• Nie Znaleziono Wyników

On regular local operators on smooth ma

N/A
N/A
Protected

Academic year: 2021

Share "On regular local operators on smooth ma"

Copied!
4
0
0

Pełen tekst

(1)

doi: 10.1515/umcsmath-2015-0022

A N N A L E S

U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N – P O L O N I A

VOL. LXIX, NO. 2, 2015 SECTIO A 69–72

WŁODZIMIERZ M. MIKULSKI

On regular local operators on smooth maps

Abstract. Let X, Y, Z, W be manifolds and π : Z → X be a surjective submersion. We characterize π-local regular operators A : C(X, Y ) → C(Z, W ) in terms of the corresponding maps ˜A : J(X, Y ) ×X Z → W satisfying the so-called local finite order factorization property.

Let X, Y, Z, W be smooth (i.e. C) manifolds and π : Z → X be a surjective C-submersion. The space of smooth (C) maps U → V we denote by C(U, V ).

An operator A : C(X, Y ) → C(Z, W ) is π-local if for any g1, g2 ∈ C(X, Y ) and any x ∈ X from germx(g1) = germx(g2) it follows A(g1)−1(x)

= A(g2)−1(x).

An operator A : C(X, Y ) → C(Z, W ) is regular if any Cparametri- zed system of maps from C(X, Y ) is transformed into a C parametri- zed system of maps in C(Z, W ), i.e. if it satisfies the implication: if g : X × R → Y is of class C, then so is Z × R 3 (z, t) → A(gt)(z) ∈ W , where gt= g(−, t).

Let Jr(X, Y ) be the space of r-jets of maps X → Y . Js(X, Y ) is a finite dimensional manifold if s is finite. J(X, Y ) has the inverse limit topology from · · · → Js(X, Y ) → Js−1(X, Y ) → · · · → J0(X, Y ). Let πr : J(X, Y ) → Jr(X, Y ) be the jet projection.

2010 Mathematics Subject Classification. 53A55.

Key words and phrases. Local regular operator, jet.

(2)

70 W. M. Mikulski

We say that a map ˜A : J(X, Y ) ×X Z → W satisfies the local finite order factorization property if for any (κ, z) ∈ J(X, Y ) ×X Z there exist an open neighborhood U ⊂ J(X, Y ) ×X Z of (κ, z), a finite number r and a C (in the classical sense) map ˜Ar : (πr× idZ)(U ) → W such that A = ˜˜ Ar◦ (πr× idZ) on U . (We see that (πr× idZ)(U ) is an open subset in finite dimensional manifold Jr(X, Y ) ×X Z.)

The main result is the following theorem.

Theorem 1. Let X, Y, Z, W be C-manifolds and π : Z → X a surjective C-submersion. There is a bijection between the π-local regular operators A : C(X, Y ) → C(Z, W ) and the maps ˜A : J(X, Y ) ×X Z → W with the local finite order factorization property. Precisely, the correspondence is given by A(g)(z) = ˜A(jg(π(z)), z), g ∈ C(X, Y ), z ∈ Z.

Proof of Theorem 1. Since operators are local, for the simplicity of con- siderations we will assume X = Rm and Y = Rn.

From Corollary 19.8 in [1] it follows:

Lemma 1. Any π-local operator A as above is of infinite order, i.e. if g1, g2 ∈ C(Rm, Rn), x ∈ Rn, then from jg1(x) = jg2(x) it follows A(g1)−1(x)= A(g2)−1(x).

From Lemma 19.11 in [1] it follows:

Lemma 2. Let A : C(Rm, Rn) → C(Z, W ) be a π-local operator. Let zo∈ Z be a point, xo := π(zo), f ∈ C(Rm, Rn). Let  : Rm\ {xo} → R,

(x) = exp(−|x − xo|−1). There are a neighborhood V of the point zo ∈ Z and a natural number r such that for every z ∈ V \ π−1(xo) and all maps g1, g2 ∈ C(Rm, Rn) satisfying |∂α(gi− f )(π(z))| ≤ (π(z)), i = 1, 2, 0 ≤

|α| ≤ r, the condition jrg1(π(z)) = jrg2(π(z)) implies A(g1)(z) = A(g2)(z).

