• Nie Znaleziono Wyników

Suspension system

N/A
N/A
Protected

Academic year: 2021

Share "Suspension system"

Copied!
43
0
0

Pełen tekst

(1)

Suspension system

(2)

Q

S

0

1 2

3

spring+damper

(3)

Q

S

0

1 2

3

0 :

2 F

32

+ Q + F

12

= link

points of

application only

?

(4)

Q

S

0

1 2

3

0 :

3 F

23

+ F

03

=

link

(5)

Q

S

0

1 2

3

= 0 +

+

12

32

Q F

F

F12 Q

F32

(6)

Q

S

0

1 2

3

0 :

1 F

21

+ F

01

+ S = link

F21 F01

S

(7)

RRTR example (1)

3

0 1

2

(8)

RRTR example (2)

3

0 1

2

M3

M1=?

(9)

RRTR example (3)

3

0 1

2

M3

M1=?

0 .

3

F23

+

F03

=

(10)

RRTR example (3)

3

0 1

2

M3

M1=?

0 .

2 F12 + F32 =

(11)

RRTR example (3)

3

0 1

2

M3

M1=?

0 .

2 F12 + F32 =

0 .

3

F23

+

F03

=

(12)

RRTR example (4)

3

0 1

2

M3

M1=?

...

0 0

. 3

23

3 3

23 3

=

=

 =

F

M h

F

M C

B A

C h3

F23

F03

(13)

RRTR example (5)

3

0 1

2

M3

M1=?

...

0 0

. 3

23

3 3

23 3

=

=

 =

F

M h

F

M C

B A

C h3

F23

F03 F32

F30

(14)

RRTR example (6)

3

0 1

2

M3

M1=?

0 .

1

F21

+

F01

=

B A

C h3

F23

F03 F32

F30

F12 F21

(15)

RRTR example (7)

3

0 1

2

M3

M1

0 0 .

1

1 1

2 1

1

=

=

M h

F

M A

B A

C h3

F23

F03 F32

F30

F12 F21

h1 F01

F10

(16)

dynamics, kinetostatics 16

IN KINETOSTATICS

THE MOTION OF MASS BODIES (LINKS) IS REPRESENTED BY INERTIA FORCES

(17)

Inertia forces

Newton, Euler, D’Alembert

ε M

b

= − I

S

0 0  + =

=

I

S

ε M M

b

M

ε M = I

S

a F

b

= − m

0

0  + =

=

ma F Fb F

a

F = m

(18)

dynamics, kinetostatics 18

Mass moment of inertia

+

=

m

Z x y dm

I

(

2 2

)

) (

S2 S2

S

Z

I m x y

I = + +

(19)

dynamics, kinetostatics 19

a F

b

= − m

ε Mb

= −

IS

ma I F

M F

h M

S

b b M

b

= = 

=

FORCE (Fb) and MOMENT (Mb) OF INERTIA

Given:

m, IS, a, ε

(20)

dynamics, kinetostatics 20

FORCE (Fb) and MOMENT (Mb) OF INERTIA

resultant inertia force

(21)

dynamics, kinetostatics 21

Center of percussion

AS

AS

=

=

+

=

t S 2

n S

t S n

S

; a a

a a

aS

S

A

B

aS S

S

(22)

dynamics, kinetostatics 22

Center of percussion

S

A

B

aS S

S

W

Fb h

I

S

m ε M

a F

b

S b

=

=

S S b

b

ma I F

h = M =

(23)

B

S

A aS S S

W

Fb h

cos(?)

=

=

S t S

a a SW

Center of percussion h

 =

 









=

 =

 



 

= 

=

t S S S

t S S

t S S S

S t

S S

a a ma

AS I a

a a ma

I a

h a

SW

mAS I a

a AS ma

a

I

S

t S S S

t S

S

=

=

(24)

B

S

A aS S S

W

Fb h

AS i mAS

mi mAS

SW I

S S S

2

2

=

=

=

Center of percussion

iS – radius of inertia

(25)

dynamics, kinetostatics 25 -100000

-80000 -60000 -40000 -20000 0 20000 40000 60000 80000 100000

0 0,004 0,008 0,012

czas [s]

Angular accel of BC

20000 25000 30000 35000 40000 45000 50000 55000 60000 Accel of point

S m, J

A C

B S

BC = 0,2 m

1 = 500 s-1 (1 = const) (n1 = 5000 rev/min)

(26)

dynamics, kinetostatics 26 m, J

A C

B S

aSmax = 55000 ms-2

Bcmax = 90 000 s-2

m=0,2 kg, J=0,01 kgm2

Fbmax = - ma = 11000 N !!!

