• Nie Znaleziono Wyników

British Chemical Abstracts. A. Pure Chemistry, July

N/A
N/A
Protected

Academic year: 2022

Share "British Chemical Abstracts. A. Pure Chemistry, July"

Copied!
108
0
0

Pełen tekst

(1)

BRITISH CHEMICAL ABSTRACTS

A . - P U R E CHEMISTRY

J U L Y , 1931.

G en era l, P h y s ic a l, an d In o r g a n ic C h em istry .

C o n tin u o u s s p e c tr u m of h y d ro g e n . I n t e r p r e t ­ a tio n of e x c ita tio n p o te n tia l c u rv e . W . Fi n k e l n-

b u r g a n d W . We i z e l (Z. Physik, 1 9 3 1 , 6 8 , 5 5 7 — 584).

D is tr ib u tio n of in te n s ity a m o n g th e fin e - s tr u c - tu r e c o m p o n e n ts of th e s e r ie s lin e s of h y d ro g e n a n d io n is e d h e liu m a c c o rd in g to th e e le c tro n th e o ry of D ira c . M. Sa h a and A. C. Ba n e r j i (Z.

Physik, 1931, 68, 704—720).

S p e c tr a of h y d ro g e n a n d h e liu m p ro d u c e d b y co n d e n se d d is c h a r g e . H . Na g a o k a and T. Fu t a-

gami (Proc. Im p. Acad. Tokyo, 1931, 7, 54—55);—

Using a disruptive discharge in H 2 th e Balm er lines become diffuse, an d sharp lines of th e secondary spectrum can be observed among them . W ith He the lines become slightly diffuse, b u t the broadening is very small com pared w ith th a t in th e Balm er lines.

W ith 0 2 th e lines are as sharp as w ith an ordinary

discharge. E . S . He d g e s.

B o ltz m a n n d i s tr i b u ti o n in th e h y d ro g e n a rc . L. S. Or n s t e i n, J . G. Ev m e r s, and J . Wo u d a (Proc.

K. Akad. W etensch. A m sterdam , 1931, 34, 505—

507).—The B oltzm ann distribution holds for the H2 arc spectrum . T he tem p, determ ined for three arcs are 4900, 5300, and 6300° Abs.

E. S. He d g e s. S p e c tr u m of b e r y lliu m . F. P aso h e n an d P . G.

Kr u g e r (Ann. Physik, 1931, [v], 8, 1005— 1016).—

The spectra Be I and Be n , especially two series of singlets therein, have been experim entally investigated.

‘ W . Go o d. S in g le ts of th e tw o -e le c tro n s p e c tr a B xi, C III, N rv , a n d O v . B. Ed l ê n (N ature, 1931, 127, 744).—D ata for certain com binations and transitions are recorded. L. S. Th e o b a l d.

D is p la c e m e n t of c e r ta in lin e s in th e s p e c tr a of io n ise d o x y g e n (O II, O i l l) , n e o n (Ne il) , a n d a rg o n (A i l ) . W. E. Pr e t t y (Proc. Physical Soc., 1931, 43, 279—304; cf. A., 1929, 1205).—M any lines are displaced tow ards t h e red. C. W. Gi b b y.

S tr u c t u r e a n d Z e e m a n effec t of th e n e o n s p a r k s p e c tr u m , N e n . T. L. d e Br u i n and C. J . Ba r k e r (Z. Physik, 1931, 69, 19—35).—280 Ne i i

lines are tab u la te d ; the Zeem an effect in 40 of th e lines is also given. A. B. D. Ca s s i e.

C o llisio n s of th e s e c o n d k in d a n d t h e i r effect on th e fie ld in th e p o s itiv e c o lu m n of a g lo w d is c h a rg e in m i x tu r e s of th e r a r e g a s e s . L. B.

He a d r ic k and 0 . S. Du f f e n d a c ic (Physical Rev.,

3 F 7 7 9

1931, [ii], 37, 736—755).—M easurements of th e electric held and spectroscopic observations were m ade over a range of currents an d pressures for m ixtures of two of the gases H e, Ne, an d A, an d a m ixture of each w ith H g vapour. T he electrical and spectral characteristics of the uniform positive column can be explained principally in term s of collisions of th e second kind betw een ions or m etastable atom s of one gas and n eu tral atom s of th e other.

