• Nie Znaleziono Wyników

# THE USE OF D -MODULES TO STUDY EXPONENTIAL POLYNOMIALS

N/A
N/A
Protected

Share "THE USE OF D -MODULES TO STUDY EXPONENTIAL POLYNOMIALS"

Copied!
14
0
0

Pełen tekst

(1)

BANACH CENTER PUBLICATIONS, VOLUME 31 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

WARSZAWA 1995

n

1

n

γ∈Γ

γ

γ

1

1

n

n

φ

n

(2)

1

N

j

2

n

φ

0

n

n

1

n

n

j

j

iz1

izk

k+1

n

n

1

2

2

1

(3)

1

m

1

m

m

j=1

j

jz

1

2

1

2

1

2

N

φ

1

m

1

λ1

m

λm

j

λ

(4)

n

1

n

n,m

n

1

n

1

m

1

n

i

j

ij

i

j

ij

j

n,m

1

n

1

m

1

n

1

m

1

n

i

j

i

j

i

j

i

j

i

j

i

j

i

j

ij

i

j

ij

i

n,m

α,β,γ

α,β,γ

α

β

γ

α,β,γ

n

m

α,β,γ

n,m

k

ka

kb

ka−1

kb

ka

kb

M

k=0

1k

k

0

N

l=0

1l

l

0

1

0

1

0

1

N

l=0

1l

l

1

l

1M

1

M

1

M −1

k=0

1k

k+1

1

k

1

v

n,m

v

n,m

(5)

2n+m+vv

2n+m

n,m

n,m

0

1

0

n,m

n,m

v

v

v≥0

v

i

v

v+1

i

v

v+1

i

v

v+1

v

v−1

0

1

0

n,m

n,m

n,m

1

r

v

v

1

v

r

v

v

v

v

n,m

v

v

v

v+w

n,m

K

v

v

v

n

n

n

1

q

1

n

j

n

1

q

j

1λ1

jλj+1

λq

1λ1

λq

(6)

n,m

1

q

j

k∈Nm

j,k

k·x

j,k

1

q

λ

1λ1

qλq

1

q

1

n

x1

xm

1

q

λ

i

j

i

xj

j

j

j

λ

j

q

k=1

k

k

k

j

λ

v

x

1

q

v

λ

x

x,ex

0

0

x,ex

1

q

K(λ)

v

0

0

n+m0

n,m

n,m

n,1

0

1t

1

0

1

0

1

q

1

n

x1

1

q

λ

j

1

n

x1

(7)

1

2

1

q

i,j

x1

−x1

1

1

λ

1,j

x1

−x1

j

λ

2

x1

λ

2,j

x1

−x1

j

λ

1

n

n,1

N

1

q

N

k,N

k+1

q+N

N

N

1

k,N

x1

−x1

q˜

N

x1

k,N

2k+1

q+N˜

N

N

x1

N

N,k

k,N

k,N

j=−2n

k,j

j

k,j

0

n

N

1

k,j

N

x1

k,j

N

N

1

m

l=0

N,l

1

l

(8)

0

n

q

N

1

j=−2n

k,j

N

q+j

k,N

2k+1

j=−2n

k,j

N

q+N +j

2k+1

0k,N

j,l

k,j

N,l

q+N +j+l

0k,N

k,N

q

N

1

q

N

1

h=0

k,h

h

k,h

k,h

|λ+k|=ε

Cn

2k+1

0k,N

h+1

−2ε

|λ+k|=ε

Cn

2(λ+k)

k

0k,N

h+1

j=0

|λ+k|=ε

Cn

2

j

k

0k,N

j−h−1

k,h

Cn

2

j

k

ι

ι

x1

−x1

k

2

j

(9)

N

k

k

1

k,j

k

1

k,j

k,q+j

k

k

x1

k,j

n,1

k

k

k

k

k

k,j

j=−2n

k,j

j

k

1

k,j

k

x1

k,j

k

Nk

x∈supp(ϕ)

(Dk%(x))

n

1

k

k0

0k

m1k

k,j

k0

Nk

x∈supp(ϕ)

(D0k%(x))

1

1

p

p

1

2

p

2

m

1

p

1

1

p

p

1

p

1

p

∗µ

µ11

µpp

1

p−1

1

p−1

p

1

p−1

j

j

j

1

p−1

1

p

p

(10)

1

k

1

k

j

1

p−1

γ+i∞

γ−i∞

γ1+i∞

γ1−i∞

γp−1+i∞

γp−1−i∞

1

p−1

1

p

1

p

1

p

∗µ

1

p

β

p−1

γ+i∞

## R

γ−i∞

∗˜µ

j

1

p−1

∗2(µt−k)

2m

p

j

n,1

2m

1

2

p

2

m

∗r

1

r1

p

rp

1

p

∗r

1

1,j

x1

−x1

1

1

p

1,j

1

j+1

p

1

p

n,1

p

j

k

k

k

k

k

k,j

0

n

∗2(µt−k)

2m

j=−2n

k,j

j

n

k

1

k,j

k

x1

k,j

k

Nk

x∈supp(ϕ)

(Dk%(x))

1

(11)

k

k0

0k

ν1k

k,j

k0

Nk

x∈supp(ϕ)

(D0k%(x))

1

n

n

1

n

%

n

loc

%

n

j

loc

1

n

n

j

1

2

j

1

n

1

p

n,1

loc

1

p

n,1

%

n

1

1

p

%

n

k

%

n

0

n

(12)

x0

x0

x0

p

j=1

j

2

1/2

n

W

1

p

0

n

1

N

N

1

N −1

N

j

Wj

%

n

loc

1

p

loc

loc

loc

%

n

1

p

n,1

n

1

p

2m

1

n

n,1

j

1

σ

n

1

1

p

n,1

1

p

1

1

l

1

l

1

(13)

jk

j

n

1

n

n+1

jk

n+1,1

i(tτ +x·ξ)

−i(tτ +x·ξ)

jk

j

ikT τ

0

1

n+1

n+1

l

n+1

0

n+1

1

n+1

ζ∈V

ζ

i(tτ +x·ξ)

n+1

0

n+1

n

(14)

1

n

### analytiques, Compositio Math. 64 (1987), 213–241.

Cytaty

Powiązane dokumenty

Prijatelj, tudi sam literarni kritik in prevajalec, je torej sčasoma modificiral svoje ‛vživljanje’ v Wilda, kakor tudi izostril pogled na Nowaczyńskega, čeprav je še po dobrem

Find the vector equation of the line of intersection of the three planes represented by the following system of equations... (ii) For this value of a show that the three planes do

A. The initial value problem for systems of differential equations with impulses is considered. For the systems under consideration the impulses are realized at

sian process in terms of the associate covariance and in terms of a Schau- der basis of the space of continuous functions.. Let us start with a probability space

Despite modern developments, such estimates remain the primary tool in establishing the best known results concerning the zero- free region of the Riemann zeta function, and

Then at p the parabolic line on s remains a one-dimensional submanifold of the image of s, but with tangent line coinciding with the tangent line to the associated line of

ries filling the interior of an arbitrary tetrahedron are such as if vertices of this tetrahedron lying on the surface of unit ball were two nodes and one

The above algorithm can be extended to the 2-D polynomial matrix case by using existing methods of the computation of the GCD of 1-D polynomial matrices.. A similar algorithm can