• Nie Znaleziono Wyników

Approximation by Sz´ asz Type Operators Including Sheffer Polynomials

N/A
N/A
Protected

Academic year: 2021

Share "Approximation by Sz´ asz Type Operators Including Sheffer Polynomials"

Copied!
14
0
0

Pełen tekst

(1)

Mathematics

and Applications

JMA No 40, pp 135-148 (2017)

COPYRIGHT c by Publishing House of Rzesz´ow University of Technology P.O. Box 85, 35-959 Rzesz´ow, Poland

Approximation by Sz´ asz Type Operators Including Sheffer Polynomials

Nadeem Rao, Abdul Wafi and Deepmala

Abstract: In present article, we discuss voronowskaya type theorem, weighted approximation in terms of weighted modulus of continuity for Sz´asz type operators using Sheffer polynomials. Lastly, we investigate statistical approximation for these sequences.

AMS Subject Classification: 41A10, 41A25, 41A36.

Keywords and Phrases: Sz´asz operators; Sheffer Polynomials; Voronovskaya.

1. Introduction

First, we recall nthBernstein operators due to Bernstein [1] defined as follows

Bn(f ; x) =

n

X

k=0

pn,k(x)f k n



, (1.1)

where pn,k(x) = nkxk(1 − x)n−k, f ∈ C[0, 1] and 0 ≤ x ≤ 1. The purpose of this probabilistic method was to prove Weierstass approximation theorem more elegantly.

In 1950, Sz´asz [6] generalized operators given by (1.1) for unbounded interval on the space of continuous functions defined on (0, ∞) as

Sn(f ; x) = e−nx

X

k=0

(nx)k k! f k

n



, ∀x ∈ (0, ∞), n ∈ N. (1.2)

A new type of generalization of Sz´asz-Mirakjan operators which involves Appell poly- nomials was given by Jakimovski and Leviatan [4] as follows

Pn(f ; x) = e−nx A(1)

X

k=0

pk(nx)f k n

 .

(2)

In above relation pk are Appell polynomials defined by the generating functions A(u)eux=

X

k=0

pk(x)uk,

where A(z) =

P

k=0

akzk(a0= 0) is an analytic function in the disc |z| < R (R > 1) and A(z) 6= 0. A more generalized form of Sz´asz operators including Sheffer polynomials was given by Ismail [3]

Tn(f ; x) =e−nxH(1) A(1)

X

k=0

pk(nx)f k n



. (1.3)

In above relation pk are Sheffer polynomials given by the generating functions

A(u)exH(u)=

X

k=0

pk(x)uk, (1.4)

where

A(z) =

X

k=0

akzk (a06= 0)

H(z) =

X

k=0

hkzk (h16= 0) (1.5)

be analytic functions in the disc | z |< R (R > 1). Under the following restrictions:

(i) for x ∈ [0, ∞) and k ∈ N ∪ 0, pk(x) ≥ 0, (ii) A(1) 6= 0 and H0(1) = 1,

(iii) relation (1.4) is valid for | u |< R and the power series given by (1.5) converges for | z |< R, R > 1. Moreover, Ismail introduced the Kantorovich form of the operator (1.3) as

Tn(f ; x) = ne−nxH(1) A(1)

X

k=0

pk(nx)

k+1

Zn k n

f (s)ds. (1.6)

Recently, Sucu and Ertan Ibikli [7] proved results on rate of convergence using mod- ulus of continuity for (1.3) and (1.6). Motivated by the above development, we prove weighted approximation, statistical approximation and Voronovskaya type result for Tn in the present paper.

Various investigators such as Gairola et al. [9], Singh et al. [10], Mishra et al. [16- 21], Gandhi et al. [22] and the references therein, have discussed the approximation properties of various linear positive operators in this direction.

