• Nie Znaleziono Wyników

Wave transmission by overtopping

N/A
N/A
Protected

Academic year: 2021

Share "Wave transmission by overtopping"

Copied!
41
0
0

Pełen tekst

(1)
(2)

Po:..u-s I , ; - j u L i - r

Ralph M. Parsons L a b o r a t o r y

For Water Resources and Hydrodynamics

Department o f C i v i l E n g i n e e r i n g M a s s a c h u s e t t s I n s t i t u t e o f T e c h n o l o g y WAVE TRANSMISSION by R a l p h H. C h a r l e s K. BY OVERTOPPING Cross S o l l i t t T e c h n i c a l Note No. 15 December 1970 P r e p a r e d Under C o n t r a c t No. DACW-72-68-C-0032 C o a s t a l E n g i n e e r i n g Research C e n t e r

U.S. Army Corps o f E n g i n e e r s W a s h i n g t o n , D.C. DSR P r o j e c t 71135

(3)

ABSTRACT

This report presents a theory for ocean wave transmission past breakwaters by overtopping, based on an evaluation of the energy content of the overtopping water. While several co-efficients are subject to further investigation, the data shows

that the general form of the equations developed is correct. Comparison with large-scale model tests reinforces this belief, and comparison of an intermediate theoretical result predicting the volume of overtopping water with published data again shows reasonable agreement. An envelope curve for the transmission coefficient, based on all available data, gives a simple tool for preliminary design estimates of the transmission coefficient.

(4)

ACKNOWLEDGEMENTS

T h i s s t u d y o f wave t r a n s m i s s i o n p a s t b r e a k w a t e r s was

sponsored by t h e C o a s t a l E n g i n e e r i n g Research Center o f t h e U. S.

Army Corps o f Engineers under C o n t r a c t No. DACW-72-68-C-0032.

C o n t r a c t a d m i n i s t r a t i o n was p r o v i d e d by t h e M.I.T. D i v i s i o n o f

Sponsored Research under DSR 71135.

The work was c a r r i e d o u t i n t h e Ralph M. Parsons L a b o r a t o r y

f o r Water Resources and Hydrodynamics o f t h e Department o f C i v i l

E n g i n e e r i n g a t M.I.T. Mr. Ken W i l s o n , a Research A s s i s t a n t i n

the L a b o r a t o r y , a s s i s t e d w i t h t h e d a t a r e d u c t i o n and numerous o t h e r

(5)

INTRODUCTION The d e s i g n f o r a h a r b o r i n an exposed l o c a t i o n g e n e r a l l y i n c l u d e s a b r e a k w a t e r t o p r o v i d e an a r e a s h e l t e r e d f r o m t h e waves. As b r e a k w a t e r s a r e u s u a l l y d e s i g n e d t o p e r m i t some o v e r -t o p p i n g b y . -t h e waves d u r i n g s e v e r e s -t o r m s , i -t becomes n e c e s s a r y t o p r e d i c t t h e c h a r a c t e r i s t i c s o f t h e waves so t r a n s m i t t e d i n t o the h a r b o r , t o a s s u r e t h a t t h e wave a c t i o n i n t h e s h e l t e r e d a r e a i s w i t h i n a c c e p t a b l e l i m i t s . T h i s r e p o r t p r e s e n t s a t h e o r y f o r wave t r a n s m i s s i o n by o v e r t o p p i n g , based on an e v a l u a t i o n o f t h e energy c o n t e n t o f t h e o v e r t o p p i n g w a t e r . W h i l e t h e c o e f f i c i e n t s f o r r e f l e c t i o n and r e g e n e r a t i o n a r e open t o q u e s t i o n , t h e l a b o r a t o r y d a t a shows t h a t t h e g e n e r a l f o r m o f t h e e q u a t i o n s

developed i s c o r r e c t . Comparison w i t h l a r g e - s c a l e model t e s t s

r e i n f o r c e s t h i s b e l i e f , and c o m p a r i s o n o f a t h e o r e t i c a l p r e d i c -t i o n o f -t h e volume o f o v e r -t o p p i n g w a -t e r w i -t h a p o r -t i o n o f -t h e p u b l i s h e d d a t a a g a i n shows r e a s o n a b l e agreement. An e n v e l o p e c u r v e f o r t h e t r a n s m i s s i o n c o e f f i c i e n t , based on d a t a f r o m s e v e r a l s o u r c e s , g i v e s a s i m p l e t o o l f o r p r e l i m i n a r y e s t i m a t e s o f t h e t r a n s m i s s i o n c o e f f i c i e n t . THEORY

When a wave o v e r t o p s a b r e a k w a t e r , some o f t h e i n c i d e n t wave

energy i s r e f l e c t e d , some i s d i s s i p a t e d , and some i s t r a n s m i t t e d

(6)

when t h e wave runup on t h e seaward f a c e o f t h e b r e a k w a t e r exceeds

the l e v e l o f t h e b r e a k w a t e r c r e s t . A s l u g o f w a t e r f r o m each

i n c i d e n t wave o v e r t o p p i n g t h e s t r u c t u r e f l o w s a c r o s s t h e t o p

and down t h e l e e f a c e o f t h e b r e a k w a t e r ; t h e t r a n s m i t t e d waves

are g e n e r a t e d i m p u l s i v e l y b y t h i s w a t e r mass, and t h u s t h e energy

c o n t e n t o f t h e s e t r a n s m i t t e d waves must be d e r i v e d f r o m t h e o v e r

-t o p p i n g w a -t e r .

T h i s energy c o n t e n t can be c o n v e n i e n t l y e v a l u a t e d i n s t e p s :

f i r s t , t h e energy c o n t e n t o f t h e w a t e r as i t c r o s s e s t h e b r e a k w a t e r

c r e s t must be e s t i m a t e d ; n e x t , t h e f r i c t i o n (and p e r c o l a t i o n ) l o s s e s

must be d e t e r m i n e d ; and f i n a l l y , t h e r e g e n e r a t i o n p r o c e s s must be

s t u d i e d .

The energy c o n t e n t o f t h e o v e r t o p p i n g w a t e r mass can be e s t i m a t e d

by assuming t h a t t h e t o t a l energy c o n t e n t o f t h e o v e r t o p p i n g w a t e r i s

the same as t h e energy o f t h a t p o r t i o n o f t h e wave runup t h a t w o u l d l i e

above t h e b r e a k w a t e r c r e s t were t h e b r e a k w a t e r f a c e e x t e n d e d t o - a h i g h e r

e l e v a t i o n as shown i n F i g . 1 . A t maximum r u n u p , f l o w v e l o c i t i e s a r e

e s s e n t i a l l y z e r o , and a l l t h e energy o f t h i s w a t e r i s i n t h e f o r m o f

p o t e n t i a l e n e r g y . By knowing t h e shape and p o s i t i o n o f t h i s h y p o t h e t

-i c a l runup wedge, t h -i s p o t e n t -i a l energy can be c a l c u l a t e d .

W i t h t h e above assumptions s t a t e d , t h e s o l u t i o n t o t h e p r o b l e m can

be o u t l i n e d as f o l l o w s :

I . The shape o f t h e runup wedge i s s p e c i f i e d as an n - t h

degree p a r a b o l a f r o m t h e f i r s t seaward wave t r o u g h t o t h e

p o i n t o f maximum runup on t h e extended b r e a k w a t e r f a c e .