N. M. Bl i g h. I n te n s ity of f o r b id d e n t r a n s i t i o n s in th e a lk a lis . N. Wh i t e l a v and A. F. St e v e n s o n (N ature, 1931, 127,817).—The values of ( 1 S - W ) / ( 1 S - 2 P ) calc, for th e alkali m etals (A., 1930, 1075) are supported by Prokofiev’s experim ental values (A., 1929, 1205).

L. S. Th e o b a l d. W a v e -le n g th s t a n d a r d s in th e e x tr e m e u l t r a ­ v io le t a lu m in iu m s p e c tr u m . J . So d e r q v is t and B. E d l e n (Z. Physik, 1931, 69, 350—365).—W ave­

length stan dard s betw een 312 an d 68

A.

were obtained in th e spectrum of ionised A1 w ith an accuracy of 0-003—0-01

A.

A. B. D. C a s s i e .

T e m p e r a t u r e d e te r m in a tio n f r o m b a n d s p e c tr a . II. R o ta tio n a l e n e rg y d is tr ib u tio n in th e c y a n o g e n a n d A lO b a n d s , a n d t e m p e r ­ a t u r e d i s t r i b u ti o n in th e a rc . L. S. Or n s t e i n

and H . Br in k m a n (Proc. K. Akad. W etensch.

A m sterdam , 1931, 34, 498—504).—The tem p, of th e gas in th e violet kernel of th e C arc has been determ ined as 6500±300° abs. T he value is independent of the length of th e arc (3— 18 m m .) an d of th e cu rren t (1—

12 am p.). E . S. He d g e s.

P e r t u r b a ti o n s a n d p r e d is s o c ia tio n in th e S„

b a n d s p e c tr u m . A. Ch r i s t y and S. M. Na u d e

(Physical R ev., 1931, [ii], 37, 903—919).—The S2 bands were photographed in absorption an d emission between ?. 3500 an d X 2400. W ave-lengths and quantum analysis are tab u lated , and an equation for th e unp erturbed heads is found. P erturbations found are discussed. Predissociation is discussed in term s of the Franck-C ondon principle of tran sition probabilities. The dissociation energies of the lower and upper states are 4-45 and 2-07 volts.

N. M. Bl i g h. S tr u c t u r e of th e s p e c tr a of s u l p h u r : r e la tio n s b etw een, s p e c tr a of th e s a m e m u ltip lic itie s . M. G i l l e s (Ann. Physique, 1931, [x], 15, 267— 410).—

The spectra of S n , S in , an d S rv for th e range 7634—

640

A.,

excited in S vapour in a pyrex Geissler tube, were p h o t o g r a p h e d a n ( j tab ulated. Using an im-

(2)

7 8 0 BR ITISH CHEMICAL ABSTRACTS.— A .

proved form of tube, w ith a field of 31,700 gauss, th e Zeeman effect for 55 lines of S ii and 51 lines of S i n was investigated. The m ultiplet system s are in ­ terp reted in d etail; th e triplets, quintuplets, and a singlet of S n r, and the quadruplets of S II are re ­ cognised and tab u lated w ith th eir term values.

C ertain doublets of S n reported by Ingram (cf. A., 1929, 965) are verified. N. M. Bl i g h.

H y p e rfin e s tr u c tu r e in th e s p e c tr a of C a II, B a n , a n d T l i . S. Fr i s c h (Z. Physik, 1931, 68, 758—-763).—A dispersion of 0-7

A.

per mm. failed to reveal hyperfine structure in lines due to Ca n and B a ir and the nuclear angular m om entum of these elements is probably zero. A. B. D. Ca s s i e.

B a n d s p e c tr a of c a lc iu m h y d rid e . I. B.

Gr u n d s t r o m (Z. Physik, 1931, 69, 235—24S).—The recorded system s of bands in CaH2 (A., 1927, 185) have been more closely analysed, and new bands near 7500

A.

were obtained w ith 3— 4 atm . H ,. The p ro ­ nounced pressure effect in th e C-system is explained as predissociation. A. B. D. Ca s s i e.

P r o p e r tie s of s o m e zin c, c a d m iu m , a n d m e r ­ c u r y b a n d s . J . G. Wi n a n s (Physical R ev., 1931, [ii], 37, 902; cf. A., 1929, 481).—Zn bands a t w ave­

lengths 2139, 2064, and 2002

A.

resemble the corre­

sponding bands of Cd and H g in emission and in

absorption. N. M. Bl ig h.

