + b13+b55 2δ([m3])2λ[21(]m2) = , 0 )

( ) )(

(b55λ[23(]m2)b11δ([m1])2 b33λ[23(]m2)b55δ([1m])2 + b13+b55 2δ([1m]2)λ[23(]m2)= (6)

Each of the above equations is a fourth-order equation (biharmonic equa- tion) and, therefore, each has four roots (two positive and two negative):

[ ]( )

[ ]( ) [ ]( )

[ ]( ).

, 2 4

3 1

j m j

m j

m j

m λ λ λ

λ =− =− (7) Numerical computations show that for orthotropic material the roots λ[(jm]) are all real.

General solution of the system takes the form:

=

ν ν λν

=

4 1

] [

) ( ]

[ ) ( ]

[ )

( j exp jm j

p m j

m

p R x

f . (8)

(4)

Observe that within the set

{

Rp[(j]m)

}

ν only two groups of coefficients R1ν[j(]m) and

] [

) 2 (

j

Rν m are linearly independent. All the remaining coefficients are linearly re- lated by the equations:

] [

) ( 2 ] [

) ( 2 ] [

) ( 3

j m v j

m v j

m

v R K

R = , R4[vj](m) =R1[vj(]m)K1[vj(]m). (9) In the above:

] 1 [ ] 1 1 [ 55 13

55 ] 1 [ 11 ] 3 [

) ( ] 1 [

) ( 55 13

] 3 [

) ( 55 ] 1 [

) ( ] 11

1 [

) (

1 ( ) ( )

2 2 2

v v v m

m v

m m

v m

v K

b b

b b

b b

b

K b =

+

= − +

= −

γ γ δ

λ δ

λ ,

] 1 [ ] 2 1 [ 55 13

55 ] 1 [ 11 ]

3 [

) ( ] 1 [

) ( 55 13

] 3 [

) ( 55 ] 1 [

) ( ] 11

1 [

) (

2 ( ) ( )

2 2 2

v v v m

m v

m m

v m

v K

b b

b b

b b

b

K b =

+

− − + =

− −

= γ

γ δ

λ δ

λ , (10)

] 3 [ ] 1 3 [ 55 13

11 ] 3 [ 55 ] 1 [

) ( ] 3 [

) ( 55 13

] 1 [

) ( 11 ] 3 [

) ( ] 55

3 [

) (

1 ( ) ( )

2 2 2

v v v m

m v

m m

v m

v K

b b

b b

b b

b

K b =

+

= − +

= −

γ γ δ

λ δ

λ ,

] 3 [ ] 2 3 [ 55 13

11 ] 3 [ 55 ]

1 [

) ( ] 3 [

) ( 55 13

] 1 [

) ( 11 ] 3 [

) ( ] 55

3 [

) (

2 ( ) ( )

2 2 2

v v v m

m v

m m

v m

v K

b b

b b

b b

b

K b =

+

− − + =

− −

= γ

γ δ

λ δ

λ ,

where: γν[ ]jν[ ]j( )mm[ ]j .

Making use of (2) and (8) we can determine the components of the displacement vector as:

[ ] [ ]

{

[

( )sin( )

] [

( )cos( )

] }

,

) cos(

) ( )

sin(

) (

1 ] 1 [ 3 ] 3 [

) ( 2 ] 3 [

) ( 2 1 ] 1 [ 3 ] 3 [

) ( 1 ] 3 [

) ( 1 1

4

1

3 ] 3 [ 1 ] 1 [

) ( 2 ] 1 [

) ( 2 3 ] 3 [ 1 ] 1 [

) ( 1 ] 1 [

) ( 1 1

x x

U R x x

U R

x x

U R x x

U R u

m m

m m

m m m

m m

m m

m m

δ δ

δ δ

ν ν ν

ν ν

ν ν ν

ν

+ +

+ +

=

∑∑

= = (11)

[ ] [ ]

{

[

( )cos( )

] [

( )sin( )

] }

.

) sin(

) ( )

cos(

) (

] 1 1 3 [ ] 3 [

) ( 2 ] 3 [

) ( 1 2

] 1 3 [

] 3 [

) ( 1 ] 3 [

) ( 1 1

4

1

] 3 3 1 [ ] 1 [

) ( 2 ] 1 [

) ( 3 2

] 3 1 [

] 1 [

) ( 1 ] 1 [

) ( 3 1

x x

W R x x

W R

x x

W R x x

W R u

m m m m

m m m

m m m m

m m

δ +

δ +

+ δ +

δ

=

ν ν ν

ν

= =ν

ν ν ν

∑∑

ν

We introduced the following notation in (11):

( )





=

= =

, 3,4

cosh

, 2 , 1 , sinh

)

( [ ]

) ( 2 ] [

) ] (

[ )