(7)

-I -I , Mass c o n s e r v a t i o n r e q u i r e s t h a t t h e volume o f runup

above t h e s t i l l w a t e r l e v e l (SWL) equals t h a t "removed"

i n t h e t r o u g h , below t h e s t i l l w a t e r l e v e l , o v e r t h e

r e g i o n f r o m t h e f i r s t seaward wave t r o u g h ( a t maximum

runup) t o t h e b r e a k w a t e r .

I I I . The energy c o n t a i n e d i n t h e runup wedge i s e v a l u a t e d

f r o m t h e n e t energy f l u x i n t o a c o n t r o l volume e n c l o s i n g

t h e runup wedge and t h e p a r t i a l s t a n d i n g wave system j u s t

seaward o f t h e b r e a k w a t e r .

IV. The o v e r t o p p i n g energy i s e v a l u a t e d as t h e p o t e n t i a l

energy o f t h a t p o r t i o n o f t h e runup wedge e x t e n d i n g above

t h e a c t u a l b r e a k w a t e r c r e s t e l e v a t i o n a t maximum runup

on t h e e x t e n d e d f a c e .

V, The o v e r t o p p i n g w a t e r volume i s s i m i l a r l y e v a l u a t e d as

t h a t p o r t i o n o f t h e runup wedge l y i n g above t h e b r e a k w a t e r

c r e s t a t maximum r u n u p .

V I . The t r a n s m i t t e d wave energy i s e v a l u a t e d by a c c o u n t i n g

f o r t h e n e t energy f l u x i n t o a c o n t r o l volume w h i c h

en-c l o s e s t h e o v e r t o p p i n g f l o w and t h e t r a n s m i t t e d wave t r a i n .

The above g r o u p i n g p r o v i d e s a c o n v e n i e n t means o f s u m m a r i z i n g

the a n a l y t i c a l d e t a i l s o f t h e t h e o r y w h i c h f o l l o w s .

W h i l e t h e a n a l y s i s i s f o r a t w o - d i m e n s i o n a l s e c t i o n o f t h e

s t r u c t u r e , w i t h waves a r r i v i n g a t n o r m a l i n c i d e n c e t o t h e s t r u c t u r e ,

i t s h o u l d a p p l y a l s o t o waves a r r i v i n g n e a r l y p e r p e n d i c u l a r t o t h e

(8)

I . P a r a b o l i c Runup Wedge

At maximum r u n u p , t h e shape o f t h e runup wedge i s assumed t o

be a p a r a b o l a w i t h i t s v e r t e x a t t h e b o t t o m o f t h e f i r s t wave t r o u g h . The c o r r e s p o n d i n g e q u a t i o n i s Y = MX'^ - A where Y i s t h e w a t e r s u r f a c e e l e v a t i o n above t h e SWL, X i s d i s t a n c e f r o m t h e t r o u g h s h o r e w a r d , and A i s t h e a m p l i t u d e a t t h e t r o u g h ( F i g . 1 ) . T h i s e q u a t i o n s a t i s f i e s t h e c o n d i t i o n s o f s u r f a c e c o n t i n u i t y

and s l o p e a t i t s v e r t e x and a p p r o x i m a t e s t h e shape o f runup wedges

observed i n t h e l a b o r a t o r y . I t w i l l be assumed t h a t maximum runup

o c c u r s i n phase w i t h t h e extremum i n t h e p a r t i a l s t a n d i n g wave p r o f i l e .

Using l i n e a r wave t h e o r y t o d e s c r i b e t h e wave m o t i o n seaward o f t h e

f i r s t t r o u g h , A becomes A = A. + A 1 r = A^ ( 1 + k^) where = i n c i d e n t wave a m p l i t u d e A^ = r e f l e c t e d wave a m p l i t u d e and k = r e f l e c t i o n c o e f f i c i e n t * r

The runup e q u a t i o n may be w r i t t e n i n d i m e n s i o n l e s s f o r m by d i v i d i n g

t h r o u g h by A, i . e . .

where L i s t h e v a l u e o f X where Y = R, t h e runup h e i g h t ; t h u s ,

* The symbol c o n v e n t i o n used t h r o u g h o u t t h i s paper i s l o w e r case l e t t e r s r e p r e s e n t d i m e n s i o n l e s s q u a n t i t i e s and c a p i t a l l e t t e r s r e p r e s e n t

(9)

ML„ = R + A R and Y ^ R + A / i L \ _ The f o l l o w i n g d i m e n s i o n l e s s q u a n t i t i e s a r e d e f i n e d t o s i m p l i f y subsequent a l g e b r a : (H^^, H, X^, X^, and S a r e d e f i n e d i n F i g . 2 ) . u u 1 Y R ^ H A y , r , h ^ , h , l = , — , -1 = 2 L ^ 1 ^2 AS ^ X,X ,X , S , l , , , , ^ ^ ^R ^R ^R ^R^ ^R As a r e s u l t , t h e d i m e n s i o n l e s s runup s u r f a c e becomes y = ( r + l ) x - 1 (1) I I . C o n s e r v a t i o n o f Mass R e f e r r i n g t o F i g . 2, mass c o n s e r v a t i o n r e q u i r e s t h a t t h e volume

o f w a t e r c o n t a i n e d i n t h e runup wedge between x = x^ and x = 1 e q u a l

volume m i s s i n g f r o m t h e v o i d between x = 0 and x = x.^. That i s .

1 2 ydx - ^ = 0 0 E v a l u a t i n g t h e i n t e g r a l y i e l d s , r + 1 - 1 s r + 1 or 2_ r - n 2 n + 1 ( 2 )

The p h y s i c a l l i m i t s on n a r e n - 1,0 f o r t h e runup s u r f a c e t o be

(10)

E q u a t i o n (2) a p p l i e s s t r i c t l y t o impermeable s l o p e s , and

w i l l y i e l d c o n s e r v a t i v e l y h i g h e s t i m a t e s f o r o v e r t o p p i n g volumes

on permeable b r e a k w a t e r s .

I I I . Energy A n a l y s i s - Seaward Face

As t h e t r a n s m i t t e d wave energy comes f r o m t h e o v e r t o p p i n g

w a t e r , t h i s o v e r t o p p i n g e n e r g y , E^ i s u n a v a i l a b l e t o f o r m t h e

r e f l e c t e d wave. For t h e c o n t r o l volume o f F i g . 3, t h e energy f l u x

over a wave p e r i o d T can be w r i t t e n ,

The power i n i s t h a t o f t h e i n c i d e n t wave. The power o u t i n c l u d e s

t h a t o f t h e r e f l e c t e d wave and t h e o v e r t o p p i n g w a t e r . The l o s s e s

i n c l u d e f r i c t i o n l o s s e s on t h e s l o p e and l o s s e s i n t h e r e g e n e r a t i o n

of t h e r e f l e c t e d wave.

I f PE i s d e f i n e d as t h e p o t e n t i a l energy o f t h e e n t i r e runup

wedge above SWL a t maximum r u n u p , t h e n PE - E^ i s t h a t p o r t i o n o f t h e

runup energy w h i c h r e t u r n s seaward v i a rundown.

P a r t o f t h i s r e t u r n i n g energy i s l o s t t o s u r f a c e f r i c t i o n and

e n t r a n c e l o s s e s i n t h e rundown p r o c e s s . I n d e p e n d e n t s t u d i e s a t

M.I.T. have enumerated t h e l o s s e s f o r a s l u g o f f l u i d r e l e a s e d down

a smooth s l o p e , (Sy, 1969, K i n g , 1 9 7 0 ) . These s t u d i e s i n d i c a t e d t h a t

r e c o n v e r s i o n o f rundown energy t o r e f l e c t e d ( o r t r a n s m i t t e d ) wave

energy i s v e r y i n e f f i c i e n t : i f E i s t h e p o t e n t i a l energy o f t h e s l u g

a t t h e onset o f rundown, t h e n t h e r e c o n v e r s i o n t o wave energy r e s u l t s

i n energy l o s s e s e q u a l t o k. E where k i s a l o s s c o e f f i c i e n t and

f o r a smooth s l o p e o f 1:1.0.