(3)

2. Some properties of the operator T

n

We recall following lemmas due to Sezgin et al. [7]:

Lemma 2.1. Let ei = ti, i = 0, 1, 2, x ∈ [0, ∞), we have Tn(e0; x) = 1,

Tn(e1; x) = x + A0(1) nA(1), Tn(e2; x) = x2+ 2A0(1)

A(1) + H00(1) + 1 x

n+A0(1) + A00(1) n2A(1) . Lemma 2.2. Let ψxi(t) = (t − x)i, i = 0, 1, 2, for x ≥ 0 and n ∈ N we have

Tnx0(t); x) = 1, Tnx1(t); x) = A0(1)

nA(1), Tnx2(t); x) =  H00(1) + 1

n



+A0(1) + A00(1) n2A(1) . Next we prove

Lemma 2.3. For x ≥ 0, we have

Tn(e3; x) = x3+



3 +3A0(1)

A(1) + 3H00(1) x2 n + 2 + 3A00(1)

A(1) +6A0(1)

A(1) +3A0(1)H00(1)

A(1) + H00(1) + H000(1) x n2 + 2A0(1) + 3A00(1) + A000(1)

n3A(1) ,

Tn(e4; x) = x4+



6 +4A0(1)

A(1) + 6H00(1) x3 n +



11 +6A00(1)

A(1) +18A0(1)

A(1) + 18H00(1) +9A0(1)H00(1)

A(1) + 3(H00(1))2 + 4H000(1) x2

n2 +



6 + 4A000(1)

A(1) +18A00(1)

A(1) +22A0(1)

A(1) +6A00(1)H00(1) A(1) + 18A0(1)H00(1)

A(1) +4A0(1)H000(1)

A(1) + 6H000(1) + 11H00(1) + H0000(1) x n3 + 6A0(1) + 11A00(1) + A0000(1)

A(1) .

(4)

Proof. From the generating functions of Sheffer polynomials, we obtain

X

K=0

K3PK(nx) = [(2A0(1) + 3A00(1) + A000(1))

+ nx(3A00(1) + 6A0(1) + 3A0(1)H00(1)

+ 3A(1)H00(1) + 2A(1) + A(1)H000(1)) + n22x2(3A(1) + 3A0(1)

+ 3A(1)H00(1)) + n3x3A(1)]enxH(1),

X

K=0

K4PK(nx) = [(6A0(1) + 11A00(1) + 6A000(1) + A0000(1)) + nx(4A000(1) + 18A00(1)

+ 22A0(1) + 6A00(1)H00(1) + 18A0(1)H00(1) + 4A0(1)H000(1)

+ 6A(1)H000(1) + 1A(1)H00(1) + 6A(1) + A(1)H0000)

+ n2x2(11A(1) + 18A0(1)

+ 8A(1)H00(1) + 6A00(1) + 9A0(1)H00(1)

+ 3A(1)(H00(1))2+ 4A(1)H000(1)) + n3x3(6A(1) + 4A0(1)

+ 6A(1)H00(1)) + n4x4A(1)]enxH(1).

The proof of Lemma 2.3 is obvious using these relation.

Lemma 2.4. The operator (1.3) satisfies the following relation:

Tnx4(t); x) =



3 + 14H00(1) +3A0(1)H00(1)

A(1) + 3(H00)2+ 4H00(1) x2 n2 +



6 + 6A00(1)

A(1) + 14A0(1)

A(1) +6A00(1)H00(1)

A(1) +18A0(1)H00(1) A(1) + 4A00(1)H00(1)

A(1) +6A00(1)H00(1) A(1) + 6H000(1) + 11H00(1) + H0000(1) x

n3 + 6A0(1) + 11A00(1) + A0000(1)

n4A(1) .

Proof. Proof of this relation can be obtained using Lemma 2.1 and linearity property

(5)

of the operators

Tn((t − x)4; x) = Tn(t4; x) − 4xTn(t3; x) + 6x2Tn(t2; x) − 4x3Tn(t; x) + Tn(1; x).

