• Nie Znaleziono Wyników

ILD-ILQ-621

N/A
N/A
Protected

Academic year: 2022

Share "ILD-ILQ-621"

Copied!
4
0
0

Pełen tekst

(1)

5–1 FEATURES

• Alternate Source to TLP621-2/-4 and TLP621GB-2/-4

• Current Transfer Ratio (CTR) at IF= 5 mA ILD/Q621: 50% Min.

ILD/Q621GB: 100% Min.

• Saturated Current Transfer Ratio (CTRSAT) at IF=1 mA

ILD/Q621: 60% Typ.

ILD/Q621GB: 30% Min.

• High Collector-Emitter Voltage, BVCEO=70 V

• Dual and Quad Packages Feature:

- Reduced Board Space - Lower Pin and Parts Count

- Better Channel to Channel CTR Match - Improved Common Mode Rejection

• Field-Effect Stable by TRIOS (TRansparent IOn Shield)

• Isolation Test Voltage from Double Molded Package, 5300 VACRMS

• Underwriters Lab File #E52744

• VDE 0884 Available with Option 1 Maximum Ratings (Each Channel) Emitter

Reverse Voltage ...6 V Forward Current ...60 mA Surge Current ...1.5 A Power Dissipation...100 mW Derate from 25°C ...1.33 mW/°C Detector

Collector-Emitter Reverse Voltage ...70 V Collector Current ... 50 mA Collector Current (t <1 ms)...100 mA Power Dissipation...150 mW Derate from 25°C ... –2 mW/°C Package

Isolation Test Voltage

(t=1 sec.) ... 7500 VACPK (t=1 min.) ... 5300 VACRMS Package Dissipation ILD620/GB... 400 mW Derate from 25°C ...5.33 mW/°C Package Dissipation ILQ620/GB ...500 mW Derate from 25°C ...6.67 mW/°C Creepage ... 7 mm min.

Clearance... 7 min min.

Isolation Resistance

VIO=500 V, TA=25°C ...≥1012Ω VIO=500 V, TA=100°C ...≥1011Ω Storage Temperature... –55°C to +150°C Operating Temperature ...–55°C to +100°C Junction Temperature... 100°C Soldering Temperature

(2 mm from case bottom) ... 260°C

DESCRIPTION

The ILD/Q621 and ILD/Q621GB are multi-channel phototransistor optocou- plers that use GaAs IRLED emitters and high gain NPN silicon phototransis- tors. These devices are constructed using over/under leadframe optical coupling and double molded insulation technology. This assembly process offers a withstand test voltage of 7500 VDC.

The ILD/Q621GB is well suited for CMOS interfacing given the CTRCEsat of 30% minimum at IF of 1 mA. High gain linear operation is guaranteed by a minimum CTRCE of 100% at 5 mA. The ILD/Q621 has a guaranteed CTRCE of 50% minimum at 5 mA. The TRansparent IOn Shield insures stable DC gain in applications such as power supply feedback circuits, where constant DC VIO voltages are present.

Dimensions in inches (mm)

.268 (6.81) .255 (6.48)

.790 (20.07) .779 (19.77 )

.045 (1.14) .030 (.76)

Typ.

.100 (2.54) Typ.

10°

Typ.

3°–9°

.305 typ.

(7.75) typ.

.022 (.56)

.018 (.46) .012 (.30)

.008 (.20)

.135 (3.43) .115 (2.92) Pin One I.D.

.150 (3.81) .130 (3.30)

.040 (1.02) .030 (.76 ) .268 (6.81)

.255 (6.48) 3 4

6 5

.390 (9.91) .379 (9.63)

.045 (1.14) .030 (.76)

Typ.

.100 (2.54) Typ.

10°

Typ.

3°–9°

.305 typ.

(7.75) typ.

.022 (.56)

.018 (.46) .012 (.30)

.008 (.20)

.135 (3.43) .115 (2.92) 1

2

8 7

Pin One I.D.