R e c a l l i n g t h e energy f l u x r e l a t i o n s h i p s f r o m l i n e a r wave t h e o r y . Power i n - Power o u t Power l o s s

(11)

E q u a t i o n ( 3 ) becomes E^ (PE - E ^ ) k ^

h%

"^r^g " = - ( 4 ) where C = energy p r o p a g a t i o n r a t e ( g r o u p v e l o c i t y ) E. = i n c i d e n t wave energy d e n s i t y \ 1 A 2 2 ^ i Y = s p e c i f i c w e i g h t o f f l u i d E^ = r e f l e c t e d wave energy d e n s i t y 2 ^ i "^r L e t T = ^ = Hgve l e n g t h C H a v e c e l e r i t y PE p e = E o e

where pe and e^ a r e d i m e n s i o n l e s s p o t e n t i a l e n e r g i e s , and A =

A ^ ( l + k^) as p r e v i o u s l y d e f i n e d . S u b s t i t u t i o n o f t h e above i n t o E q u a t i o n ( 4 ) y i e l d s G T 1 ( 1 - k ^) ^ \ ( 1 + k ) ^ r

I-where k^ i s r e f l e c t i o n c o e f f i c i e n t o f t h e o v e r t o p p e d s t r u c t u r e . T h i s

w i l l be t a k e n as a l i n e a r i n t e r p o l a t i o n between Miches r e f l e c t i o n

co-e f f i c i co-e n t , k^, f o r a s t r u c t u r co-e whosco-e h co-e i g h t co-excco-eco-eds maximum r u n u p , and

zero r e f l e c t i o n f o r no s t r u c t u r e . T h a t i s ,

( h + h, )

k = k

( 6 )

(12)

E q u a t i o n ( 6 ) may be I n t e r p r e t e d as a r e d u c t i o n i n t h e r e f l e c t i o n

coe f f i c i coe n t by a f a c t o r w h i c h i s p r o p o r t i o n a l t o t h coe f i c t i t i o u s b r coe a k

-w a t e r e x t e n s i o n . P r e s e n t l y a v a i l a b l e i n f o r m a t i o n about p a r t i a l

r e f l e c t i o n f r o m o v e r t o p p e d s t r u c t u r e s does n o t j u s t i f y a more

e l a b o r a t e r e l a t i o n s h i p .

The p o t e n t i a l energy o f t h e runup wedge must be e v a l u a t e d

r e l a t i v e t o i t s a b i l i t y t o r e t u r n w o r k t o t h e r e f l e c t e d wave system.

The r e c o n v e r s i o n o f runup p o t e n t i a l energy t o wave energy o c c u r s

i n two s t e p s : ( 1 ) The p o t e n t i a l energy o f t h e s l u g i s c o n v e r t e d t o

k i n e t i c energy as t h e s l u g f a l l s t o t h e w a t e r s u r f a c e , and ( 2 ) t h i s k i n e t i c energy i s c o n v e r t e d t o f l u i d m o t i o n i n t h e r e - e n t r a n c e v i c i n i t y . Much o f t h e i n d u c e d f l u i d m o t i o n i s t u r b u l e n t and i s e v e n t u a l l y l o s t t o v i s c o u s d i s s i p a t i o n (as a c c o u n t e d f o r by t h e l o s s c o e f f i c i e n t , k ^ ) . The r e m a i n i n g m o t i o n c o n t r i b u t e s t o a component o f t h e r e f l e c t e d wave. I t i s i m p o r t a n t t o n o t e , h o w e v e r , t h a t once the c e n t e r o f g r a v i t y o f t h e s l u g f l o w has e n t e r e d t h e w a t e r , t h e s l u g i s n e u t r a l l y b o u y a n t and t h e r e f o r e has no f u r t h e r p o t e n t i a l t o

a c c e l e r a t e . The r e c o n v e r s i o n energy i s l i m i t e d t o t h e k i n e t i c energy

g a i n e d by t h e s l u g i n f a l l i n g t o t h e w a t e r s u r f a c e . C o n s e q u e n t l y , a t

maximum runup t h e p o t e n t i a l energy s h o u l d be measured r e l a t i v e t o t h e

w a t e r s u r f a c e . Due t o t h e u n c e r t a i n t y o f p o s i t i o n o f t h e w a t e r s u r

-f a c e d u r i n g r e - e n t r a n c e , t h e p o t e n t i a l energy w i l l be e v a l u a t e d w i t h

r e s p e c t t o t h e SWL.

I t f o l l o w s d i r e c t l y t h a t t h e d i m e n s i o n l e s s p o t e n t i a l e n e r g y o f t h e

runup wedge a t maximum runup i s s i m p l y (see F i g . 2 ) ,

(13)

-pe Z_ 2 2 dx - s r At X = x ^ , y = 0 1/n thus = ( ^TT ) and c o m p l e t i n g t h e above i n t e g r a t i o n y i e l d s pe = 2n + 1 ( r + 1)-1 1 -( r + 1) 2 + 1/n 2 ( r + 1) n + 1. 1 -( r + 1) 1 + 1/n 1

-(r

+

D^^M

s r (7) IV. O v e r t o p p i n g Energy As d e s c r i b e d e a r l i e r , t h e o v e r t o p p i n g energy i s e q u a l t o

the p o t e n t i a l energy o f t h a t p o r t i o n o f t h e runup wedge e x t e n d i n g

above t h e b r e a k w a t e r c r e s t . The p o t e n t i a l energy i s e v a l u a t e d w i t h

r e s p e c t t o t h e SWL, t h u s e = o 1 2 • (y - h^) ( h ^ + dx ^ h^ + At X = X y = h t h u s x = h, + 1 b 1/n 2 [ r + 1 Completing t h e above i n t e g r a t i o n y i e l d s

(14)

1

j

( r + 1 ) 2 'o 2 2 ( r + 1) n + 1 ( 1 - h^^) 2n + 1

i J V ^ )

^ r + 1 / 2 + 1/n + 1 \ 1 + 1/n r + 1 + 1 h, + 1 1 - b ! , r + 1 /' ^ 1/n ^

I

( r - h ^ ) ^ ( r + 2h^) ( 8 ) ) S u b s t i t u t i o n o f E q u a t i o n s ( 7 ) and ( 8 ) i n t o E q u a t i o n ( 5 ) completes t h e energy c o n s e r v a t i o n a n a l y s i s on t h e seaward s i d e o f t h e b r e a k -w a t e r . V. O v e r t o p p i n g Volume The o v e r t o p p i n g volume i s e v a l u a t e d f r o m F i g . 2 as t h a t

volimie i n t h e runup wedge w h i c h extends above t h e b r e a k w a t e r c r e s t .

