• Nie Znaleziono Wyników

An Extension of Typically Real Functions

N/A
N/A
Protected

Academic year: 2021

Share "An Extension of Typically Real Functions"

Copied!
14
0
0

Pełen tekst

(1)

ANNALES

UNIVERSITATIS MARIAE C U RI E-S K LO D 0 W S K A LUBLIN-POLONIA

VOL. XLVIII, 14________________SECTIO A_________________________1994

Jan SZYNAL (Lublin)

An Extension of Typically Real Functions

Abstract. For a fixed A>0 let 7r(A) stand for the class of functions f defined by theformula f(z)=J1^ z(l—2xz+z3)~* dit(x) , where n is a probability measure on[—1,1].

ObviouslyTr(1) coincides with theclassoftypically real functions. Some convolution and coefficient results previouslyestablished for 7r(1) are extended to the class Th(A).

1. Introduction

Let Ai (D) denote the class of holomorphic functions (1) f(z) = z + a2z2 + ••• ,

in the unit disk D = {z : |z| < 1} .

By Tft(A), A > 0 we denote the subclassof Ai(P) consisting of functions f which have the integralrepresentation

(2)

where /z is aprobability measureon the interval [—1,1] .

If SÂ(a), —oo < a < 1 , is the family of holomorphicfunctions of the form (1) which are starlike of order a in D and have real coefficients, then we see that the function

z

(1 - 2xz + z2)A ’

(3) sÄ(z,x):= x 6 [-1,1] , z e D ,

(2)

194 J. Szynal

is in 5^(1 — A) because

Re££k(^ = 1_2A + 2ARe SA(z,l)

1 12 12xz + z2

> 1 - A z G D .

This fact implies that Tr(\i) C Tr(A2) for Aj < A2 . Because Tk(0) = {2} in what follow we assume A > 0 .

Let us observe that Tr(1) = Tr is the well-known class of typically-real functions [1], [6], [11]. Moreover, the class Tr(\) is a convex set in the space Ai(i?) which is a locally convex linear topological space with the respect to the topology given by uniform convergenceon compact subsets ofD. So by Krein-Milman theorem every convex functional on Tr(\) attains its extremal values on the extreme points of 7r(A) [6]. It has been proved by Hallenbeck [2]

that

(4) Th(A) = co5^(l - A) , extTR(A)= {sA(z,x): x € [-1,1]} . Thefollowing two results are known for typically-real functions:

Theorem A (Robertson [8]). If f(z) = z + ^^=2anzn € Tr

and g(z) = z + ^^=2 € Tr , then

9)(2)

n=2

Theorem B (Leeman [4]). If f € Tr , then

t n - a„ < ^n(n2 -1)(2 - a2) , n = 3,4,... .

o

Alternativeproofs of Theorem A and Theorem B were presented by Krzyz and Zlotkiewicz in [3] and by Ruschewevhin [9] and [10].

In this note we extend in an appropriate way Theorem A and Theorem B to the class T/j(A). We will use convolution results of

(3)

On An Extensionof Typically Real Functions ... 195

Ruscheweyh[9] and Lewis [5] and the properties ofGegenbauer poly­

nomials C$,X)(x) , A > 0 , x £ [—1,1] , n = 0,1,... , which are defined by the generating function

<5>

2. Statements of results

In what follow we will use the following notations:

(«)„ :=a(o + 1)...(a + n- 1) , n = 1,2,... , (a)0 = 1 , a 0 ,

(6) 1) Z

(1 - z)™ n=l A„(A) =

(2A)„_i (n - 1)! •

Theorem 1. If f E 7r(A) , then (7)

Inequality (7) is sharp and the extremal function has the form (6).

Theorem 2. If f(z) = z + Y^=2a*zn € TrW and = 2 + ZZ^+2 ^n2" € T«(A) , then

(8)

Corollary 1. If A = 1 then we have Robertson’s result [8]

(Theorem A).

