• Nie Znaleziono Wyników

Extraction of layer-specific seismic velocity in a porous medium through seismic interferometry applied to ultrasonic measurements of CO2 sequestration

N/A
N/A
Protected

Academic year: 2021

Share "Extraction of layer-specific seismic velocity in a porous medium through seismic interferometry applied to ultrasonic measurements of CO2 sequestration"

Copied!
2
0
0

Pełen tekst

(1)

Delft University of Technology

Extraction of layer-specific seismic velocity in a porous medium through seismic

interferometry applied to ultrasonic measurements of CO2 sequestration

Draganov, Deyan; Ghose, Ranajit; Heller, Karel

Publication date 2016

Document Version

Accepted author manuscript

Citation (APA)

Draganov, D., Ghose, R., & Heller, K. (2016). Extraction of layer-specific seismic velocity in a porous medium through seismic interferometry applied to ultrasonic measurements of CO2 sequestration. Abstract from 2nd international conference on ultrasonic-based applications, Caparica, Portugal.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Extraction of layer-specific seismic velocity in a porous medium through seismic

interferometry applied to ultrasonic measurements of CO2 sequestration

D. Draganov1, R. Ghose1

, K. Heller1

1. Department of Geoscience and Engineering, Delft University of Technology, The Netherlands

Abstract

Purpose: Time-lapse seismic monitoring constitutes the foundation for most monitoring programmes involving

CO2 storage. When using time-lapse seismics, two major sources of uncertainty in the estimation of changes in the reservoir properties, like saturation and pressure, are the non-repeatability of the source positions and the difficulty to separate the effect of the overburden from that of the changes taking place in a CO2 reservoir. The goal of this research is to propose a new concept of using non-physical (ghost) reflection events retrieved by seismic interferometry and test this concept through ultrasonic laboratory experiments that mimic realistic CO2 sequestration in a porous reservoir rock.

Experimental description: Results from two laboratory experiments will be presented. In both experiments, a

two-layer sample consisting of a top two-layer of epoxy, representing the impervious cap rock, and a lower two-layer of Bentheimer sandstone (porosity ~ 22%, permeability 1.34 Darcy, density 2080 kg/m3), representing the reservoir rock, is used. In the first experiment, ultrasonic tests using piezoelectric transducers were performed under ambient (room) conditions of temperature and pressure, and water was displaced by ethanol. In the second experiment, elaborate ultrasonic experiments were carried out under controlled (elevated) pressure and temperature conditions mimicking a true CO2 reservoir where supercritical CO2 displaced brine. An array of seismic receiver was used to record the ultrasonic reflections from the top and the bottom of the porous layer.

Results and conclusions: Using non-physical (or ghost) reflections retrieved by seismic interferometry, we could

successfully estimate the acoustic wave velocity in the porous reservoir and its temporal change associated with changes in pressure and fluid-content in the pores. The estimation of layer-specific wave-velocity, eliminating effectively the effect of the changes occurring in the overburden and that of source irreproducibility, has been possible for the first time. The advantage of using cross-coherence over cross-correlation in the application of seismic interferometry, in order to address velocity changes in a thin reservoir layer, has been established. It was possible to obtain reliable values of the rock-physical properties from the estimated layer-specific acoustic wave velocity obtained by the proposed approach.

Key Words: ultrasonics, interferometry, monitoring, CO2, CCS, reflections, seismics

Acknowledgements: This research is sponsored by the Dutch national program CATO2. D.D. is additionally

supported by the Division for Earth and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO, VIDI grant 864.11.009).

Correspondence: Stevinweg 1, 2628 CN Delft, The Netherlands. Emails: d.draganov@tudelft.nl, r.ghose@tudelft.nl,

h.k.j.heller@tudelft.nl

Postprint: 2nd international conference on ultrasonic-based applications: From analysis to synthesis ULTRASONICS 2016 6/06/16 → 8/06/16 Caparica, Portugal

Cytaty

Powiązane dokumenty

Origen suggests that the idea of paragon governing the Church commune be transferred to the state, giving public posts to people of dignity, justice and law who shall exercise

Po długiej i ciężkiej chorobie 3 lipca 2019 roku zmarła dr Jadwiga Rył ze Zgromadzenia Sióstr Najświętszego Imienia Jezus, wieloletnia kustosz Biblioteki Katedralnej w

Pas wanneer een stad een bepaalde functie niet heeft en er wel draagvlak voor biedt, maar dit niet kan benutten doordat een naburige stad deze functies al sterk heeft

identify trade lanes that would include cooperating customers and partners, as permission from these parties was essential when using their data. An important part is

Podkreślam z całą mocą - kontrrefor­ macja, czyli wprowadzanie katolicyzmu, odnowionego przez prace Soboru Try­ denckiego, przy pomocy „ram ienia świeckiego”,

Although more scattered than in the publication cluster map ( figure 2 B), figure 4 shows a similar increasing trend in publications related to patient safety risk factors, as

Bogaty we wrażenia pierwszy dzień zjazdu zakończył się przy ognisku, które zapłonęło nad brzegiem Jeziora Lednickiego przy siedzibie dyrekcji Muzeum Pierwszych Piastów

It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of