That i s , V = ^ s ( r - h, ) 2 (y - h^) dx E v a l u a t i n g t h e i n t e g r a l y i e l d s V = r + 1 + 1 ( 1 + h^) 1 1 -h, + 1 b . r + 1 1 + 1/n •) + 1 1 / n - l r + 1s ( r h ^ ) -( 9 )

(15)

V I . T r a n s m i t t e d Wave Energy

Energy c o n s e r v a t i o n r e q u i r e s t h a t d u r i n g each wave p e r i o d

t h e n e t energy accumulated i n t h e c o n t r o l volume s k e t c h e d i n F i g . 4

sums t o z e r o , i . e . ,

power i n - power o u t = power l o s s ( 1 0 )

The energy f l u x i n t o t h e c o n t r o l volume i s s i m p l y t h e o v e r t o p p i n g

energy d i v i d e d by t h e wave p e r i o d . The power l o s s e q u a l s t h e o v e r t o p p i n g

energy f l u x m u l t i p l i e d t i m e s t h e rundown l o s s c o e f f i c i e n t , k^. The

energy f l u x p a s s i n g o u t o f t h e c o n t r o l volume i s t h a t a s s o c i a t e d w i t h

t h e t r a n s m i t t e d wave. A l t h o u g h t h e r e g e n e r a t i o n p r o c e s s i s q u i t e

com-p l e x , i t r e com-p e a t s com-p e r i o d i c a l l y a t t h e f r e q u e n c y o f t h e i n c i d e n t wave,

and t h u s t h e f u n d a m e n t a l mode o f t h e t r a n s m i t t e d wave has t h e same f r e

-quency as t h e i n c i d e n t wave. E x p e r i m e n t s a t M.I.T. i n d i c a t e t h a t t h i s

mode c o n t a i n s most o f t h e t r a n s m i t t e d wave energy. As a f i r s t a p p r o x i

-m a t i o n , t h e n , h i g h e r h a r -m o n i c s -may be n e g l e c t e d and t h e power l e a v i n g

t h e c o n t r o l volume d u r i n g one wave p e r i o d i s s i m p l y E^C^ where

YA. 2 ' ^ t = ^ \ % A. and k = -7- = t r a n s m i s s i o n c o e f f i c i e n t . S u b s t i t u t i n g t h e above i n t o t A, 1 E q u a t i o n (10) y i e l d s E YA.2 , E 1 k C = — k T - 2 • t • ^g T 2 2 ^ t

But E = A. ( 1 + k ) L„. e and T = — , where = t r a n s m i t t e d wave

0 1 r R o C t

l e n g t h .

(16)

-I f t h e w a t e r d e p t h on t h e l e e s i d e o f t h e b r e a k w a t e r i s t h e same on

the seaward s i d e , t h e n = L and

\' = '%hr

+

( 1 - V

( 1 1 )

The problem as d e f i n e d i n c l u d e s f i v e d i m e n s i o n l e s s unknowns:

n , r , k^, k^ and s ( o r L ^ ) . However, o n l y f o u r e q u a t i o n s have been

p r e s e n t e d t o f a c i l i t a t e t h e s o l u t i o n t o t h e above. The p e r t i n e n t

e q u a t i o n s a r e ( 2 ) , ( 5 ) , ( 6 ) , and ( 1 1 ) . A l l o t h e r q u a n t i t i e s o f i n t e r

-e s t a r -e f u n c t i o n s o f t h -e f i v -e f u n d a m -e n t a l d-ep-end-ent v a r i a b l -e s l i s t -e d .

A f i f t h r e l a t i o n s h i p i s needed t o c o m p l e t e l y s p e c i f y t h e p r o b l e m . Two

a l t e r n a t i v e r e q u i r e m e n t s have been e x p l o r e d t o s a t i s f y t h e need f o r a

f i f t h e q u a t i o n . The f i r s t a t t e m p t r e q u i r e d t h a t t h e r u n u p wedge be t a n g e n t t o t h e extended b r e a k w a t e r s l o p e a t t h e h e i g h t o f maximum r u n u p . T h i s i s a c o n d i t i o n w h i c h has been o b s e r v e d f o r g e n t l e s l o p e s . T h i s r e s t r a i n t , however, y i e l d s runup h e i g h t s e x c e e d i n g t h o s e o b s e r v e d by a f a c t o r o f 1.5 and g r e a t e r . The second a t t e m p t s p e c i f i e d t h a t t h e d i s t a n c e f r o m t h e b r e a k -w a t e r t o t h e f i r s t t r o u g h be e q u a l t o h a l f a m o d i f i e d -wave l e n g t h . The

m o d i f i e d wave l e n g t h i s computed f r o m l i n e a r wave t h e o r y as a f u n c t i o n

o f w a t e r d e p t h on t h e b r e a k w a t e r s l o p e , and i s d e f i n e d as t h e i n t e g r a t e d

average wave l e n g t h i n t h e i n t e r v a l between t h e f i r s t t r o u g h and t h e

i n t e r s e c t i o n o f t h e SWL w i t h t h e b r e a k w a t e r s l o p e . T h i s r e q u i r e m e n t

reduces t o known r e s u l t s f o r t h e two extreme c o n d i t i o n s o f v e r t i c a l w a l l s

and h o r i z o n t a l s l o p e s . I m p o s i n g t h i s r e s t r a i n t , however, y i e l d s runup

(17)

o f 0.7 and l e s s . C o r r e s p o n d i n g t r a n s m i s s i o n c o e f f i c i e n t s a r e

s i m i l a r l y low.

To s a t i s f y t h e immediate need f o r a f i f t h e q u a t i o n , t h e

a u t h o r s have r e l i e d on S a v i l l e ' s e x p e r i m e n t a l r e s u l t s (B.E.B. T.M. #64)

as an i n p u t f o r runup h e i g h t s . As a s p e c i f i c example, f o r a smooth

impermeable s l o p e o f 1:1.5, wave h e i g h t t o w a t e r d e p t h r a t i o s i n

excess o f 3.0, and wave cambers near 0.05, t h e a p p r o p r i a t e runup

h e i g h t i s t w i c e t h e i n c i d e n t wave h e i g h t . Use o f S a v i l l e ' s runup

r a t i o s f o r h i g h b r e a k w a t e r c r e s t s (^^/^ ^ 0.5) y i e l d s good c o r r e l a -t i o n be-tween e x p e r i m e n -t a l and -t h e o r e -t i c a l -t r a n s m i s s i o n c o e f f i c i e n -t s . However, f o r r e l a t i v e l y low b r e a k w a t e r c r e s t s (h, / r < 0.05) S a v i l l e ' s b d a t a u n d e r e s t i m a t e s t h e e q u i v a l e n t runup h e i g h t , and p r e d i c t e d t r a n s -m i s s i o n c o e f f i c i e n t s a r e so-mewhat low. I t s h o u l d be p o i n t e d o u t t h a t t h i s l a t t e r c a t e g o r y i s o f l i t t l e i n t e r e s t f o r p r a c t i c a l b r e a k w a t e r d e s i g n . Summarizing, t h e f i v e d i m e n s i o n l e s s unknowns, n, r , k^, k^,

and s may be s o l v e d u s i n g S a v i l l e ' s e x p e r i m e n t a l runup h e i g h t s and

E q u a t i o n s ( 2 ) , ( 5 ) , ( 6 ) , and ( 1 1 ) . E q u a t i o n s ( 7 ) and ( 8 ) must be u t i l i z e d t o f i n d pe and e i n terms o f t h e f i v e unknowns. An i t e r a

-^ o

t i v e p r o c e d u r e i s employed i n s e e k i n g a s o l u t i o n w h i c h s a t i s f i e s a l l

f i v e c o n d i t i o n s s i m u l t a n e o u s l y . The a u t h o r s have found t h a t t h i s i s

most q u i c k l y a c c o m p l i s h e d by i n c r e m e n t i n g n up f r o m a minimum v a l u e o f

u n i t y u n t i l E q u a t i o n s ( 2 ) , ( 5 ) and ( 6 ) a r e s a t i s f i e d and t h e n s o l v i n g

d i r e c t l y f o r t h e t r a n s m i s s i o n c o e f f i c i e n t and t h e o v e r t o p p i n g volume.