Z e e m a n effect a n d k r y p to n s p a r k s p e c tr u m ( K r n ) . C. J . Ba r k e r and T. L. d e Br u i n (Z- Physik, 1931, 69, 36—51).—The Zeeman effect in 90 K r n lines an d some new term s in this spectrum are described. A. B. D. Ca s s i e.

A rc s p e c tr u m of z irc o n iu m . C. C. Ki e s s and H . K . Ki e s s (Bur. S tand. J . Res., 1931, 6, 621—672).

—N early 1600 lines have been m easured between 20S5 anil 9300

A.

About 80% have been classified as com binations between term s of the singlet, trip let, and quintuplet system s. The term s, w itho ut exception, arc those required by H u n d ’s theory, and m any have been confirmed by Zeeman effect. The ionisation potential of the n eutral Zr atom is 6-92 volts.

C. W . Gi b b y. T e m p e r a tu r e c la s s ific a tio n of th e s p e c tr a of e u ro p iu m , g a d o lin iu m , te r b iu m , d y s p ro s iu m , a n d h o lm iu m , 3850—4700 A. A. S. Ki n g (Astro­

physics J ., 1930, 72, 221—255).— Electric furnace, arc, and spark spectra of these rare earths have been obtained, and examined w ith regard to th e segregation of neutral and enhanced lines, tem p, classification, and hyperfine structure. Hyperfine stru ctu re occurs regularly in the spectra of rare earths of odd at. no., an d is absent in those of even no. L. S. Th e o b a l d.

A fte rg lo w p e r io d of c a d m iu m v a p o u r f lu o re s ­ cence. W. Ka p u ś c i ń s k i (Naturwiss., 1931, 19, 400—401).—A phosphoroseopic m ethod was used.

The m ax. in ten sity of th e visible band fluorescence does no t coincide w ith th e m oment of excitation, b u t occurs 2-5 x lO -5 sec. later. The fluorescence diminishes a t a ra te ra th e r greater th a n exponential.

A. J . Me e. R a d ia tio n p r o p e r tie s of o x id is e d p a lla d iu m . W. Zo b e l (Ann. P hysik, 1931, [v], 9, 519—536).—Pd, when oxidised by heating in air, shows a max. of tem p.

radiation when heated a t 300—600° in vac. This radiation m ax. is due to a change in th e capacity of the elem ent for absorption in consequence of th e decomp, of th e oxide layer and recrystallisation of th e reduced Pd. A t th e same tim e there is a m in. of reflected

radiation. A. J . Me e.

E n e r g y of d is s o c ia tio n of m e r c u r y m o le c u le s . J . G. Wi n a n s (Physical Rev., 1931, [ii], 37, S97— 901).

—The absorption spectrum of H g vapour in the Schum ann region showed th ree continuous bands with m ax. a t 1808, 1849, and 1692

A .

The absorption spectrum in th e region 1900—1804

A.

is correlated with a pair of p otential energy curves for H g2, which give th e energy of dissociation of H g2 as 0-15 volt.

N. M. Bl ig h. E m is s io n b a n d s in th e m e r c u r y s p e c tr u m u n d e r lo w e x c ita tio n . (Lo r d) Ra y l e ig h (Nature, 1931, 127, 662).—The diffuse absorption bands from 2943 to 2614

A.

are obtained in emission when Hg vapour fluoresces under th e F e a r c ; th e in ten sity is increased when th e vapour is superheated. Super­

heating also increases th e continuous emission from 2950 to 3600

A .,

b u t extinguishes th e green visual fluorescence. L . S. Th e o b a l d.

E x is te n c e of a tw o -v o lt t e r m in th e m e r c u r y a to m . V. Ko n d r a t e e v (Physikal. Z., 1931, 32, 288—2S9).—The existence of a 2-volt term (probably 3F ) in th e H g atom is deduced from considerations of optical an d therm ochem ical d a ta on H g halides and

H gH. W. R . An g u s.

P o te n tia l d r o p a n d io n is a tio n a t m e rc u ry a r c c a th o d e . E . S. La m a r and K . T. Co m pto n

(Physical Rev., 1931, [ii], 37, 1069— 1076).—By means of a m ovable L angm uir collector, th e potential, ion concentration, an d electron tem p, were measured a t various distances from a statio n ary H g cathode spot a t various arc currents. N. M. Bl i g h.