Similarly as in [2], any regular π-local operator A : C(Rm, Rn) → C(Z, W ) defines a π × idR-local operator A<> : C(Rm× R, Rn) → C(Z × R, W ), A<>(g)(z, t) := A(gt)(z), where gt : Rm → Rn, gt(x) = g(x, t).

Applying Lemma 2 to the above operator A<>(defined by A) and treating maps h : Rm → Rn as maps h : Rm× R → Rn being independent with respect to the last argument we get:

Lemma 3. Let A : C(Rm, Rn) → C(Z, W ) be a regular π-local op- erator. Let zo ∈ Z be a point, xo := π(zo), f ∈ C(Rm, Rn). Let

˜

 : Rm+1 \ {(xo, 0)} → R, ˜(x, t) := exp(−|(x − xo, t)|−1). There are a neighborhood ˜V of zo ∈ Z, a real number to > 0 and a natural number

˜

r such that for every z ∈ ˜V and all maps g1, g2 ∈ C(Rm, Rn) satisfy- ing |∂α(gi − f )(π(z))| ≤ ˜(π(z), to), i = 1, 2, 0 ≤ |α| ≤ ˜r, the condition j˜rg1(π(z)) = j˜rg2(π(z)) implies A(g1)(z) = A(g2)(z).

(3)

On regular local operators on smooth maps 71

We see that to ≤ |(π(z) − xo, to)| for any z. Then 2ηo := ˜(xo, to) ≤

˜

(π(z), to). So, from Lemma 3, we have:

Lemma 4. Let A : C(Rm, Rn) → C(Z, W ) be a regular π-local op- erator. Let zo ∈ Z be a point, xo := π(zo), f ∈ C(Rm, Rn). There are a neighborhood ˜V of zo ∈ Z, a real number ηo > 0 and a natural number ˜r such that for every z ∈ ˜V and all maps g1, g2 ∈ C(Rm, Rn) satisfying |∂α(gi− f )(π(z))| ≤ 2ηo, i = 1, 2, 0 ≤ |α| ≤ ˜r, the condition j˜rg1(π(z)) = j˜rg2(π(z)) implies A(g1)(z) = A(g2)(z).

Taking (eventually) smaller ˜V such that |∂αf (π(z)) − ∂αf (π(zo))| ≤ ηo for z ∈ ˜V , 0 ≤ |α| ≤ ˜r, we get:

Lemma 5. Let A : C(Rm, Rn) → C(Z, W ) be a regular π-local oper- ator. Let zo ∈ Z be a point, xo := π(zo), f ∈ C(Rm, Rn). There are a neighborhood ˜V of zo ∈ Z, a real number ηo > 0 and a natural num- ber ˜r such that for all z ∈ ˜V and for all g1, g2 ∈ C(Rm, Rn) satisfy- ing |∂αgi(π(z)) − ∂αf (π(zo))| < ηo, i = 1, 2, 0 ≤ |α| ≤ ˜r, the condition j˜rg1(π(z)) = j˜rg2(π(z)) implies A(g1)(z) = A(g2)(z).

Thus Lemma 5 can be reformulated as follows.

Lemma 6. Let A : C(Rm, Rn) → C(Z, W ) be a regular π-local op- erator. Let zo ∈ Z be a point, xo := π(zo), f ∈ C(Rm, Rn), κo :=

jf (π(zo)). There are a natural number r and an open neighborhood V ⊂ Jr(Rm, Rn) ×RmZ of (πro), zo) such that for any g1, g2 ∈ C(Rm, Rn) and z with (jrgi(π(z)), z) ∈ V , i = 1, 2, the condition jrg1(π(z)) = jrg2(π(z)) implies A(g1)(z) = A(g2)(z).