A s i m p l e d i g i t a l computer program has been w r i t t e n i n FORTRAN IV G t o

(18)

EXPERIMENTAL EQUIPMENT

The e x p e r i m e n t s were p e r f o r m e d a t M.I.T, by Lamarre

( 1 9 6 7 ) , u s i n g a g l a s s - w a l l e d wave f l u m e 2,5 f e e t w i d e and 105 f e e t

l o n g , u s i n g a c o n s t a n t w a t e r d e p t h o f 1.5 f e e t . A t t h e f a r end o f

t h e f l u m e was an i m p e r v i o u s beach a t a 5% s l o p e .

The wave g e n e r a t o r was o f t h e f l a p t y p e , 2.5 f e e t h i g h , and

h i n g e d a t t h e b o t t o m ; t h e t o p was moved back and f o r t h by a r o d

a t t a c h e d t o a crank arm h a v i n g v a r i a b l e speed and e c c e n t r i c i t y .

The smooth, impermeable b r e a k w a t e r was l o c a t e d 51.5 f e e t

f r o m t h e wave g e n e r a t o r and was 1.3 f e e t h i g h . I t c o u l d be r a i s e d by

s m a l l i n c r e m e n t s t o a maximum h e i g h t o f 1.77 f e e t by a d d i n g b l o c k i n g

u n d e r n e a t h . These b l o c k i n g s were made o f wood, shaped and i n s t a l l e d

i n such a way as t o m a i n t a i n c o n s t a n t f r o n t and r e a r s l o p e s o f 1 v e r t i c a l

t o 1.5 h o r i z o n t a l . The h o r i z o n t a l c r e s t o f t h e b r e a k w a t e r was 0.33 f e e t

w i d e . Roughness was o b t a i n e d when d e s i r e d by a d d i n g f l a t t e n e d expanded

m e t a l l a t h s h e e t s on t o p o f t h e smooth s u r f a c e s .

The i n s t r u m e n t s used i n t h e e x p e r i m e n t were p a r a l l e l - w i r e

r e s i s t a n c e t y p e wave gages connected by a w h e a t s t o n e b r i d g e t o a t w o

c h a n n e l Sanborn r e c o r d e r . The wave gages c o n s i s t e d o f two v e r t i c a l s t a i n

-l e s s s t e e -l w i r e s 1/8" i n d i a m e t e r and 1 f o o t -l o n g , mounted f r o m above

3/4" a p a r t , and p a r t i a l l y immersed i n t h e w a t e r .

EXPERIMENTAL PROCEDURE

S i x d i f f e r e n t wave p e r i o d s were i n v e s t i g a t e d . Once t h e

f r e q u e n c y o f t h e wave g e n e r a t o r was a d j u s t e d t o t h e p r o p e r v a l u e , and

b e f o r e i n s e r t i n g t h e b r e a k w a t e r i n t o t h e f l u m e , t h e e c c e n t r i c i t y o f

(19)

" i n c i d e n t " waves g e n e r a t e d a t each s e t t i n g were r e c o r d e d .

A f t e r t h e r e c o r d i n g o f t h e s e i n c i d e n t waves was c o m p l e t e d ,

t h e b r e a k w a t e r was i n s t a l l e d , and two wave gages were mounted a t

d i s t a n c e s o f one and two w a v e l e n g t h s r e s p e c t i v e l y beyond t h e c e n t e r

-l i n e o f t h e s t r u c t u r e . The f o u r d i f f e r e n t i n c i d e n t waves a -l r e a d y

measured were t h e n r e p r o d u c e d and t h e t r a n s m i t t e d waves r e c o r d e d .

A l l t h e e x p e r i m e n t s were r e p e a t e d a f t e r a d d i n g t h e expanded m e t a l

sheet f o r roughness.

The c o m p l e t e s e r i e s o f t e s t s was made f o r each i n c r e a s e i n

t h e h e i g h t o f t h e b r e a k w a t e r . A f t e r t h e b r e a k w a t e r was a t i t s

maximum h e i g h t , i . e . , when t h e r e was no more o v e r t o p p i n g , t h e s t r u c

-t u r e was p u l l e d o u -t o f -t h e w a -t e r , -t h e f r e q u e n c y o f -t h e wave-maker changed,

and t h e p r o c e s s r e p e a t e d f o r f i v e more p e r i o d s .

EXPERIMENTAL RESULTS AND DISCUSSION

The t r a n s m i t t e d wave h e i g h t s measured by gages 1 and 2 were

averaged t o o b t a i n an e s t i m a t e o f " t h e " t r a n s m i t t e d wave h e i g h t . Due

t o t h e presence o f t h e h i g h e r harmonics i n t h e t r a n s m i t t e d wave s y s t e m ,

t h e r e was g e n e r a l l y some v a r i a t i o n between t h e wave h e i g h t s measured

a t t h e two l o c a t i o n s ; t h i s v a r i a t i o n t y p i c a l l y amounted t o 5 t o 15 p e r

-c e n t . The i n -c i d e n t wave h e i g h t i s s i m i l a r l y t a k e n as t h e a v e r a g e o f

t h e two wave gages, b u t t h e d i f f e r e n c e o n l y amounts t o a p e r c e n t o r two.

S i m i l a r e f f e c t s were n o t e d by t h e U. S. Army Corps o f E n g i n e e r s (1965)

i n t h e Dana P o i n t model t e s t s .

(20)

e x p e r i m e n t a l r u n s . The curves p l o t t e d a r e s o l u t i o n s t o Eq. 11

and d e p i c t t h e o r e t i c a l bounds f o r smooth and rough s u r f a c e s . The

smooth s u r f a c e c u r v e corresponds t o a runup r a t i o R/H. = 1.8, a

l o s s c o e f f i c i e n t k„ ^ ,

£ 0,6, and an ' i n t r i n s i c " c o e f f i c i e n t o f r e f l e c

t i o n (as d e s c r i b e d by M i c h e ) p = 0.8. The rough s u r f a c e c u r v e c p r r e s

-ponds t o R/H^ = 1.6, = 0.8 and p = 0.7.

The runup r a t i o s used a r e t h o s e i n d i c a t e d by o u r own s t u d i e s .

They a r e somex^hat l o w e r t h a n t h o s e suggested by S a v i l l e (R/H. - 2.0)

and p r o b a b l y i n c l u d e some s c a l e e f f e c t s as w e l l as p e c u l i a r i t i e s o f

t h e e x p e r i m e n t a l a p p a r a t u s .

The l o s s c o e f f i c i e n t v a l u e s f o l l o w d i r e c t l y f r o m Sy's e x p e r i

-ments. He f o u n d f o r a smooth 1:1 s l o p e an average k ==0.7. I t i s

f e l t t h a t t h e r e g e n e r a t i o n p r o c e s s i s more e f f i c i e n t f o r h o r i z o n t a l

momentum t r a n s f e r (as i n a wave g e n e r a t o r f l a p ) t h a n f o r v e r t i c a l

momentum t r a n s f e r . Since t h e h o r i z o n t a l component o f rundown momentum

i n c r e a s e s f o r d e c r e a s i n g s l o p e s one m i g h t expect s m a l l e r l o s s

co-e f f i c i co-e n t s f o r morco-e g r a d u a l s l o p co-e s . Thco-erco-e i s , o f c o u r s co-e , a t r a d co-e o f f

t o s u r f a c e f r i c t i o n on v e r y g r a d u a l s l o p e s b u t f o r smooth 1:1.5 s l o p e s

a l o s s c o e f f i c i e n t e q u a l t o 0.6 seems a p p r o p r i a t e . T h i s i s i n c r e a s e d

t o 0.8 f o r t h e e q u i v a l e n t roughened s l o p e .