( λ ν

ν λ

ν ν ν

j j

m j j

m j

j m

p x

x x

U

(5)

( )

. ,

4 , 3 , sinh

1,2 p

, 2 , 1 , cosh

) (

] [

) ( 3 ] [

) ( ]

[ ) ( ]

[ ) (





= ν λ

=

= ν λ

=

ν ν ν

ν

j j

m j j

m j

m j p

j m p

x x K

x

W . (12)

The components of the strain tensor follow from the kinematic relations:

(

ij ji

)

ij u, u, 2

1 +

ε = (13) Substituting (11) to the above, we derive the formulas for the components of the strain tensor:

[ ]

( )

cos( )

[

( )sin( )

]

,

) cos(

) ( )

sin(

) (

1 ] 1 [ 3 ] 3 [

) ( 2 ] 1 [ ] 3 [

) ( 2 3 ] 3 [ 1 ] 1 [

) ( 2 ] 1 [

) ( 2

1 ] 1 [ 3 ] 3 [

) ( 1 ] 1 [ 1

4

1

] 3 [

) ( 1 3 ] 3 [ 1 ] 1 [

) ( 1 ] 1 [

) ( 1 11



− 

+

 

 ′

+

 +



+

 

 ′

=

∑∑

= =

x x

U R

x x

U R

x x

U R

x x

U R

m m

m m m

m m

m m

m m

m m

m m

δ δ

δ

δ δ

δ ε

ν ν

ν ν

ν ν

ν ν

ν

[ ]

{

[

( )cos( )

]

( )sin( ) ,

) cos(

) ( )

sin(

) (

1 ] 1 [ 3 ] 3 [

) ( 2 ] 3 [

) ( 2 1 ] 1 [ 1 ] 1 [

) ( 2 ] 3 [ ] 1 [

) ( 2

1 ] 1 [ 3 ] 3 [

) ( 1 1

4

1

] 3 [

) ( 1 3 ] 3 [ 1 ] 1 [

) ( 1 ] 3 [ ] 1 [

) ( 1 33





 ′ +

+

+

 

 ′

+

=

∑∑

= =

x x

W R x x

W R

x x

W R x x

W R

m m

m m

m m m

m m

m

m m

m m m

δ δ

δ

δ δ

δ ε

ν ν ν

ν

ν ν

ν ν

ν

. ) sin(

) ( )

(

) cos(

) ( )

(

) sin(

) ( )

(

) cos(

) ( )

(

1 ] 1 [ 3

] 3 [

) ( 2 ] 1 [ 3 ] 3 [

) ( 2 ] 3 [

) ( 2

3 ] 3 [ 1

] 1 [

) ( 2 1 ] 1 [

) ( 2 ] 3 [ ] 1 [

) ( 2

1 ] 1 [ 3

] 3 [

) ( 1 ] 1 [ 3 ] 3 [

) ( 1 ] 3 [

) ( 1 1

4

1

3 ] 3 [ 1

] 1 [

) ( 1 1 ] 1 [

) ( 1 ] 3 [ ] 1 [

) ( 1 13





 

 

 

 ′ −

+

+

 

 

 

 ′

+ +

+

 

 

 

 ′ −

+



 +

 

 

 

 ′

+

=

∑∑

= =

x x

W x

U R

x x

W x U R

x x

W x

U R

x x

W x U R

m m

m m

m

m m

m m m

m m

m m

m m

m m

m m m

δ δ

δ δ

δ δ

δ δ

γ

ν ν

ν

ν ν

ν

ν ν

ν ν

ν ν

ν

(14)

Let us introduce the following notation:

) ( )

( 1 1[1]( ) 1

] 1 [

) (

1 x U x

G m m

= ν

ν , G1[ν3(]m)(x3)=δm[1]U1[ν3](m)(x3), )

( )

( 1 [21]( ) 1

] 1 [

) (

2 x U x

G m m

= ν

ν , G2[ν3](m)(x3)=−δm[1]U2[ν3](m)(x3), )

( )

( 3 1[3(] ) 3

] 3 [

) (

1 x W x

H m m

= ν

ν , H1[ν1](m)(x1)=−δm[3]W1ν[1(]m)(x1),

(6)

) ( )

( 3 2[3]( ) 3

] 3 [

) (

2 x W x

H m m

= ν

ν , H2[1ν](m)(x1)=δm[3]W2[ν1](m)(x1), (15)

( )

1 [3] 1[1]( )( 1) 1[1(] ) ( 1)

] 1 [

) (

1 x U x W x

T m m m m

+

= ν ν

ν δ ,

( )

3 1[3(] )( 3) [1] 1[3(] )( 1)

] 3 [

) (

1 x U x W x

Tν m ν m′ −δm ν m

=

( )

1 [3] 2[1]( )( 1) 2[1]( )( 1),

] 1 [

) (

2 x U x W x

T m m m m

+

= ν ν

ν δ

( )

3 [23]( )( 3) [1] 2[3(] )( 3)

] 3 [

) (

2 x U x W x

Tν m ν m′ −δm ν m

= .