Any map ˜A : J(Rm, Rn) ×Rm Z → W satisfying the local finite order factorization property defines a regular π-local operator A : C(Rm, Rn) → C(Z, W ). Namely, we have

Example 1. Let ˜A : J(Rm, RnRmZ → W be a map satisfying the local finite order factorization property. Define an operator A : C(Rm, Rn) → WZ by

A(f )(z) := ˜A(jf (π(z)), z) .

Clearly, A is π-local. Consider a smoothly parametrized family of maps ft ∈ C(Rn, Rn), to ∈ R and zo ∈ Z. By the local finite order factor- ization property, there are natural number r, an open neighborhood Ur of (jrfto(π(zo)), zo) in Jr(Rm, Rn) ×Rm Z and a smooth map ˜Ar : Ur → W such that A(ft)(z) = ˜Ar(jrft(π(z)), z) for (t, z) from some neighborhood of (to, zo). That is why, A has values in C(Z, W ) and it is regular.

Conversely, we have:

(4)

72 W. M. Mikulski

Example 2. Let A : C(Rm, Rn) → C(Z, W ) be a regular π-local oper- ator. We have a function ˜A : J(Rm, Rn) ×RmZ → W by

A(κ, z) := A(g)(z) ,˜

where κ = jg(π(z)), g ∈ C(Rm, Rn). (By Lemma 1, the definition is independent of the choice of g.)

Lemma 7. ˜A satisfies the local finite order factorization property.

Proof. Consider (κo, zo) ∈ J(Rm, Rn) ×Rm Z, xo = π(zo). Choose f ∈ C(Rm, Rn) such that κo = jf (π(zo)). Let r and V be as in Lemma 6 for zo, xo, f as above. Put U := (πr × idZ)−1(V ). Define ˜Ar : V = (πr× idZ)(U ) → W by

r(ρ, z) := A(g)(z) ,

where ρ = jrg(π(z)), g ∈ C(Rm, Rn). (By Lemma 6, the definition is in- dependent of the choice of g.) For any smooth curve γ in V , γ(t) = (ρt, zt) ∈ V , t ∈ R, there is a smoothly parametrized family gt∈ C(Rm, Rn) with ρt = jrgt(π(zt)). Then ˜Ar ◦ γ(t) = A(gt)(zt). Then the regularity of A implies ˜Ar◦ γ is of C (for any smooth curve γ in V ). Then ˜Ar is of C because of the well-known Boman theorem. Clearly ˜A = ˜Ar◦ (πr × idZ)

on U . 

Summing up, we have proved Theorem 1. 

References

[1] Kol´r, I., Michor, P. W., Slov´ak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

[2] Slov´ak, J., Peetre theorem for nonlinear operators, Ann. Global Anal. Geom. 6 (3) (1988), 273–283.

Włodzimierz M. Mikulski Institute of Mathematics Jagiellonian University Łojasiewicza 6

30-348 Cracow Poland

e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl Received November 9, 2015

Cytaty

Powiązane dokumenty

More precisely, some results show that any linear interpolation theory goes thorough for a corresponding theory for certain nonlinear

We investigate absolute continuity and continuity with respect to a modular, mutual relations of these two types of continuity of operators over the spaces L*9, V

However our proof using the continuity of orthogonally additive functionals may be lengthy but it applies to both Orlicz spaces and w0 and it is constructive

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMATYCZNE XXIV

Prowadzący może narzucić tematy w badanym obszarze tematycznym lub zaprosić uczestników spotkania do proponowania tematów do rozmów w podanym obszarze (np. Jeżeli

The existence of γ-families with associated measures is an indication of the amount of topological disjointness in a subset of C(K) ∗ whereas the Szlenk index only

Okazuje się, że przy przeciętnej różnicy temperatur wewnętrznej i zewnętrznej ∆T = 10 ÷ 20 K i tym samym ciśnieniu powietrza panującym wewnątrz i na zewnątrz

A zatem w miejscu, gdzie intensywne światło pada na fotoprzewodnik, następuje całkowita neutralizacja wcześniejszego powierzch- niowego ładunku dodatniego, natomiast w miejscach,