The i n t r i n s i c c o e f f i c i e n t o f r e f l e c t i o n i s a f u n c t i o n o f s u r

-f a c e roughness and p e r m e a b i l i t y . Miche suggests a v a l u e o -f p = 0.8

f o r smooth impermeable s l o p e s , and p ^ 0.33 f o r r u b b l e s l o p e s .

Con-s e q u e n t l y a v a l u e o f 0.8 waCon-s choCon-sen f o r t h e Con-smooth Con-s l o p e and 0.7 f o r

(21)

s l o p e s , Miche's t h e o r y y i e l d s = p,

For l o w b r e a k w a t e r s H^/R < 0.3± t h e t h e o r y u n d e r e s t i m a t e s

t h e t r a n s m i s s i o n c o e f f i c i e n t ; i t appears r e a s o n a b l e t h a t t h e

assumptions u n d e r l y i n g t h e t h e o r y a r e l e a s t v a l i d i n t h i s r e g i o n , and

moreover, t h e v a l u e s o f K and k used may n o t be a p p l i c a b l e . How¬

e v e r , t h i s range o f H^^/R i s o f l i t t l e p r a c t i c a l i n t e r e s t , as t h e

t r a n s m i s s i o n c o e f f i c i e n t s a r e t y p i c a l l y 0.3 t o 0.6.

For h i g h e r b r e a k w a t e r s (H^/R >0.5±), t h e t h e o r y g e n e r a l l y

o v e r e s t i m a t e s t h e t r a n s m i s s i o n c o e f f i c i e n t , p a r t i c u l a r l y f o r t h e

s m a l l e r v a l u e s o f r e l a t i v e d e p t h , H/L. F o r t h e most o f t h e range o f

H/L however, t h e t h e o r y p r o v i d e s an "upper e n v e l o p e " f o r k^, and t h u s

i s u s e f u l f o r p r e l i m i n a r y d e s i g n e s t i m a t e s .

I t i s i n t e r e s t i n g t o n o t e on F i g s . 5 t h r o u g h 10 t h a t t h e

i n c i d e n t wave s t e e p n e s s , H^/L has l i t t l e e f f e c t on t h e t r a n s m i s s i o n

c o e f f i c i e n t e x c e p t a t t h e l o w e s t v a l u e s o f E^/L.

As one m i g h t e x p e c t , a d d i n g roughness t o t h e s l o p e s reduces t h e

t r a n s m i s s i o n c o e f f i c i e n t f o r t h e l a b o r a t o r y d a t a , p r o b a b l y by r e d u c i n g

t h e runup and i n c r e a s i n g k .

There i s a s i g n i f i c a n t amount o f s c a t t e r i n t h e d a t a ; t h i s

can be a t t r i b u t e d t o s e v e r a l s o u r c e s .

1. Wave gage i n a c c u r a c i e s ; t h e s e gages t y p i c a l l y a r e o n l y

good t o 5 t o 10 p e r c e n t .

2. L a t e r a l r e s o n a n c e e f f e c t s can b i a s r e a d i n g s t a k e n a l o n g

t h e c h a n n e l c e n t e r l i n e . F o r s e v e r a l r u n s , i t was n o t i c e d

t h a t t h e wave c r e s t s were n o t u n i f o r m a c r o s s t h e c h a n n e l .

(22)

q u a r t e r - w a v e - l e n g t h and f o r t h e 1.0 second waves, a h a l f - w a v e - l e n g t h . For t h e o t h e r p e r i o d s , however, e s p e c i a l l y w i t h s t e e p e r waves, t h e p a r t i a l b r e a k i n g o c c a s i o n a l l y o b s e r v e d on t h e s t r u c t u r e can g e n e r a t e h i g h e r harmonics c a p a b l e o f l a t e r a l resonance. 3,- B r e a k i n g o f t h e waves on t h e s t r u c t u r e , observed f o r

t h e s t e e p e r waves, causes an a d d i t i o n a l energy l o s s n o t

accounted f o r by t h e t h e o r y . Because o f t h e s t r o n g

dependence o f b r e a k e r c h a r a c t e r i s t i c s on t h e backwash

f r o m t h e p r e c e d i n g wave, no v e r y u n i f o r m e f f e c t o f b r e a k

-i n g can be e x p e c t e d .

Besides t h e s c a t t e r , a n o t h e r s h o r t c o m i n g o f t h e d a t a i s t h a t t h e

ranges o f r e l a t i v e d e p t h , H/L, and wave s t e e p n e s s , EjL, do n o t f u l l y

cover t h o s e f o u n d i n t h e p r o t o t y p e . B r e a k w a t e r s a r e t y p i c a l l y b u i l t

i n 15 t o 40 f e e t o f w a t e r , and t h e i n c i d e n t waves t y p i c a l l y have wave

l e n g t h s f r o m 200 t o 400 f t ; thus H/L ranges f r o m a p p r o x i m a t e l y 0.04 t o

0.2 i n t h e p r o t o t y p e , w h i l e H/L i n t h e e x p e r i m e n t s ranges f r o m 0.16 t o

0.45. S i m i l a r l y t h e wave steepness H^/L, i n t h e p r o t o t y p e under s t o r m

c o n d i t i o n s w i l l be a p p r o x i m a t e l y 0.04 t o 0.10, w h i l e t h e maximum s t e e p

-ness a v a i l a b l e i n t h e e x p e r i m e n t s was 0.064. These d i f f i c u l t i e s stem

f r o m t h e d i f f i c u l t y o f g e n e r a t i n g s t e e p waves i n s h a l l o w w a t e r w i t h a

h i n g e d - f l a p wave g e n e r a t o r . The Dana P o i n t d a t a ( F i g . 1 1 ) , however,

r e p r e s e n t s p r o t o t y p e c o n d i t i o n s , and agrees w e l l w i t h t h e l a b o r a t o r y

d a t a , s u g g e s t i n g t h a t d e p t h i s n o t a v e r y i m p o r t a n t f a c t o r , e x c e p t

pos-s i b l y f o r wavepos-s w h i c h b r e a k b e f o r e r e a c h i n g t h e pos-s t r u c t u r e .

(23)

a more r e a l i s t i c b r e a k w a t e r f o r m . The e x p e r i m e n t a l d a t a

are from t h e U. S. Army Corps o f E n g i n e e r s Report d e s c r i b i n g a

s e r i e s o f s c a l e model t e s t s f o r t h e d e s i g n o f a h a r b o r a t Dana

P o i n t , C a l i f o r n i a . As t h e Dana P o i n t b r e a k w a t e r was a permeable

s t r u c t u r e , some wave energy was t r a n s m i t t e d even w i t h no o v e r

-t o p p i n g ( k ^ &l-t; 0 . 1 ) , and -t h u s , -t h e -t r a n s m i -t -t e d wave h e i g h -t s g i v e n

f o r s m a l l amounts o f o v e r t o p p i n g were n o t i n c l u d e d . The runup

r a t i o s used f o r t h e Dana P o i n t d a t a were R/H. = 1.0 and 1.1 f o r

p r o t o t y p e wave p e r i o d s o f 12 and 18 seconds r e s p e c t i v e l y . These

I

r a t i o s were e s t i m a t e d f r o m t h e d a t a f o r non o v e r t o p p i n g waves b u t

agree w e l l w i t h S a v i l l e ' s r e s u l t s . The t h e o r e t i c a l p o i n t s c o r r e s p o n d

t o t h e runup r a t i o s s t a t e d above, l o s s c o e f f i c i e n t k = 0.8, and

i n t r i n s i c c o e f f i c i e n t o f r e f l e c t i o n p= 0.4.