Then the functions determining the components of the strain tensor take the form:

[ ]

{ [ ]

[ ( )

cos( )

] [

( )sin( )

] }

,

) cos(

) ( )

sin(

) (

1 ] 1 [ 3 ] 3 [

) ( 1 ] 3 [

) ( 2 3 ] 3 [ 1 ] 1 [

) ( 2 ] 1 [

) ( 2

1 ] 1 [ 3 ] 3 [

) ( 1 1

4

1

] 3 [

) ( 1 3 ] 3 [ 1 ] 1 [

) ( 1 ] 1 [

) ( 1 11

x x

G R x x

G R

x x

G R x x

G R

m m

m m

m m

m m

m

m m

m m

δ δ

δ δ

ε

ν ν ν

ν

ν ν

ν ν

ν

+ +

+ +

=

∑∑

= =

(16)

[ ]

{ [ ]

[

( )cos( )

] [

( )sin( )

] }

,

) cos(

) ( )

sin(

) (

1 ] 1 [ 3 ] 3 [

) ( 2 ] 3 [

) ( 2 1 ] 1 [ 1 ] 1 [

) ( 2 ] 1 [

) ( 2

1 ] 1 [ 3 ] 3 [

) ( 1 1

4

1

] 3 [

) ( 1 3 ] 3 [ 1 ] 1 [

) ( 1 ] 1 [

) ( 1 33

x x

H R x x

H R

x x

H R x x

H R

m m

m m

m m

m m

m

m m

m m

δ δ

δ δ

ε

ν ν ν

ν

ν ν

ν ν

ν

+ +

+ +

=

∑∑

= =

[ ]

{ [ ]

( )

[

( )cos( )

] [

( )sin( )

] }

,

) sin(

) ( )

cos(

) (

1 ] 1 [ 3 ] 3 [

) ( 2 ] 3 [

) ( 2 3 ] 3 [ 1 ] 1 [

) ( 2 ] 1 [

) ( 2

1 ] 1 [ 3 ] 3 [

) ( 1 ] 3 [

) ( 1 1

4

1

3 ] 3 [ 1 ] 1 [

) ( 1 ] 1 [

) ( 1 13

x x

T R x x

T R

x x

T R x x

T R

m m

m m

m m

m m

m m

m m

m

δ δ

δ δ

γ

ν ν ν

ν

ν ν ν

ν ν

+ +

+ +

=

∑∑

= =

The components of the stress tensor follow from the constitutive rela- tions:

kl ijkl ij b ε

σ = (17) Substituting the right-hand sides of (16) to (17), we obtain:

[ ]

{ [ ]

[ ( )

cos( )

] [

( )sin( )

] }

,

) cos(

) ( )

sin(

) (

1 ] 1 [ 3 ] 3 [

) ( 1 ] 3 [

) ( 2 3 ] 3 [ 1 ] 1 [

) ( 2 ] 1 [

) ( 2

1 ] 1 [ 3 ] 3 [

) ( 1 1

4

1

] 3 [

) ( 1 3 ] 3 [ 1 ] 1 [

) ( 1 ] 1 [

) ( 1 11

x x

Y R x x

X R

x x

X R x x

X R

m m

m m

m m

m m

m

m m

m m

δ δ

δ δ

σ

ν ν ν

ν

ν ν

ν ν

ν

+ +

+ +

=

∑∑

= =

Cytaty

Powiązane dokumenty

Developing a knowledge based solution system for complex design problems consist of a structured approach of transforming the real world problem, via an expert view on the problem, to

Завдання дослідження полягали в здійсненні системного теоретико-методичного аналізу наукової літе- ратури з проблеми

Nadał mu więc następujące znaczenie duchowe: małżeństwo jest obrazem zjednoczenia człowieka z cnotą, które w pełni może się dokonać w wieku podeszłym,

The method used in this paper is analogous to that given by T.. At first we shall prove a theorem connected with the existence and location of the successive

We propose the Galerkin method with finite-dimensional spaces based on the Lagrangean finite element of degree k £ N (see Sec.. In the case of strong ellipticity

11 , it can be observed that the total measured concentration of the 10 corresponding individual tar compounds obtained from all three fuels under gasi fication at atmospheric

of Portuguese philology at the Jagiellonian University in Cracow and seven learners of Portuguese at the Iberian Language School ‘Porto Alegre’ in

Interval methods for solving wave equation on floating-point interval arithmetic give solutions, in form of intervals, which contain all possible numerical