T h e o r y of th e m e r c u r y a rc . K . T. Co m p t o n

(Physical R ev., 1931, [ii], 37, 1077— 1090).—The theory of heat balance a t th e cathode is extended.

Expressions are obtained giving th e tem p, of the cathode spot and th e v. p. outside it. The thickness of the cathode fall space is less th a n th e electron mean

free p ath . N. M. Bl ig h.

V e rific a tio n of h y p e r fin e s t r u c t u r e th e o ry . J. Wu l f f (Z. Physik, 1931, 69, 70—77).— Observed hyperfine stru ctu re of th e doublet ground levels of T1 is consistent w ith theory. A. B. D. Ca s s i e.

H y p e rfin e s t r u c t u r e in io n is e d b is m u th . R. A.

Fi s h e r an d S. Go u d s m it (Physical R ev., 1931, [ii], 37, 1057— 1068).—Measurements of th e hyperfine stru ctu re of lines in the spectra of Bi i i an d Bi h i are tab u lated w ith intensities an d classifications. Level separations obtained from th e analysis are compared w ith theoretical formulae (cf. th is vol., 6641.

N, M. Bl i g h. I n te n s ity r e la tio n s in t r a n s i t i o n s d u e to in n e r e le c tric fie ld s. S . Samiiu r s k y (Z. Physik, 1931, 68, 774—7S1).—The intensities of transitions for­

bidden by ordinary selection rules were calc, by means of the K ram ers-H eisenburg dispersion formula, assuming a disturbing electric field a t th e atom .

A. B. D. Ca s s i e.

(3)

G EN E R A L , PH Y SIC A L , A N D IN OR G A N IC CHEM ISTRY. 7 8 1

M u ltip le t in te n s ity a n d a r c te m p e r a tu r e . L. S. Or n s t e i n and S. Sa m b u r s k y (Proc. K . Akad.

Wetensch. A m sterdam , 1931, 34, 339—340).—The sum rule for th e relative intensities of th e m u ltiplet components in a t. spectra depends on th e term s of the initial state, differing by j , being alm ost th e same in each case. W hen these differ considerably, deviations from th e rule occur. This has been confirmed by measurem ents w ith th e Au arc. J . W. Sm it h.

D u ra tio n of m e ta s ta b le s ta te s . J . M. An d e r s o n

(Canad. J . Res., 1931, 4, 312—321).—Decay curves of the absorption of th e line 7635 A. in A have been obtained a t room tem p, an d a t —180°. T he half life of the 3P 0 sta te is approx. 2 x l 0 -4 sec. and is short compared w ith th a t of th e SP 2 state.

C. W . Gi b b y. Q u a d r a tic S t a r k effec t le v e ls. K . P . He r z f e l d

(Z. Physik, 1931, 69, 249—252).—Theoretical.

A. B. D. Ca s s i e. T h e o r y of c o m p le x s p e c tr a . II . E .U . Co n d o n

and G. H . Sh o r t l e y (Physical R ev., 1931, [ii], 37, 1025— 1043; cf. this vol., 2).—Formulae for th e relations betw een th e energies of m ultiplets arising from th e same electron configuration for a num ber of two- and three-electron configurations are deduced by.

Slater’s m ethod (cf. A., 1930, 126); applications to available d a ta are discussed. N. M. Bl ig h.

T o ta l in te n s itie s of F r a u n h o f e r lin e s . M.

Min n a e r t and 0. Sl o b (Proc. K . A kad. W etensch.

Amsterdam, 1931, 34, 542—549).—The m ethod of calculation is described and results are given.

E. S. He d g e s. S ta tis tic a l a n a ly s is of th e s p e c tr u m of a n ionised a to m . E . Se g r e (N u o v o Cim., 1930, 7, 326—329; Chem. Zentr., 1931, i, 1239).—An ex­

tension of F erm i’s m ethod. A. A. El d r i d g e. F o r m of th e p o s itiv e c o lu m n b y s h o r t p e r io d ic ex c itatio n . O. Ba r t e l t (Ann. Physik, 1931, [v], 9, 679—703).—Two forms of th e positive colum n are found in cylindrical rare-gas discharge tubes, (1) luminous cylinder w ith central dark space, (2) whole cylinder lum inous. Only th e first form is found w ith other gases. J . Fa r q u h a r s o n.