Mbmax = - J = 900 Nm !!!

(27)

dynamics, kinetostatics 27

N ma

F

b

= − = 250

= 25

STATIC b

F

F

S – center of gravity

e

S

Fb

 

2

1 / 250/

2

500 001 ,

0

s m e

a

s m e

S

= =

=

=

kg m = 1

Fb

(28)

Example of analysis (kinetostatics)

m, J

M1=?

3

0

2

1 1

Data:

m, J – mass, mass moment of inertia

1 – angular velocity of link 1 M1 = ? and joint forces

(29)

2

Mb

a

Fb

ma F

b

= −

J

M

b

= −

(30)

ma J F

h M

b

b

=

=

M

b Couple of forces Fb

Fb

Fb h

2

Mb

a

Fb

(31)

2

Fb

a

2

Fb Fb

a

Fb

h

(32)

M1 3

0

2

1

Fb F03

c

F23

c

0

A

= 0 +

03

23

F

F

Link 3:

(33)

M1

3

0

2

1

Fb

F03 c

F23

c

0

A

= 0 +

03

23

F

F

Link 3:

= 0 +

+

b 12

32

F F

F

Link 2:

(34)

M1 3

0

2

1

Fb F30

c

F32

c

F12 c

0

A

F32

c

F12 c

= 0 +

+

b 12

32

F F

F

(35)

M1 3

0

2

1

Fb F30

c

F32

c

F12

c

F10

c

0

A h1

c

F32

c

F12

c

= =

=

+ 01 0 M1A 0 M1 F21h1 0

21 F

F

(36)

m, J

M1=?

3

0

2

1 Fc

c

1

Data:

FC – input force (driver)

m, J – mass, mass mom. of inertia

1 – angular vel of crank 1 M1 = ? and joint forces = ? Example of analysis (kinetostatics)

(37)

M1 =?

3

0

2

1 Fc c

Fb

F03 c

0

= 0 +

+

b 12

32

F F

F

= 0 +

+

03 23

C

F F

F

???

Slider 3:

Coupler 2:

(38)

Statically determined group (of links)

kinematic system in equilibrium

every link in equilibrium

any group of links in equlibrium

forces may be fully determined using the six (three) equations of 3D (2D) statics without

using deflection and stiffness criteria.

(39)

j

i

Fijx Fijy

i

j Fijx

Fijy

i

j Fijx

Fijy

1 unknown 2 unknowns 2 unknowns

Number of equations

= Number of unknowns

3k = 2p1 + p2

In kinetostatics unknowns are joint forces

(40)

( 1 ) 2

1

1

2

3 n p p

DOF = − − − 0 1

2

3 kp

1

p

2

=

Mobility

Condition of static determination

k 1 2

...

4

p1 1 3

...

6

p2 1 0

...

0

(k-p1–p2) (1-1-1) (2-3-0) (460)

Examples of static. determined groups

(41)

group (1-1-1) group (2-3-0)

II class - R or T II class - K or J or Z

I kl - R lub T

(42)

1-1-1 stat. determined group (one link)

3 1

2 F12

F2

F32 F32 + F12 + F2 = 0

(43)

2-link groups (k-p1-p2 = 230)

RRR

RTR RTT

RRT

TRT

Cytaty

Powiązane dokumenty

uwzględniać jego związki z otoczeniem, terytorium i krajobrazem. Tak dalece, jak to tylko możliwe, na- leży redukować destrukcyjne aspekty prac wykopa- liskowych, w

Morawski: Krótka historia badań fosforytów rachowskich, J. Begdon: Za- rys polskiego piśmiennictwa myrmekologicznego w ujęciu historycznymT G. Brzęk: Stanisław Staszic jako biolog,

A critical discussion of the model capabilities is presented stemming from the previous comparison between the model simulation and the experimental results. 14 Experimental results

Since there are doubts about the shear capacity of existing reinforced concrete slab bridges, the critical loading position that was used in the experiments on the

forces may be fully determined using the six (three) equations of 3D (2D) statics without. using deflection and

[r]

We have shown that by choosing a particular magic value ofthe ratio ofthe Kuhn length to the monomer hydrodynamic radius a model polymer displays long-polymer scaling ofthe

From the DNS calculations it can be con- cluded that for a suspension with particles with a response time much larger than the Kolmogorov time scale the main effect of the particles