3. The Voronovskaya type theorem for T

n

Theorem 3.1. Let f ∈ C2[0, b]. Then ∀ x ∈ [0, b], we have

n→∞lim n{Tn(f ; x) − f (x)} = A0(1)

A(1)f0(x) + (H00(1) + 1)xf00(x) 2! .

Proof. Let x0∈ [0, b] be a fixed point. Then for f ∈ C2[0, b] and t ∈ [0, b] we have by Taylor’s formula

f (t) = f (x0) + f0(x0)(t − x0) +1

2f00(x0)(t − x)2+ ϕ(t; x0)(t − x0)2, where ϕ(t; x0) ∈ C[0, b] and lim

t→x0g(t; x0) = 0. Now, applying the operator on both the side and in the light of linearity property, we have

Tn(f ; x) = f (x0)Tn(1; x0) + f0(x0)Tn((t − x0); x0) +1

2f00(x0)Tn((t − x)2; x0) + Tn(ϕ(t; x0)(t − x0)2; x0)).

Subtract f (x0) and then on multiplying by n both side, we obtain n{Tn(f ; x0) − f (x0)} = f0(x0)nTn((t − x0); x0) +f00(x0)

2 nTn((t − x0)2; x0) + nTn



ϕ(t; x0)(t − x)2; x0

 . We have

lim

n→∞n{Tn(f ; x) − f (x)} = A0(1)

A(1)f0(x) + (H00(1) + 1)xf00(x) 2!

+ lim

n→∞nTn



ϕ(t; x0)(t − x)2; x0

 . Using Holder’s inequality. The last term can be given by

nTn



ϕ(t; x0)(t − x)2; x0



≤ n2Tn



(t − x)4; x0

 Tn



ϕ(t; x0)2; x0

 .

(6)

Let η(t; x0) = ϕ2(t; x0). Then lim η(t; x0) = lim ϕ2(t; x0) = 0 as n → ∞. By using

n→∞lim n2Tnx4(t); x) =



3 + 14H00(1) +3A0(1)H00(1)

A(1) + 3(H00(1)2) + 4H00(1)

 x2, we get

n→∞lim nTn



ϕ(t; x0)(t − x)2; x0



= 0,

which proves the Theorem 3.1.

4. Weighted approximation

Here, we recall some notation from [11] to prove next result. Let B1+x2[0, ∞) = {f (x) : |f (x)| ≤ Mf(1 + x2), 1 + x2is weight function, Mf is a constant depending on f and x ∈ [0, ∞)}, C1+x2[0, ∞) is the space of continuous function in B1+x2[0, ∞) with the norm kf (x)k1+x2 = sup

x∈[0,∞)

|f (x)|

1+x2 and C1+xk 2[0, ∞) = {f ∈ C1+x2 : lim

|x|→∞

f (x) 1+x2 = k, where k is a constant depending on f }.

Modulus of continuity for the function f defined on closed interval [0, a] with a > 0 is denoted as follows

ωa(f, δ) = sup

|t−x|≤δ

sup

x,t∈[0,a]

|f (t) − f (x)|. (4.1)

Theorem 4.1. Let f ∈ C1+x2[0, ∞) and ωb+1(f ; δ) be its modulus of continuity defined on [0, b + 1] ⊂ [0, ∞). Then, we have

kTn(f ; x) − f (x)kC[0,b]≤ 6Mf(1 + b2n(b) + 2ωb+1(f ;p δn(b)), where δn(b) = Tn2b; b).

Proof. From ([12], p. 378), for x ∈ [0, b] and t ∈ [0, ∞), we have

|f (t) − f (x)| ≤ 6Mf(1 + b2)(t − x)2+



1 +|t − x|

δ



ωb+1(f ; δ).

This implies that

|Tn(f ; x) − f (x)| ≤ 6Mf(1 + b2)Tn((t − x)2; x) +



1 + Tn(|t − x|; x) δ



ωb+1(f ; δ).