In flu e n ce of s l i t w id th o n th e in te n s ity of s p e c tra l lin e s . I I . P . H . v a n Cit t e r t (Z. Physik, 1931, 69, 298—308; cf. ibid., 1930, 65, 547).—The work is extended to include absorption and dispersion of the apparatus, and lines obtained w ith an absorbing prism are shown to bo considerably bro ad en ed ; a 15°

prism can advantageously replace the 60° prism of a quartz spectrom eter in the extrem e ultra-violet.

A. B. D. Ca s s i e. M odes of s p e c tr o g r a p h s l i t ir r a d ia tio n . D . C.

St o c k b a r g e r and L. Bu r n s (Physical R ev., 1931, [«],_ 37, 920—922).—Photographs of the H g lines i3650—63 showed a m ax. sharpness an d resolution for a crit, slit w id th ; m ultiples of this w idth produced multiple lines, and narrow er w idths caused diffraction patterns to appear between th e lines.

N. M. Bl ig h. S p e c tro g r a p h p l a t e s h ie ld . J . T. La y and I. C.

C o rn oc (Rev. Sci. In str., 1931, [ii], 2, 293—296).

M o re in te n s e X -r a y s p e c tr a o b ta in e d w ith c o n c a v e c r y s ta ls . H . H . Jo h a n n (Z. Physik, 1931, 69, 185—206).—The possibilities of X -ray reflexion spectra from concave crystals is discussed theoretically an d experim entally. A. B. D. Ca s s i e.

T h e o r y of C o m p to n effect. S. Ki k u c h i (Z.

Physik, 1931, 68,80 3—812).—Theoretical. Q uantum electrodynam ics verifies Com pton’s classical calcul­

ation of th e scattering of X -rays. A. B. D. Ca s s i e. S t r u c t u r e of X - r a y a b s o r p tio n e d g e s of th e li g h te r e le m e n ts m e a s u r e d b y a n e le c tro n - c o u n tin g tu b e . H . Ne u f e l d t (Z. P hysik, 1931, 68, 659— 674).—The m easurem ent, b y means of an electron-counting tu be, of absorption edges in the long w ave-length region of X -rays from 15 to approx.

50 A. is discussed. D etails of th e ap paratus and technique are given. T hin sheets of celluloid, Cr, and Be were m easured. Fine stru ctu re edges due to O, X, an d C were detected in th e results obtained from celluloid. Be sheets could not be prepared free of oxide an d th e absorption edges of O appear in th e absorption curve. A ta b le showing th e dependence of th e mass absoiption coeff. on th e w ave-length is given for each of th e substances investigated.

W. R . An g u s. W a v e -le n g th a n d s t r u c t u r e of th e I f a b s o r p tio n e d g e of c o b a lt. M. A. Va l o u c h (Coll. Czech. Chem.

Comm., 1931, 3, 205—215).—The wave-length of the K absorption edge of Co, deposited electrolytically on A1 foil, is 1-6044

A.,

th a t of th e Co ion in alcoholic solution is 1-6026

A .,

a n d in aq. solution is 1-6022 A.

H. F . Gi l l b e. A n o m a lo u s X - r a y d if f r a c tio n in te n s itie s . W. A.

Wo o d (Nature, 1931, 127, 703).— Cr-plated wires w ith a high lustre show variations in th e relative intensities of th e lines of any X -ray spectrum w ithou t a corresponding change in at. arrangem ent.

L. S. Th e o b a l d. P a r t i a l a b s o r p tio n of X -ra y s . 0 . Be r g and W. Er n s t (Naturwiss., 1931, 19, 401).—The partial absorption lines observed b y R ay (this vol., 277) can be explained as emission lines of certain rare earths.

A. J . Me e. R a d ia tio n f r o m m e ta ls b o m b a r d e d b y lo w - s p e e d e le c tro n s . F. L. Mo h l e r and C. Bo e c k n e r

(Bur. Stand. J . Res., 1931, 6, 673— 681).—A con­

tinuous spectrum is em itted by m etal surfaces in dis­

charges in Cs and K vapours an d in He. Assuming t h a t these spectra are analogous to X -ray spectra, observed lim its indicate work functions of 1-95 volts for Cu, 2-1 volts for Ag, and 1-45 volts for W, all in

Cs vapour. C. W . Gi b b y.

S c a tte r in g of X -r a y s f r o m g a s e s . E. O.

