• Nie Znaleziono Wyników

Two Remarks on Typically-Real Function

N/A
N/A
Protected

Academic year: 2021

Share "Two Remarks on Typically-Real Function"

Copied!
6
0
0

Pełen tekst

(1)

ANNALES

UNIVEESITATIS MABIAE C UEIE-S К Ł OD O WS К A LUBLIN - POLONIA

VOL. XXX, 7 SECTIO A 197ft

Instytut Matematyki, Uniwersytet MariiCurie-Sklodowekiej, Lublin

JAN G. KRZYŻ, ELIGIUSZ ZŁOTKIEWICZ

Two Remarks on Typically-Real Functions

Dwie uwagi o funkcjach typowo-rzeczywistych Две заметки о типично-вещественных функциях

Introduction. Denote by TB the classof functions f(z) = z + £ akzk fc—2 analytic in the unitdisc D that assume real values on the segment (—1; 1) and satisfy

(Im»)-(Im/(2;)) > 0 otherwise in D.

Functions of this class are said to be typically-real. It is well-known, cf. e.g. [3], that f e TB if and only if it has the representation

TC

(1) /(«) = / ,

where p is a probability measure on the interval <0;iz).

CO co

Suppose /(«) = z+ £ akzk, g(z) = z+ £ bkzkare analytic in D. Then

k—2 k—2

the function

oo

M?)=f*g{z) = z + ^akbkzk k—2

is said to be the convolution, or Hadamard’s product of f and g.

The aim of this note is to give new and elementary proofs of two results concerning typically-real functions:

(2)

58 Jan G. Krzyż, Eligiusz Zlotkiewicz

Theorem A. [4]. If f, g belong to TR, so does

H(z) = ju~lf*g(u)-du = 2+

0 & = 2

Theorem B. [2]. If f(z) = z+ akzk e TR, then k=2

n-an^ln(n2-l)(2-a2), n =2,3,...

and the result is best possible.

The original proof of Theorem A was based on a lemma ofFcj6r [1].

The second result was obtained by making use of some extremal pro­

perties of Tchebycheff polynomials. Our proofs of both theorems make use of (1) and some simple observations.

In order to prove the Convolution Theorem A, we first establish the following

Lemma. Let w1,wi be points in the half-plane {w: Rew < 1}. Then log(l-w1)-log(l-w2)

Re---< 0.

Wj —w2

Proof. It is easy to see that the function W =<p(w) = (l + w)(l — w)-1

maps the half-plane {w: Rew< 1} onto the half-plane {W: Re W > —1}.

If the segment [wx; w2] lies in the halfplane {w: Rew < 1}, then Re^(w)

> —1 for any we[w,;Wj] and hence i

—1 < J* Re^fWi + ^Wa — Wj)]<if o

„ p dw 11, 1—w, 1

= Re ®(w)---= Re !---log---1?.

J w2— w1 lwa —w, 1 —w2 ) [u>j;w2]

and this proves the Lemma.

Proof of Theorem A. Suppose that the functions f(z) = z + £ akiP,

oo k—2

g(z) =z+ £bkzk belong to TR. It follows from (1) that there exist pro-

k=2

bability measures p,v on <0; such that

zdv(<p)

r zdp(O) r zdv(g>)

J Iz-e^tz-e-“)’ 9 Z) J (z — eiv)lz — e~iv (z — e)(z- (z — ei,f)(z- r)

(3)

Two Remarks on Typically-Real Functions 59

We thus have

H(z) = fu~lf*g(u)du =(J u~1f(u)du^*g(z) ~F(z)*g(z).

U 0

Suppose that |z| < |w| = r < 1. Then

H(«) =-^-7 J F(u)g(u~lz}u~ldu

|tt| — r

f f r 1 f z , 1—ue~i9 , 1

J J 2ie,m0(u — zeig,)(u — ze~i'f) l—ueia j

The integral over the circumference may be computed readily by means of residua and we obtain

H(z) — J JF(z, 0, <p)dp(O)dv(<p) 0 0

where

1 , 1 — 2zcos(0 + ®)+«2 A(z, 0, a>) = ;— log --- 4sin0sm<p 1 — 2zcos(0 — tp) + z2 In order to prove that F*g eTR it is sufficient to show that

1 —z2

Re---K(z, 0,<p)> 0 z

for any zeD and any real 0,(p, ci. [3].

To this end, set

G(z,t) = 2z(l — z2)~1(t — z), (z,t)eDx(-l-, 1>.