Thus, using Lemma 2.4, for x ∈ [0, b], we have

(7)

|Tn(f ; x) − f (x)| ≤ 6Mf(1 + b2n(b) + 1 + pδn(b) δ

!

ωb+1(f ; δ).

Choosing δ = δn(b), we arrive at the desired result.

Theorem 4.2. If the operators Tn defined by (1.3) from C1+xk 2[0, ∞) to B1+x2[0, ∞) satisfying the conditions

n→∞lim kTn(ei; x) − xik1+x2= 0, i = 0, 1, 2, then for each C1+xk 2[0, ∞)

n→∞lim kTn(f ; x) − f k1+x2 = 0.

Proof. To prove this Theorem, it is enough to show that

n→∞lim kTn(ei; x) − xik1+x2= 0, i = 0, 1, 2.

From Lemma 2.2, we have

kTn(e0; x) − x0k1+x2 = sup

x∈[0,∞)

|Tn(1; x) − 1|

1 + x2 = 0 for i = 0.

For i = 1

kTn(e1; x) − x1k1+x2 = sup

x∈[0,∞) A0(1) nA(1)

1 + x2

= A0(1) nA(1) sup

x∈[0,∞)

1 1 + x2. This implies that kTn(e1; x) − x1k1+x2 → 0 an n → ∞. For i = 2

kTn(e2; x) − x2k1+x2 = sup

x∈[0,∞)



2A0(1)

A(1) + H00(1) + 1



x

n+A0(1)+A

00(1) n2A(1)

1 + x2



2A0(1)

A(1) + H00(1) + 1



n sup

x∈[0,∞)

x 1 + x2 + A0(1) + A00(1)

n2A(1) sup

x∈[0,∞)

1 1 + x2. Which shows that kTn(e2; x) − x2k1+x2 → 0 an n → ∞.

(8)

Let f ∈ Cρk[0, ∞), Y¨uksel and Ispir [13] introduced weighted modulus of continuity as follows

Ω(f ; δ) = sup

x∈[0,∞),0<h≤δ

|f (x + h) − f (x)|

1 + (x + h)2 . Theorem 4.3. Let f ∈ C1+xk 2[0, ∞). Then

(i) Ω(f ; δ) is a monotone increasing function of δ;

(ii) lim

δ→0+Ω(f ; δ) = 0;

(iii) for each m ∈ N, Ω(f ; mδ) ≤ mΩ(f ; δ);

(iv) for each λ ∈ [0, ∞), Ω(f ; λδ) ≤ (1 + λ)Ω(f ; δ)

and for t, x ∈ [0, ∞), one get

|f (t) − f (x)| ≤ 2



1 +|t − x|

δ



1 + δ2 (1 + x2) 1 + (t − x)2 Ω(f ; δ). (4.2)

Theorem 4.4. Let f ∈ C1+xk 2[0, ∞). Then, we have

sup

x∈[0,∞)

|Tn(f ; x) − f (x)|

(1 + x2)3 ≤ C

 1 + 1

n

 Ω

 f ; 1

√n

 ,

where C > 0 is a constant.

Proof. Using (4.2) and x, t ∈ (0, ∞), we have

|Tn(f ; x) − f (x)| ≤ 2

1 + Tn(|t−x|;x)δ 

1 + δ2 (1 + x2)

× 1 + Tn((t − x)2; x) Ω(f ; δ).

(4.3)

Applying Cauchy-Schwarz inequality for (4.2), we get

|Tn(f ; x) − f (x)| ≤ 2 1 + δ2 (1 + x2)Ω(f ; δ) 1 + Tn((t − x)2; x)

+

Tn((t−x)2;x)

δ +

Tn((t−x)2;x)Tn((t−x)4;x) δ

! .