Wo l l a n (Physical R ev., 1931, [ii], 37, 862—872).—

The in ten sity of scattering of X -rays for scattering angles from 10° to 90° by H 2, He, 0 2, Ne, an d A was m easured. Calc, values of th e stru ctu re factors for Ne and A are com pared w ith those found by wave

m echanics. N . M. Bl ig h.

I n te r a c tio n of X -ra y s w ith b o u n d e le c tro n s . A. J . O ’Le a r y (Physical R ev., 1931, [ii], 37, 873—

883).—Fine stru ctu re previously repo rted for scattered X -rays (cf. A., 1929, 985), an d a change in w ave-length

(4)

7 8 2 BR IT ISH CHEMICAL ABSTRACTS.— A .

reported by R ay (cf. A., 1930,1334) and by M ajum dar (of. this vol., 288) are not confirmed.

N. M. Bl i g h. S o ft X -r a y s p e c tr a . V. Do l e j s e k (Compt. rend., 1931, 192, 1088— 1089).—By a modification of Osgood’s m ethod (cf. A., 1927, (302), using Mg for both cathode and anticathode, a series of lines th e m ost intense of which form a doublet a t about 480 Â. and an absorption band a t about 500 Â. were obtained.

C . A. SlL B ER R A D .

F e r m i- D ir a c s ta tis ti c s a p p lie d to th e p r o b le m of sp a c e c h a rg e in th e r m io n ic e m is s io n . R . S.

Ba r t l e t t (Physical Rev., 1931, [ii], 37, 959—909).—

M athem atical. N. M. Bl i g i i. E x p e r im e n ts on e le c tro n e m is s io n b y i n ­ c a n d e s c e n t m e ta l s n e a r t h e i r m e ltin g p o in ts . I. Am e is e r(Z. Physik, 1931, 69, 111—140).—E xp eri­

ments on Ag, Au, and Cu indicate th a t electron emission diminishes and surface p otential remains unchanged as the m etal passes to th e liquid phase.

A. B. D . Ca s s i e. O x y g e n film s o n tu n g s te n . I. S tu d y of s ta b ility b y e le c tro n e m is s io n in c æ s iu m v a p o u r.

I. LANGMUiRand D. S. Vil l a r s (J. Amer. Cliem. Soc., 1931, 53, 486—4 9 7 ; cf. A., 1925, ii, 254).—The electron emission from a W wire coated w ith Cs is about 1021-fold th a t from bare W a t th e sam e tem p.

(e.g., 590° abs.), and increases w ith rise of tem p, to a max. and th en decreases owing to evaporation of Cs.

Admission of Cs to a filament coated w ith 0 , followed by flashing a t 1000— 1800° abs., affords an electron emission, a t S50° abs., 105- to 10°-fold th a t observed wit h Cs alone on th e filament . The 0 retains th e Cs with greater tenacity th a n th e bare W. The ra te of evaporation of 0 from W a t 2070°, 197S0, and 1856°

abs. has been evaluated from th e change produced in th e electron emission of th e surface a t 800— 1100°

abs. in the presence of Cs by each exposure to the evaporation tem p. The results indicate a heat of evaporation of O from th e adsorbed layer of 162 kg.- cal. per g.-atom . J . G. A. Gr i i f i t h s.

K in e tic e n e rg y of p o s itiv e th e r m i o n s of a lu m in ­ iu m p h o s p h a te . E . Ba d a r e u (Bui. Fac. Stiintc C ernanti, 1927, 1, 1— 3; Cliem. Zentr., 1931, i, 1238).

S o u rc e s of p o s itiv e io n s. E . Ba d a r e u (B u i.

Fac. Stiintc Cernauti, 1927, 1, 4— 13; Cliem. Zentr., 1931, i, 1238).

A c tio n of a c r y s ta l a s a tw o -d im e n s io n a l la ttic e in d iffr a c tin g e le c tro n s . W . L. Br a g g and F. Ki r c iix k r (N ature, 1931, 127, 738—739).—R e­

lations betw een crystal orientation and electron diffraction are described. L. S. Th e o b a l d.

D y n a m ic a l p r o b le m s of fie ld th e o r y a n d e le c tro n c o n s ta n ts . M . Ma t h i s s o x (Z. Physik, 1931, 69, 3 8 9 -4 0 8 ).—Theoretical.