Since, for any fixed z eD, RcG(z, t) is a linear function of t e <—1; 1>, it attains extreme values for t = ^1. Hence we conclude that

RcG(z, t) < 1 in the set D x<— 1; 1>.

Putting tk = cos(0 + <p), t2 = cos(0 — <p) and wk = G(z,tk), k =1,2 we obtain

Rewfc <1, k = 1, 2 and

w2 —Wj -"42(1 — z2) ’sinO-sinip.

(4)

60 Jan G. Krzyż, Eligiusz Złotkiewicz

Hence

1 — 2*

——^(2,0,?») Z

and the result follows.

log(l-w1)-log(l-w2) w2—uq

Proof of Theorem B. In view of (1) we find

;

sin»0srn 0-d/z(6), n = 1,2...

0

Setting a0 0 and

an = an~ an-11 n = 1,2,...

we have

»

«n ^^ak> -^-n «n+1 2<ln_(_<ln_i On+1

fc-1 By (2) we obtain

a

sin(«+l)0 —2sin«0 + sin(«—1) 0

sin0 dM(0)

sinw0

/

-—-(1-cos 0)^(0) srnno sm0

i.e.

(3) -d.n —nftn(2 a2), n — 1, 2, 3, ...

where {/?„} is a sequence of real numbers /?„ e <—1; 1>, n = 1,2, 3,....

Thus

J'A =o„-l =(2-a1)2’^

A-l fc-1

and

n n—1

an-n = ^(ak-l) = (2-a2) £ h(n-Te)Pk.

k=l k-l

Since |0fc| <1 we obtain

n— a„ < (2 —a2) ^k(n— k) =6 x(2 —a2)»(n2—1) k-l

Considering the function f(z) = z(z —el6)~1(z— e~i6)~1 for small values of |0| we can verify that the sequence 6_1w(»2—1) is best possible.

(5)

Dwie uwagi o funkcjach typowo-rzeczywistych 61

REFERENCES

[1] Fejör, L., Neue Eigenschaften der Mittelwerte bei den Fourierreihen, J. London Math. Soc. 8 (1933), 53-62.

[2] Leeman, G. B., A Local Estimate For Typically-Beal Functions, Pac. J. Math.

52 (1974), 481-484.

[3] Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Göttin­

gen 1975.

£4] Robertson, M. S., Applications of a Lemma of Fejer to Typically-Real Functions, Proc. Amer. Math. Soc. 1 (1950), 555-561.

STRESZCZENIE

W artykule podane są nowe i proste dowody dwóch twierdzeń o funkcjach typowo-rzeczywistych.

Twierdzenie A. Jeżeli f,g e TR, to f*g(z) =

k-2 Ä należy do tej samej klasy.

Twierdzenie B. Jeżeli f(s} = z+ £ anzn e TR, to n — a„ < 6_1łł(»2 1) (2 — a2),

n = 2

РЕЗЮМЕ

В этой работе представлены новые и простые доказательства двух теорем об типично-вещественных функциях.

Теорема А. когда ^де ТЕ, то ^д(в) = и+ У—

п "■

е ТЕ п

00

Теорема В. когда f (г) = 2+ £ апгп е ТЕ, то 2

п-ап < 6-1»(«2 —1)(2—о2)

(6)

Cytaty

Powiązane dokumenty

The benefit of switching to class-B mode in power back-off can be best under- stood, if we compare the CW efficiency versus power back-off characteristic of a pure outphasing

Furthermore, we find for them sets of variability of initial coefficients, the sets of local univalence and the sets of typical

Ac- cording to Goodman [3], the boundary of the Koebe domain over ∆ consists of the images of points on the unit circle under infinite-valent functions that are called the

Using the preceding results we can calculate the extreme values of ak,2 s^k &lt;»,2 &lt;5, all bounds are sharp, however, all the coefficients are not extremalized by the same

Proof of Theorem 3.. Zlotkiewicz, Two remarks on typically-real functions, Ann. Mariae Curie-Sklodowska Sect.. On An Extension of Typically Real Functions .... Druk: Zakład

compact set, so it is sufficient to consider corresponding problems for extreme points. Since these points are of the form (5), the theorem

This paper deals with the relation between subordination and majorization under the condition for both superordinate functions and majorants to be typically real.. If F

The inequality (1.3) means that any function satisfying this condition takes real values only on the real axis and such functions are called following W... Since some parts of