Corollary 2. If A = 1/2 , then we have the result that the class Tr(1/2) = cbSfl(l/2) is closed under Hadamard product.

(4)

196 J. Szynal

Theorem 3. If f E Tfl(A) , then the following sharp estimate holds

(9) (n-1)! °n- (n-2)! (2A ^,n-3,4,....

For the function f(z) = s\(z,x) we have

Um = (2*+ 2)-;

i—l- 2A — 02 (n — 2)!

Corollary 3. If f € S£(l — A) , A > 0 (9) holds.

thenthe sharp estimate

Corollary 4. If Cn(x) , n = 1,2,... , A>0, wo Gegenbauer polynomial, then

dÄ)(l)-dA)(a) < (2A + 2)n_1

CiA)(l) -CjA)(x) “ (« “ !)'• for x E [-1,1] .

3. Lemmas

For the proof of Theorem 2 we need the following two lemmas.

Lemma 1 [9]. Let V C Ai(2?) with W =V compact.

Assume there is a function h in Ay(D') such that for all f,g EV we have

(10) h*1/2 f *1/29 eW . Then (10) holds for all f,g EW .

Lemma 2 [5]. Let S*(q) , —oo < a < 1 denote the class of a starlike functions in D . If f(z) = z + 52^2 an^n € S*(o) , g(z) = z + 52^=2 ^n2;n e ^en

(11) (/*!-« ?)(*) = 52 anbn

A„(l - a)zn E S'(a) .

(5)

On An Extension of Typically Real Functions ... 197

Lemma 3. Let

= e

Jfc=0 (2A)tk\ , n = 0,l,...,

~\k ki , n-1,2,... , t=i

v (j -1)'

£ <2A>>

_ V' f A + fc — 1 \ (2A)fc_i A ) (k- 1)!

= e

t=l x

( :

, j — 1,2,..., n 1,2)..

Then the following identities hold

•Sn — (2A + l)n n!

(12) _ n \ (2A + 2)n-i - 2A“(„ - 1)!“

= n(2A+ n)

” 2A(2A +1) ’ ,2,

Proof. The proof of all identities (12) is based on induction argument. We will prove the third equality of (12). Formula (12) for rn is true for n = 1 and let us assume that it is true for (n — 1) . Then we have

(n - 1)! (n - 1)(2A +n - 1) (2A)n Kn~ 2A(2A + 1) (w ~ !)• V'/i , k ~ l\(2A)t-i

(2A)„ A \k-iy.

(n — 1)(2A + n — 1) (n — 1)!

2A(2A + 1) + (2A)„

X {1+(l + |)^r+ ••• + (! + n - 1 (2A)n_i 1 A \n-l)!j

>

n = 0,1,... , , n — 1,2,...,

(6)

198 J. Szynal

_ (n - 1)(2A + n - 1) (n -1)! f 1 1 2A(2A + 1) + (2A)n + Aan-iJ

(n — 1)(2A + n— 1) (n - 1)! f(2A)n_1 n(2A + 2)n_2) 2A(2A + 1) + (2A)n t(n-l)!+Z (n - 2)! J n(2A + n)

“ 2A(2A + 1) ’ which ends the proof.

4. Proofs oftheorems

Proof of Theorem 1. From theintegralrepresentation (2) and (5) we find that

|a„| < max |Cii\(x)| .

—1<X<1

Using the integralformula for Gegenbauer polynomials [7]

(2A)'wr(A+|) n!r(l)r(A)

X

y

Jx + \/x2 — 1 COS</? j sin2A 1 tp dip , n =0,1,... ,

we get after some manipulation with Euler Gamma function that (13) |CiA)W| < fax 61-1,1],

» which implies (7).

Proof ofTheorem 2. Let f,g€ Tr(X) . We will applyLemma 1 and 2. In our case by (2) and (4) we have

v = : sx(z’ l) = (i - aJ + ’1 € I"1’11} •

W = co V = Tr(A) .