(4.4)

Using Lemma 2.2 and Lemma 2.4, we get

(9)

Tn((t − x)2; x) ≤ C1(1 + x)

n and Tn((t − x)4; x) ≤ C2(1 + x + x2+ x3)

n . (4.5)

From and (4.3), we have

|Tn(f ; x) − f (x)| ≤ 2 1 + δ2 (1 + x2)Ω(f ; δ) 1 + C1(1 + x) n

+ q

C1(1+x) n

δ +

q C1(1+x)

n C2(1+x+x2+x3) n

δ

! .

On choosing δ = 1n and C = {1 + C1+√ C1+√

C1C2}, we get the required result.

Theorem 4.5. For f ∈ C1+xk 2[0, ∞) and θ > 0, we have

n→∞lim sup

x∈[0,∞)

|Tn(f ; x)| − f (x) (1 + x2)1+θ = 0.

Proof. For any fixed real number x0> 0, one has say sup

x∈[0,∞)

|Tn(f ;x)|−f (x)

(1+x2)1+θ ≤ sup

x≤x0

|Tn(f ;x)|−f (x) (1+x2)1+θ + sup

x≥x0

|Tn(f ;x)|−f (x) (1+x2)1+θ

≤ kTn(f ; x)| − f (x)kC[0,x0] + kf k1+x2 sup

x≥x0

|Tn(1+t2;x)|

(1+x2)1+θ + sup

x≥x0

|f (x)|

(1+x2)1+θ

= I1+ I2+ I3.

(4.6)

Since |f (x)| ≤ kf k1+x2(1 + x2), we have I3 = sup

x≥x0

|f (x)|

(1 + x2)1+θ

≤ sup

x≥x0

kf k1+x2(1 + x2)

(1 + x2)1+θ ≤ kf k1+x2

(1 + x2)θ.

Let  > 0 be arbitrary real number. Then, from Theorem 4.2 there exists n1∈ N such that

I2 < 1

(1 + x2)θkf k1+x2

1 + x2+  3kf k1+x2

for all n1≥ n,

< kf k1+x2

(1 + x2)θ +

3 for all n1≥ n.

This implies that

I2+ I3< 2kf k1+x2

(1 + x2)θ +  3.

(10)

Next, let for a large value of x0, we have kf k(1+x1+x22)θ < 6. I2+ I3< 2

3 for all n1≥ n. (4.7)

From Theorem 4.2, there exists n2> n in such a way I1= kTn(f ) − f kC[0,x0] < 

3 for all n2≥ n. (4.8) Let n3= max(n1, n2). Then, combining (4.6), (4.7) and (4.8), we have

sup

x∈[0,∞)

|Tn(f ; x)| − f (x) (1 + x2)1+θ < .

Hence, the proof of Theorem 4.5 is completed.

5. A-statistical approximation

Gadjiev et al. [14] was the first who introduced Statistical approximation theorems in operators theory. Here, we recall same notation from [14], let A = (ank) be a non- negative infinite suitability matrix. For a given sequence x := (xk), the A-transform of x denoted by Ax : ((Ax)n) is defined as

(Ax)n=

X

k=1

ankxk,

provided the series converges for each n. A is said to be regular if lim(Ax)n = L whenever lim x = L. Then x = (xn) is said to be a A-statistically convergent to L i.e.

stA− lim x = L if for every  > 0, limnP

k:|xk−L|≥ank= 0.

Theorem 5.1. Let A = (ank) be a non-negative regular suitability matrix and x ≥ 0.

Then, we have

stA− lim

n kTn(f ; x) − f k1+x2+λ= 0, for all f ∈ C1+xk 2+λ[0, ∞) and λ > 0.

Proof. From ([15], p. 191, Th. 3), it is sufficient to show that for λ = 0 stA− lim

n kTn(ei; x) − eik1+x2= 0, for i ∈ {0, 1, 2}. (5.1) Using Lemma 2.2, we have

kTn(e1; x) − xk1+x2 = sup

x∈[0,∞)

1 1 + x2

A0(1) nA(1)

= A0(1) nA(1) sup

x∈[0,∞)

1 1 + x2.