A. B. D . Ca s s i e. E le c tr o n ic v e lo c itie s in th e p o s itiv e c o lu m n of h ig h -fr e q u e n c y d is c h a r g e s . E. Hi e d e m a x x

(Physical R ev., 1931, [ii], 37, 978—982).—Theoretical.

Small values of the electric force do not prohibit th e production of electrons of sufficient velocity to excite or ionise gas mois. N. M. Bl ig h.

H e r tz th e o r y of t h e m o tio n of s lo w e le c tro n s in g a s e s . V. A. Ba i l e y (Z. Physik, 1931, 68, 834— 842).—H e rtz’s diffusion equation is a special case of th a t given by Maxwell (Phil. T rans., 1S67, 73).

A. B. D. Ca s s i e. E n e r g y lo s s a n d s c a tt e r i n g of e le c tro n s of m e d iu m v e lo c ity o n p a s s a g e t h r o u g h a g a s (N a).

M. Re x x i x g e r (Aim. Physik, 1931, [v], 9, 295—337).

—The energy loss of electrons of velocity 200—2000 volts in N 2 was determ ined. The N 2 was a t low pressure so th a t collisions were single. A. J . Me e.

A n g u la r d i s t r i b u ti o n of e le c tro n s s c a tte r e d by m e r c u r y v a p o u r . J . M. Pe a r s o x a n d W . N. A rx -

q u is t (Physical R ev., 1931, [ii], 37, 970—977).

S p e c ific c h a r g e of th e e le c tro n . F . Ki r c h x e r

(Ann. Physik, 1931, [v], 8, 975—1004).—Direct m easurem ent of th e velocity of cathode rays gives e/»i0= (l-7 5 9 8 ± 0 -0 0 2 5 )x l0 7 electrom agnetic units.

W . Go o d. D iffra c tio n of h y d ro g e n a to m s . T. H . Jo h x s o x

(Physical R ev., 1931, [ii], 37, 847— S61; cf. A., 1930, 1232).—Im proved photographs of th e diffraction p attern s produced b y reflexion of a beam of I I atoms from a L iF crystal were o b tained ; th e positions of intensity d istribution m ax. were in good agreement

w ith theory. N. M. Bl ig h.

W a n d e rin g a n d s p a c e c h a r g e of a i r io n s. H.

Gr e ix a c h e r (Physikal. Z., 1931, 32, 406—410).—A simple dem onstration experim ent is described.

A. J . Me e. M e a s u r e m e n ts o n th e d is c h a r g e of h y d ro g e n c a n a l r a y s . J . Ko e x i g s b e r g e r (Z. Physik, 1931, 69, 424—427).—A discussion of possible errors in m ethods described b y B artels (A., 1930, 1493) and

others. ' A. B. D. Ca s s i e.

M e a n fre e p a t h of e le c tro n s . J . S. To w x s e x d

(Ann. Physik, 1931, [v], 8, 805—808).— Controversial.

W. Go o d. M e th o d in th e m e a s u r e m e n t of effectiv e c ro s s - se c tio n s . C. Ra m s a u e r (Ann. Physik, 1931, [v], 8, 809—810).—A reply to Townsend (above).

W. Go o d. E ffectiv e c r o s s - s e c tio n of g a s m o le c u le s t o ­ w a r d s p ro to n s . C. Ra m s a u e r, R . Ko l l a t h, and D. Lil i e x t h a l (Ann. Physik, 1931, [v], 8, 709—736).

—The effective cross-sections of gas mols. towards slowly m oving protons have been determ ined for He, Ne, A, H , and N a t prot on velocities of 30—2500 volts.

The app aratu s is described. E ach curve of effective cross-section against p roton velocity shows, except in th e case of H e, a m in. effective cross-section. F urther experim ents to stu d y th e n atu re of th e action of mols. on m oving protons are described. A com­

parison of th e results w ith existing d a ta for electrons leads to th e conclusion th a t th e abs. values of the effective cross-section tow ards protons and electrons are of th e same order of m agnitude. W. Go o d.

P r o d u c tio n of p ro to n s . C. Ra m s a u e r, R . Kol­

l a t h, and D. Lil i e x t h a l (Ann. Physik, 1931, [v], 8, 702—708).—An experim ental m ethod of producing

protons is described. W . Go o d.