(7)

On An Extension of Typically Real Functions ... 199

Let us put

oo '

i.(2) = £^1(A)z" , A„(l/2)= 1.

i=l

Then we have

(/ *A$)(*) = £ T7??Zn = *1/2 f*1/2 <?)(*) n=l

If f and g are in V, then they are star like oforder (1 — A) and by Lemma 2 so does f g , which implies (h *j/2 f *1/2 g) £ W . Applying Lemma 1 we end the proof.

Proof of Theorem 3. For /(z) = z+ a^zn e ?r(A) we

define the coefficients Bn , n = 1,2,... , by the relation

nB„_i = nan+1 - 2(A +n - l)a„ + (2A + n - 2)an-i ,

(I4) i n

ai = 1 , a0 = 0 , From (2) we know that

(15') °n = / C'i-ii1)^1) , n = 1,2,... .

Using the recurrenceformula for Gegenbauerpolynomials [7]

nC<A\x) -2x(A + n - l)C<A_\(x)

(16) +(2A + n - 2)c£)2(x) = 0 , n = 2,3,... , CiA) = l ,. C<A)(x) = 2Ax , CW(1) = 2A„/n! , we find from (15') and (16) that

. nB„_! = / [nCiA\i) -2(A + n - l)C^\(i) + (2A + n- 2)C^2(i)] d/x(x)

/

i (A +n - 1)(1 - x)C^i(x) d/t(x)

= -A + "~X f -2Ai) d„(x) .

(8)

200 J. Szynal

By (13) we canwrite

(17) nB„_i = (1 + ’ n = 2, ••• ,7i = l where 7„ G [—1,1] . From (14) wefind

n

(18) kBk-i = na„+1 - (2A + n - l)a„ , n = 1,2,... .

1=1

x *

After some calculations from (18) and (17) together with Lemma 3 one can get thefollowing identity (n > 2)

an_ = i^±(O2 _ 2A) (n — 1)! (n — 1)!

1 L(2A)i

n 1! „ (n— 2)!

*?1 + z(2A)_.x 2

S2

+ • + 77777----(2A)n_!

Sn-1

where Sn = 52^=1(1 4- ^J~)^k-\y • Taking into account that

l7n| < 1 , n = 1,2,... , we havefrom the above relations (2A)„_i (2A)ra_i.

(„_!)! a"-(„-i)!(2A a2>n-i- Applying Lemma 3 we find (9).

REFERENCES

[1] Duren, P.L., Univalent functions, A Seriesof Comprehensive Studies in Mathematics 259, Springer Verlag 1983.

[2] Halienbeck, D.J., Convex hulls and extreme points offamilies of starlike and close-to-convex mappings, Pacific J. Math. 57 (1975), 167- 176.

[3] Krzyz, J.G. and E. Zlotkiewicz, Two remarks on typically-real functions, Ann. Univ. MariaeCurie-SklodowskaSect. A 30 (1976), 57-61.

[4] Leeman, G.B., A local estimate for typically-realfunctions, Pacific J.

Math. 52 (1974), 481-484.

(9)

On An Extension of Typically Real Functions ... 201

[5] Lewis, J.L., Convolutions ofstarlike functions, Indians Univ. Math. J.

27 (1978), 671-688.

[6] Pommerenke, Ch., Univalent functions, Vandenhoeck and Ruprecht, Gottingen 1975.

[7] R a i n v i 11 e,E., Specialfunctions, Mac Millan Company, New York 1965.

[8] Robertson, M.S., Applications of a lemma of Fejér to typically-real functions , Proc. Amer. Math. Soc. 1 (1950), 555-561.

[9] Ruscheweyh, St., Convolutions in geometric function theory, Les Presses de l’Universitéde Montréal 1982.