(11)

Now, for a given  > 0, we define the following sets

M1: = (

n : kTn(e1; x) − xk ≥  )

,

M2: = (

n : A0(1) nA(1) ≥ 

) .

This implies that M1⊆ M2, which shows thatP

k∈M1ank≤P

k∈M2ank. Hence, we have

stA− lim

n kTn(e1; x) − xk1+x2 = 0. (5.2) For i = 2 and using Lemma 2.2, we have

kTn(e2; x) − x2k1+x2 = sup

x∈[0,∞)

x 1 + x2

 2A0(1)

A(1) + H00(1) + 1 1 n + A0(1) + A00(1)

n2A(1) sup

x∈[0,∞)

1 1 + x2. For a given ε > 0, we have the following sets

T1: = (

n :

Tn(e2; x) − x2

≥  )

,

T2: = (

n : 2A0(1)

A(1) + H00(1) + 1 1 n ≥ 

2 )

,

T3: = (

n : A0(1) + A00(1) n2A(1) ≥ 

2 )

.

This implies that T1⊆ T2S T3. By which, we get

X

k∈T1

ank≤ X

k∈T2

ank+ X

k∈T3

ank.

As n → ∞, we have

stA− lim

n kTn(e2; x) − x2k1+x2= 0. (5.3) This completes the proof of Theorem 5.1.

(12)

References

[1] S.N. Bernstein, D´emonstration du th´eor`eme de Weierstrass fond´ee sur le calcul des probabilit´es, Comm. Soc. Math. Kharkow 2 13 (1912) 1-2.

[2] P.L. Butzer, R.J. Nessel, Fourier Analysis and Approximation, Birkh¨auser, Bessel and Academic Press, New York 1 1971.

[3] M.E.H. Ismail, On a generalization of Sz´asz operators, Mathematica (Cluj) 39 (1974) 259-267.

[4] A. Jakimovski, D. Leviatan, Generalized Sz´asz operators for the approximation in the infinite interval, Mathematica (Cluj) 11 (1969) 97-103.

[5] L. Rempulska, M. Skorupka, The Voronovskaya theorem for some operators of the Sz´asz-Mirakjan type, Le Matematiche 2 50 (1995) 251-261.

[6] O. Sz´asz, Generalization of S. Bernstein’s polynomials to the infinite interval, J.

Research Nat. Bur. Standards 45 (1950) 239-245.

[7] S. Sucu, E. Ibikli, Rate of convergance of Sz´asz type operators including Sheffer polynomials, Stud. Univ. Babes-Bolyai Math. 1 58 (2013) 55-63.

[8] E. Voronovskaja, D´etermination de la forme asymptotique de L’approximation des functions par les polynˆomes de M. Bernstein, C. R. Acad. Sci. URSS 1932 (1932) 79-85.

[9] A.R. Gairola, Deepmala and L.N. Mishra, Rate of approximation by finite iterates of q-Durrmeyer operators, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 86 2 (2016) 229-234.

[10] K.K. Singh, A.R. Gairola and Deepmala, Approximation theorems for q-analouge of a linear positive operator by A. Lupas, Int. J. Anal. Appl. 12 1 (2016) 30-37.

[11] A.D. Gadjiev, Theorems of the type of P.P. Korovkin’s theorems, Math. Zametki 20 5 (1976) 781-786 (in Russian), Math. 20 5-6 (1976) 995-998 (in English).

[12] E. Ibikli, E.A. Gadjieva, The order of approximation of some unbounded functions by the sequence of positive linear operators, Turkish J. Math. 19 3 (1995) 331-337.

[13] I. Y¨uksel, N. Ispir, Weighted approximation by a certain family of summation integral-type operators, Comput. Math. Appl. 52 10-11 (2006) 1463-1470.