R e f e r r i n g t o F i g , 11 i t i s e v i d e n t t h a t a s c a l e e f f e c t

e x i s t s . The 1:50 s c a l e model y i e l d s l a r g e r t r a n s m i s s i o n c o e f f i c i e n t s

t h a n t h e 1:5 s c a l e model. T h i s i s p r o b a b l y a Reynolds e f f e c t w h e r e i n

t h e r e - e n t r a n c e l o s s e s f o r t h e l a r g e r , more t u r b u l e n t model (and

t h e r e f o r e p r o t o t y p e ) a r e h i g h e r t h a n i n t h e s m a l l e r model. The t h e o r e t i c a l s o l u t i o n l i e s between t h e two e x p e r i m e n t a l r e s u l t s . E x t r a p o l a t i n g t h e s e r e s u l t s t o p r o t o t y p e s c a l e , one expects t h e t h e o r y t o g i v e a c o n s e r v a t i v e l y h i g h e s t i m a t e f o r t h e t r a n s m i s s i o n c o e f f i c i e n t . For e n g i n e e r i n g p u r p o s e s , however, t h i s i s a d e s i r a b l e c o n d i t i o n . The t h e o r y does n o t a c c o u n t f o r d i r e c t t r a n s m i s s i o n t h r o u g h

a permeable b r e a k w a t e r . The c o n t i n u i t y e q u a t i o n , Eq. ( 2 ) , n e g l e c t s

f l o w i n t o t h e pores o f t h e b r e a k w a t e r and t h e r e b y o v e r e s t i m a t e s t h e

o v e r t o p p i n g volume. C o n s e q u e n t l y , t h e t r a n s m i s s i o n c o e f f i c i e n t due

(24)

-t o p u r e o v e r -t o p p i n g i s a l s o o v e r e s -t i m a -t e d . The -two e r r o r s a r e

compensating. However, t h e o v e r t o p p i n g r e g e n e r a t i o n p r o c e s s appears

t o be more e f f i c i e n t t h a n d i r e c t t r a n s m i s s i o n t h r o u g h b r e a k w a t e r s

o f low p e r m e a b i l i t y . The n e t r e s u l t i s t h a t t h e t r a n s m i s s i o n

co-e f f i c i co-e n t i s s l i g h t l y o v co-e r co-e s t i m a t co-e d whco-en t h co-e o v co-e r t o p p i n g t h co-e o r y i s a p p l i e d t o r u b b l e mound b r e a k w a t e r s . A g a i n , t h i s i s a d e s i r a b l e c o n d i t i o n f o r e n g i n e e r i n g e s t i m a t e s . A l l o f t h e e x p e r i m e n t a l d a t a , i n c l u d i n g Dana P o i n t , a r e p r e s e n t e d i n F i g . 12. I t d e m o n s t r a t e s t h e v a l i d i t y o f u s i n g H^/R as t h e d i m e n s i o n l e s s p a r a m e t e r f o r p l o t t i n g o v e r t o p p i n g t r a n s m i s s i o n d a t a . The e n v e l o p e c u r v e i s o f c o n s i d e r a b l e i n t e r e s t as i t appears t o be a f a i r l y c o n s i s t e n t upper bound f o r t h e t r a n s m i s s i o n c o e f f i c i e n t , o f t h e f o r m k^ = 0.65 (1.10 - Hj^/R), f o r H^/R < 1.0 ( 1 2 ) S a v i l l e (1955) has p u b l i s h e d d a t a on f l o w r a t e s a s s o c i a t e d w i t h t h e o v e r t o p p i n g o f v a r i o u s c o a s t a l s t r u c t u r e s . By m u l t i p l y i n g t h e g i v e n d i s c h a r g e s ( c f s / f t o f c r e s t w i d t h ) by t h e wave p e r i o d , an

o v e r t o p p i n g volume per wave i s o b t a i n e d . These r e s u l t s can be compared

w i t h Eq. ( 9 ) . F i g . 13 shows Eq. ( 9 ) p l o t t e d d i m e n s i o n l e s s l y as 2

V/(R - Hj^) (where V = A v , t h e d i m e n s i o n a l o v e r t o p p i n g volume per

f o o t o f b r e a k w a t e r c r e s t ) vs S a v i l l e ' s r e s u l t s . The d a t a shown a r e

f o r a s t r u c t u r e w i t h a smooth f a c e on a 1:1.5 s l o p e , f o r t h e d e p t h s

o f 4.5 and 9.0 f e e t a t t h e t o e , wave p e r i o d s o f 2.96 t o 6.4 seconds,

and f o r runup r a t i o s , based on n o n - o v e r t o p p i n g wave d a t a , r a n g i n g f r o m

(25)

been n e g l e c t e d . F o r t h e l a t t e r t h e h e i g h t s and runups a r e

r e p o r t e d o n l y t o t h e n e a r e s t f o o t , and t h e s m a l l v a l u e s o f R - H^^

computed a r e n o t r e l i a b l e . The t h e o r e t i c a l p o i n t s s o l v e d f o r used

the g i v e n runup r a t i o s , = 0,7 and p = 0.8. The c o r r e l a t i o n

between t h e o r y and e x p e r i m e n t ( p e r f e c t c o r r e l a t i o n i s t h e 45° l i n e )

f u r t h e r s u p p o r t s t h e a n a l y t i c a l a s s u i n p t i o n s . A g a i n t h e t h e o r y

con-s e r v a t i v e l y o v e r e con-s t i m a t e con-s t h e v o l u m e con-s , a p r o b a b l y concon-sequence o f

the h i g h runup r a t i o s used,

CONCLUSIONS

The t h e o r y p r e s e n t e d d e s c r i b e s t h e e s s e n t i a l f e a t u r e s o f

the p r o c e s s o f wave t r a n s m i s s i o n b y o v e r t o p p i n g , f o r waves a r r i v i n g

a t t h e b r e a k w a t e r w i t h o u t b r e a k i n g and a t n o r m a l i n c i d e n c e . The

r e l a t i o n s h i p d e r i v e d i s dependent on t h e c o e f f i c i e n t s o f r e f l e c t i o n

and l o s s , and t h e runup r a t i o . F u r t h e r i n v e s t i g a t i o n o f t h e s e

quan-t i quan-t i e s w o u l d p e r m i quan-t a r e f i n e m e n quan-t o f quan-t h e quan-t h e o r y .

The e n v e l o p e c u r v e may be used f o r p r e l i m i n a r y e s t i m a t e s

of t h e t r a n s m i s s i o n c o e f f i c i e n t . For r u b b l e mound b r e a k w a t e r s t h i s

e s t i m a t e can be i m p r o v e d by u s i n g t h e t h e o r y a l o n g w i t h a runup r a t i o

R/H_j^ = 1.0, a l o s s c o e f f i c i e n t k^ = 0.8, and an i n t r i n s i c r e f l e c t i o n c o e f f i c i e n t p = 0.4.