[10] Rusch eweyh, St., Nichtlineare Extremalprobleme für holomorphe Stieltjesintegrale, Math. Z. 142 (1975), 19-23.

[11] Schober, G., Univalent Functions- Selected Topics, Lecture Notes in Mat., No.478, Springer-Verlag 1975.

Instytut Matematyki UMCS Plac M. Curie Skłodowskiej 1 20-031 Lublin, Poland

e - mail: jsszynal@golem.umcs.lublin.pl

(10)
(11)

Druk: Zakład Poligrafii Wydawnictwa ITICS

(12)
(13)

ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

LUBLIN-POLONIA

VOL. XLVII__________________SECTIO A____________________________1993 1. A. Bobrowski Computingthe Distribution ofthePoisson - Kac Process 2. C. Frappierand M. A. Q azi Optimal Inequalities for the Coefficients

of Polynomials with Small Degree

3. L. Gajek and E. Lenie Moment Inequalities for Order and Record Statistics UnderRestrictions on their Distributions

4. H. H e bd a - G r a bo ws k a and B. Bar t m ańsk a On the Rate ofCon­ vergence ofFunctions of SumsofInfimaof Independent Random Variables 5. H. K. Hsiao and R. Smarzewski Radial and Optimal Selections of

Metric Projectionsonto Balls

6. S. Kolodyński On the Functional zf'^z^/f^z') over Functions with Positive Real Part

7. S. Kolodyński , M. Szapiel and W. Szapiel On the Functional / i—> £/*(£)//(£) within Typically Real Functions

8. L. Kruk and W . Zięba On Almost SureConvergenceof Asymptotic Martingales

9. J. G. Krzyż Quasisymmetric Functions and Quasihomographies

10. B. Mond and J. E. Pećarić Remarks on Jensen’s Inequality for Operator Convex Functions

11. E. Ozęag and B. Fisher Some Results on the Commutative Neutrix Convolution Product of Distributions

12. J. Pećarić Remarkson Biernackis Generalization of Cebyshev’s Inequal­

ity

13. F. Rqnning A Survey on Uniformly Convex and Uniformly Starlike Functions

14. M.Sz a pi e1 and W. S zapiel Typically Real Functions in Subordination and Majorization

15. D. Szynal On Complete Convergence for some Classes of Dependent Random Variables

16. J. Z aj ęc TheUniversalTeichmullerSpaceof an OrientedJordan Curve 17. A. Zapala Strong Limit Theorems for the Growth of Increments of

AdditiveProcesses in Groups. Part II. AdditiveProcesses in Torus

18. W. Zygmunt Note on the Blasiss Method of an Approximation to an Upper Semicontinuous Multifunction

(14)

Adresse:

Biblioteka Uniwersytetu MARII CURIE -SKŁODOWSKIEJ

w L' i blinie

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ WYDAWNICTWO

Pl. M. Curie-Skłodowskiej 5 20-031LUBLIN POLOGNE

Cytaty

Powiązane dokumenty

Using the preceding results we can calculate the extreme values of ak,2 s^k &lt;»,2 &lt;5, all bounds are sharp, however, all the coefficients are not extremalized by the same

Dwie uwagi o funkcjach typowo-rzeczywistych Две заметки о типично-вещественных

compact set, so it is sufficient to consider corresponding problems for extreme points. Since these points are of the form (5), the theorem

This paper deals with the relation between subordination and majorization under the condition for both superordinate functions and majorants to be typically real.. If F

The inequality (1.3) means that any function satisfying this condition takes real values only on the real axis and such functions are called following W... Since some parts of

We apply this idea to ob- tain results in various classes T M,g from corresponding results in the class T(M).. However, in the class T M,g it

This paper is a conclusion of [8-10] and deals with compact convex classes of typically real functions whose ranges are in a given horizontal strip or else whose all odd coefficients

We consider the class of holomorphic functions univalent on the unit disk that are convex in the direction of the real axis and that have real coefficients.. It appears that this