[14] A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical conver- gence, Rocky Mountain J. Math. 32 1 (2007) 129-138.

[15] O. Duman, C. Orhan, Statistical approximation by positive linear operators, Stu- dia Math. 16 2 (2004) 187-197.

(13)

[16] V.N. Mishra, K. Khatri, L.N. Mishra and Deepmala, Inverse result in simulta- neous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of In- equalities and Applications (2013) 2013:586, doi:10.1186/1029-242X-2013-586.

[17] V.N. Mishra, H.H. Khan, K. Khatri and L.N. Mishra, Hypergeometric represen- tation for Baskakov-Durrmeyer-Stancu type operators, Bulletin of Mathematical Analysis and Applications 5 3 (2013) 18-26.

[18] V.N. Mishra, K. Khatri and L.N. Mishra, On simultaneous approximation for Baskakov-Durrmeyer-Stancu type operators, Journal of Ultra Scientist of Physical Sciences 24 3 A (2012) 567-577.

[19] V.N. Mishra, K. Khatri and L.N. Mishra, Some approximation properties of q- Baskakov-Beta-Stancu type operators, Journal of Calculus of Variations, Volume 2013 (2013) Article ID 814824, 8 pages, http://dx.doi.org/10.1155/2013/814824.

[20] V.N. Mishra, K. Khatri and L.N. Mishra, Statistical approximation by Kan- torovich type discrete q−beta operators, Advances in Difference Equations (2013) 2013:345, doi: 10.1186/10.1186/1687-1847-2013-345.

[21] V.N. Mishra, P. Sharma and L.N. Mishra, On statistical approximation proper- ties of q−Baskakov-Sz´asz-Stancu operators, Journal of Egyptian Mathematical Society 24 3 (2016) 396-401, doi: 10.1016/j.joems.2015.07.005.

[22] R.B. Gandhi, Deepmala and V.N. Mishra, Local and global results for modified Sz´asz-Mirakjan operators, Math. Method. Appl. Sci. (2016), doi:

10.1002/mma.4171.

DOI: 10.7862/rf.2017.9 Nadeem Rao

email: nadeemrao1990@gmail.com Department of Mathematics Jamia Millia Islamia

New Delhi - 110025 INDIA

Abdul Wafi

email: abdulwafi2k2@gmail.com Department of Mathematics Jamia Millia Islamia

New Delhi - 110025 INDIA

(14)

Deepmala

email: dmrai23@gmail.com, deepmaladm23@gmail.com Mathematics Discipline

PDPM Indian Institute of Information Technology Design and Manufacturing

Jabalpur - 482005 INDIA

Received 30.11.2016 Accepted 18.03.2017

Cytaty

Powiązane dokumenty

1. Durrmeyer [4] introduced modified Bernstein polynomials to approxi- mate Lebesgue integrable functions on [0, 1], later motivated by the integral modification of

In this paper, we give some sufficient conditions in order to have the weak and strong type inequalities (1.8) and (1.10) for this case, and we shall show that, under

A special class of Hardy type operators related to fiber algebras is used in Section 2 to obtain a version of the Iversen theorem on cluster sets of bounded analytic functions..

Vinti, Approximation by Nonlinear Multivariate Sampling Kantorovich Type Operators and Applications to Image Processing, Numerical Functional Analysis and Optimization 34 (8)

In [1] and [2] we introduced a modification of classical Bernstein oper- ators in C([0, 1]) which we used to approximate the solutions of suitable parabolic problems.. In this paper

Since we have here a concrete normal extension N (namely, multiplication by ψ on some L 2 -space of automorphic vector-valued functions on ∂D), we may directly establish in this

Considering the Theorem together with Motorny˘ı’s and Os- kolkov’s results, we might have reasons to guess that there might be some connections between the interpolation

In this paper we study approximative properties of modified Szasz-Mirakyan operators for functions of two variables from polynomial weight spaces.. We present some direct