.150 (3.81) .130 (3.30)

.040 (1.02) .030 (.76 )

1

2

3

4

8

7

6

5 Emitter

Collector

Collector

Emitter Anode

Cathode

Cathode

Anode

16

15

14

13

12

11

10

9 1

2

3

4

5

6

7

8

Emitter

Collector

Collector

Emitter

Emitter

Collector

Collector

Emitter Anode

Cathode

Cathode

Anode

Anode

Cathode

Cathode

Anode

DUAL CHANNEL ILD621/621GB

QUAD CHANNEL ILQ621/621GB

MULTI-CHANNEL PHOTOTRANSISTOR

OPTOCOUPLER

(2)

5–2

ILD/Q621/GB

Characteristics

Symbol Min. Typ. Max. Unit Condition

Emitter

Forward Voltage VF 1 1.15 1.3 V IF=10 mA

Reverse Current IR 0.01 10 µA VR=6 V

Capacitance CO 40 pF VF=0 V, f=1 MHz

Thermal Resistance, Junction to Lead RTHJL 750 °C/W

Detector

Capacitance CCE 6.8 pF VCE=5 V, f=1 MHz

Collector-Emitter Leakage Current ICEO 10 100 nA VCE=24 V

Collector-Emitter Leakage Current ICEO 2 50 µA TA=85°C, VCE=24 V

Thermal Resistance, Junction to Lead RTHJL 500 °C/W

Package Transfer Characteristics

Channel/Channel CTR Match CTRX/CTRY 1 to 1 3 to 1 IF=5 mA, VCE=5 V

ILD/Q621

Saturated Current Transfer Ratio CTRCEsat 60 % IF=1 mA, VCE=0.4 V

Current Transfer Ratio CTRCE 50 80 600 % IF=5 mA, VCE=5 V

Collector-Emitter Saturation Voltage VCEsat 0.4 V IF=8 mA, ICE=2.4 mA ILD/Q621GB

Saturated Current Transfer Ratio CTRCEsat 30 % IF=1 mA, VCE=0.4 V

Current Transfer Ratio (Collector-Emit- ter)

CTRCE 100 200 600 % IF=5 mA, VCE=5 V

Collector-Emitter Saturation Voltage VCEsat 0.4 V IF=8 mA, ICE=0.2 mA Isolation and Insulation

Common Mode Rejection, Output High CMH 5000 V/µs VCM=50 VP-P, RL=1 kΩ, IF=0 mA Common Mode Rejection, Output Low CML 5000 V/µs VCM=50 VP-P, RL=1 kΩ, IF=10

mA

Common Mode Coupling Capacitance CCM 0.01 pF

Package Capacitance CI-O 0.8 pF VIO=0 V, f=1 MHz

Insulation Resistance RS 1012 Ω VIO=500 V, TA=25°C

Channel to Channel Insulation 500 VAC

Figure 2. Non-saturated switching timing

Characteristic Symbol Typ. Unit Test Condition

On Time TON 3.0 µs IF=±10 mA

VCC=5 V RL=75 Ω 50% of VPP

Rise Time tR 20 µs

Off Time tOFF 2.3 µs

Fall Time tF 2.0 µs

Propagation H-L tPHL 1.1 µs Propagation L-H tPLH 2.5 µs

F=10 KHz, DF=50 %

VO VCC=5 V

RL=75 Ω IF=10 mA

Switching Times

Figure 1. Non-saturated switching timing

V0 IF

tPHL

tS

tR tF

tD

50%

tPLH

(3)

5–3

ILD/Q621/GB

Figure 6. Maximum LED power dissipation

Figure 7. Forward voltage versus forward current

Figure 8. Collector-emitter current versus temperature and LED current

--60 -40 -20 0 20 40 60 80 100 200

100

0 50

Ta - Ambient Temperature - °C PLED - LED Power - mW

150

100 10

1 .1

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

IF - Forward Current - mA

VF - Forward Voltage - V

Ta = -55°C Ta = 25°C

Ta = 85°C

60 50 40 30 20 10 0 0 5 10 15 20 25 30 35

50°C

70°C 85°C

IF - LED Current - mA

Ice - Collector Current - mA

25°C Figure 3. Saturated switching timing

Figure 4. Saturated switching timing

Figure 5. Maximum LED current versus ambient temperature

Characteristic Symbol Typ. Unit Test Condition

On Time TON 4.3 µs IF=±10 mA

VCC=5 V RL=1 Ω VTH=1.5 V

Rise Time tR 2.8 µs

Off Time tOFF 2.5 µs

Fall Time tF 11 µs

Propagation H-L tPHL 2.6 µs Propagation L-H tPLH 7.2 µs

IF

tR VO

tD

tS tF tPHL

tPLH

VTH=1.5 V

VO VCC=5 V

RL F=10 KHz,

DF=50%

IF=10 mA

--60 -40 -20 0 20 40 60 80 100 120

100

80 60 40

0 20

Ta - Ambient Temperature - °C

IF - Maximum LED Current - mA

TJ (MAX)=100°C

(4)