(26)

REFERENCES

U. S. Army C o r p s o f E n g i n e e r s ( 1 9 6 6 ) , " S h o r e P r o t e c t i o n , P l a n n i n g and D e s i g n " , C o a s t a l E n g i n e e r i n g R e s e a r c h C e n t e r , T e c h n i c a l R e p o r t No. 4, T h i r d E d i t i o n , U. S. Government P r i n t i n g O f f i c e . M i c h e , R., ( 1 9 5 3 ) , "The R e f l e c t i n g Power o f M a r i t i m e Works E x p o s e d

to A c t i o n o f t h e Waves", B u l l . B e a c h E r o s i o n B o a r d , U. S. Army C o r p s o f E n g i n e e r s , V o l . 7, No. 2, A p r i l 1 9 5 3 , p. l - , 7 . Sy, T., ( 1 9 6 9 ) , P e r s o n a l C o m m u n i c a t i o n K i n g , N. , ( 1 9 7 0 ) , "Wave R e g e n e r a t i o n i n B r e a k w a t e r O v e r t o p p i n g " , S. M. and Ocean E n g i n e e r T h e s i s s u b m i t t e d t o t h e D e p a r t m e n t o f N a v a l A r c h i t e c t u r e and M a r i n e E n g i n e e r i n g , M.I.T., C a m b r i d g e , M a s s . , A u g u s t 1 9 7 0 .

U. S, Army Corps of E n g i n e e r s ( 1 9 6 5 ) , " G e n e r a l D e s i g n f o r Dana P o i n t H a r b o r , Dana P o i n t , C a l i f o r n i a " , S e p t e m b e r 1 9 6 5 .

S a v i l l e , T., J r . , ( 1 9 5 5 ) , " L a b o r a t o r y D a t a on Wave Runup and O v e r -t o p p i n g on S h o r e S -t r u c -t u r e s " , U. S. Army C o r p s o f E n g i n e e r s , B e a c h E r o s i o n B o a r d T e c h n i c a l Memorandum No. 64. L a m a r r e , P., ( 1 9 6 7 ) , "Water Wave T r a n s m i s s i o n by O v e r t o p p i n g o f an I m p e r m e a b l e B r e a k w a t e r " , S. M. T h e s i s s u b m i t t e d t o t h e D e p a r t -ment o f C i v i l E n g i n e e r i n g a t M.I.T., C a m b r i d g e , M a s s . , S e p t e m b e r 1 9 6 7 .

(27)
(28)
(29)
(30)

C o n t r o l Volume

(31)
(32)
(33)
(34)
(35)
(36)

T 1 T — ^ 1 - T 1 — r T = 0.8 sec

Slopes

(37)

1 1 1 • i 1 0.6 Dana P o i n t Model Data O 1:50 Model 0.5 A 1:5 Model Theory 0.4 -0.3 » A. A • ^ • ^ ^ A

A A

a

0

0.2 - i « % • ' 0 A -0.1 1 • • • 1 I 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 . H^/R

(38)

II 0.6 O* O O O 0.4 0.3 0.2 0.1 • A T i ï

Lab, Smooth Slope

Lab, Rough Slope

Dana P t . 1:50 S c a l e Dana P t . 1:5 S c a l e 0.65 (1.10 - H^/R) 0.4 0.8 0.1 0.2 0.3 0.4 0.5 ^076 0 ~ o.8„ ,^ 0.9 1.0

(39)

0.4

E x p e r i m e n t a l

g u r e 13 Comparison o f T h e o r e t i c a l O v e r t o p p i n g Volumes w i t h S a v i l l e ' s Data

(40)

LIST OF SYMBOLS A p a r t i a l s t a n d i n g wave a m p l i t u d e A. X i n c i d e n t wave a m p l i t u d e A r r e f l e c t e d wave a m p l i t u d e

\

t r a n s m i t t e d wave a m p l i t u d e C wave c e l e r i t y c g energy p r o p a g a t i o n r a t e ( g r o u p v e l o c i t y ) E r u n down energy E. X i n c i d e n t wave energy d e n s i t y E o o v e r t o p p i n g energy e o d i m e n s i o n l e s s o v e r t o p p i n g energy E r r e f l e c t e d wave energy d e n s i t y

\

t r a n s m i t t e d wave e n e r g y d e n s i t y H s t i l l w a t e r d e p t h h d i m e n s i o n l e s s s t i l l w a t e r d e p t h

\

b r e a k w a t e r c r e s t e l e v a t i o n above SWL

\

d i m e n s i o n l e s s b r e a k w a t e r c r e s t e l e v a t i o n H. X i n c i d e n t wave h e i g h t

h

rundown l o s s c o e f f i c i e n t k m Miche's r e f l e c t i o n c o e f f i c i e n t k r b r e a k w a t e r r e f l e c t i o n c o e f f i c i e n t

\

t r a n s m i s s i o n c o e f f i c i e n t L i n c i d e n t , r e f l e c t e d wave l e n g t h h o r i z o n t a l d i s t a n c e f r o m f i r s t t r o u g h t o p o i n t o f maximum runup 36

(41)

LIST OF SYMBOLS ( c o n t i n u e d )

t r a n s m i t t e d wave l e n g t h

c o n s t a n t c o e f f i c i e n t i n p a r a b o l a e q u a t i o n

exponent i n p a r a b o l a e q u a t i o n

p o t e n t i a l energy o f runup wedge

d i m e n s i o n l e s s p o t e n t i a l energy o f runup wedge

runup h e i g h t d i m e n s i o n l e s s runup h e i g h t b r e a k w a t e r s l o p e , seaward f a c e " d i m e n s i o n l e s s " b r e a k w a t e r s l o p e , SA/L„ R wave p e r i o d o v e r t o p p i n g volume d i m e n s i o n l e s s o v e r t o p p i n g volume h o r i z o n t a l c o o r d i n a t e h o r i z o n t a l d i s t a n c e t o Y = 0, H^, r e s p e c t i v e l y d i m e n s i o n l e s s , X, X^, X2 v e r t i c a l c o o r d i n a t e d i m e n s i o n l e s s v e r t i c a l c o o r d i n a t e s p e c i f i c w e i g h t Miche's i n t r i n s i c r e f l e c t i o n c o e f f i c i e n t

Cytaty

Powiązane dokumenty

Dane zawarte w tabeli 2 pozwalają na dokonanie analizy poziomu pro­ dukcji roślinnej, produkcji zwierzęcej i rolniczej ogółem w poszczegól­ nych gminach województwa leszczyńskiego

Rezultatem pracy naukowej było uzyskanie przez Niego dnia 2 VII 1949 roku stopnia doktora nauk ekonomiczno-politycznych na Wydziale Prawa Uniwersytetu Poznańskiego na

„Bycie, rozu- miane jako wydarzenie, wymyka się kategoriom filozofii teoretycz- nej, nie daje się poznać przez kategorie wiedzy historycznej i nieosiągalne jest również

Zaprezentowana metoda badania jednostek przestrzennych, oparta o synte- tyczny wskaźnik rozwoju ekonomiczno-społecznego, może być użyta do oceny trafności przyjętych rozwiązań,

 While it would have been relatively simple to standardize data formats in order to stream directly into a structured query language database (SQL, i.e. Seppänen); b) Dynamic

Brunona z Kwerfurtu; posiada kościół neogo­ tycki; w uroczystościach bierze udział ok?. Czesław Kozioł OFM

Ważną kwestią, która zarysowała się w trakcie wystąpienia (a zwłaszcza w dyskusji, która wywiązała się wokół niego), był problem przydatności metodologii teorii

W związku z tym, że ma to być inwentarz idealny, autor zaznaczył jednostki, któ- re: nie zachowały się, są przechowywane w Archiwum Diecezjalnym w Pelplinie oraz pozostały