5–4

ILD/Q621/GB

Figure 13. Normalization factor for non-saturated and saturated CTR TA=50°C versus If

Figure 14. Normalization factor for non-saturated and saturated CTR TA=70°C versus If

Figure 15. Normalization factor for non-saturated and saturated CTR TA=100°C versus If

Figure 16. Peak LED current versus pulse duration, Tau

100 10

1 .1

0.0 0.5 1.0 1.5 2.0

Normalized to:

Vce = 10V, IF = 5mA, Ta = 25°C

Ta = 50°C CTRce(sat) Vce = 0.4V

CTRNF - Normalized CTR Factor

IF - LED Current - mA NCTRce(sat) NCTRce

100 10

1 .1

0.0 0.5 1.0 1.5 2.0

Normalized to:

Vce = 10V, IF = 5mA, Ta = 25°C

Ta = 70°C CTRce(sat) Vce = 0.4V

CTRNF - Normalized CTR Factor

IF - LED Current - mA NCTRce(sat) NCTRce

100 10

1 .1

0.0 0.5 1.0 1.5 2.0

Normalized to:

Vce = 10V, IF = 5mA, Ta = 25°C

Ta = 100°C CTRce(sat) Vce = 0.4V

CTRNF - Normalized CTR Factor

IF - LED Current - mA NCTRce(sat) NCTRce

10-6 10-5 10-4 10-3 10-2 10-1 100 101 10

100 1000 10000

t - LED Pulse Duration - s

If(pk) - Peak LED Current - mA

.005

.05 .02 .01

.1 .2 .5 Duty Factor

t τ

DF = /tτ

Figure 9. Collector-emitter leakage versus temperature

Figure 10. Propagation delay versus collector load resistor

Figure 11. Maximum detector power dissipation

Figure 12. Maximum collector current versus collector voltage

100 80 60 40 20 0 10-20

10 10 10 10 10 10 10

-2 -1 0 1 2 3 4 5

Ta - Ambient Temperature - °C

Iceo - Collector-Emitter - nA

TYPICAL Vce = 10V

100 10

1 1.1

10 100 1000

1.0 1.5 2.0 2.5

RL - Collector Load Resistor - KΩ

tpLH - Propagation Delay -µs tpHL - Propagation Delay - µs

tpLH tpHL

Ta = 25°C, IF = 10mA

Vcc = 5 V, Vth = 1.5 V

-60 -40 -20 0 20 40 60 80 100

0 50 100 150 200

Ta - Ambient Temperature - °C P - Detector Power - mW DET

.1 1 10 100

.1 1 10 100 1000

Vce - Collector-Emitter Voltage - V

Ice - Collector Current - mA

25°C 50°C 75°C 90°C Rth = 500°C/W

Cytaty

Powiązane dokumenty

With regard to a concentration as defined in Article 3 which does not have a Community dimension within the meaning of Article 1 and which is capable of being reviewed under

By means of a connected sum on the pair: (X, the Z m -manifold), along two points of ψ −1 (0), we can change the manifold so that the monodromy along a connected component of ψ −1

Math 3CI Even More about solving DiffyQ Symbolicallly Part IV In these problems you are pushed to develop some more symbolic tech- niques for solving ODE’s that extends the

Suppose we are interested in the best (under the above partial ordering) estimator in a class G of estimators under a fixed loss function L.. It appears that if G is too large, then

До недоліків пакету слід віднести те, що пакет не підтримує проекту- вання баз даних, інтеграцію з іншими проектами, багатокористувацький режим1.

WÊród skarg zg∏aszanych przez chorych na nowotwory, i to nie tylko tych w zaawansowanym stadium choroby nowotworowej, niezwykle cz´sto pojawia si´

Snapchat w ostatnim czasie przyciąga coraz więcej młodszych użytkowników (52% jego użytkowników ma 16–24 lata), powodując ich odpływ z Facebooka (25% użytkowników w wieku

For a definition of a non-local attribute as well as definition of attribute “age” under user semantics contact Table 2.