A n g u la r d i s t r ib u tio n of th e s c a tte r in g of slo w e le c tro n s b y g a s m o le c u le s . C. Ra m s a u e r and

(5)

G EN ER A L, PH Y SIC A L , A N D INORGANIC CHEM ISTRY. 7 8 3

R. Ko lla tji (Ann. Physik, 1931, [v], 9, 756—758).—

The scattering of slow electrons by He, A, and H 2 is described. J . Fa r q d h a r s o n.

C o efficien t of r e c o m b in a tio n of g a s e o u s io n s.

0 . Lu h r and N. E. Br a d b u r y (Physical Rev., 1931, [ii], 37, 998— 1000).—Previous values, 12% too high, are corrected ( X108) to : a i r l - 2 3 ± 0 - l ; 0„, l-3 2 ± 0 -l ; N , and A, l-0 6 ± 0 -l ; H 2, 0-28±0-05.

N . M . Bl i g h. P r o to n a n d e le c tro n . H . S. Al l e n (N ature, 1931,127, 662—663).—F iirth ’s relationship (A., 1929, 1123) can be w ritten 2bc/gMn= lG 32, where M n is the mass of the H atom and b= h/2i: ; it also suggests th a t the ratio mass of proton/m ass of electron is 1844-08.

I t is considered th a t contrasted w ith the electron the proton is a space in th e ether w itho ut electric or magnetic m om ent. L. S. Th e o b a l d.

R a d ia tio n -le s s c o llis io n p ro c e s s e s a t s m a ll velocity. P . M. Mo r s e and E . C. G. St u e c k e l b e r g

(Ann. Physik, 1931, [v], 9, 579—600).—The theory of inelastic collisions between at. and mol. particles is considered and com pared w ith th e experim ental facts.

A . J . Me e. F i r s t r e p o r t of th e C o m m itte e of a t. w ts . of th e I n te r n a tio n a l U n io n of C h e m is tr y . G. P. Ba x t e r, (Mm e.) M. Cu r i e, O. Ho n ig s c h m t d, P. Le Be a u, and R. J . Me y e r (J. Amer. Chem. Soc., 1931, 53, 1627—

1639; cf. A., 1930, 269).—The following revised a t.

wts. are adopted : R e, 186-31 ; Ta, 181-4 ; As, 74-93 ; C'a, 40-08. J . G. A. Gr i f f i t h s.

M a s s e s of O 17. H . C. Ur e y (Physical Rev., 1931, [ii], 37, 923—929).—Calc, values of th e rest mass of 0 17 are not in agreem ent w ith experim ental d a ta ; various explanations are discussed. N. M. Bl ig h.

A t. w t. of c æ s iu m : u s e of th e w o r d ‘ ‘ m a s s - s p e c tr o g ra p h . " F . W. As t o n (N ature, 1931, 127, S13).—M ass-spectra of X e an d Cs, obtained during the same exposure, give a packing fraction of —5-0M2-0 for Cs, and an at.w t. 132-91 ±0-02. The w ord “ mass- spectrograph ’’ should no t be applied to D em pster’s

apparatus. L. S. Th e o b a l d;

-Y-Ray s e a r c h fo r e le m e n t 61. S . Ta k v o r i a n

(Compt. rend., 1931, 192, 1220— 1223).—By fraction­

ation of th e double Mg n itrates from m onazite sands from India, 500 g. of th e m ixed N d-S m double nitrates was obtained. X -R ay exam ination, both absorption and emission, showed th a t th e am ount of element 61 therein could not exceed 1 p a rt in 10'1.

C . A . SlL B ER R A D .

N u c le a r im p u ls e r o ta t io n of le a d is o to p e s . H. Ko p f e r m a n n (Naturwiss., 1931, 19, 400).—The spectra of neutral and singly-ionised Pb were investig­

ated for ordinary and U-Pb. W hilst th e lines of wave-lengths 4058, 4242, 4245, an d 5373 À. show hyperfine stru ctu re in the ordinary P b spectrum , th ey are simple for U -Pb. The U -Pb line does not agree with the strongest lino in the hyperfine structure, bu t with the second strongest. There is well-marked

■ -otopic displacement between the lines of P b 206 and

P b288. A . J . Me e.

L u m in e sc e n c e d u e to r a d io a c tiv ity . D. H.

Ra b a k j ia n (Physical Rev., 1 9 3 1 , [ii], 3 7 , 1 1 2 0

1Î28).—General observations and results cannot be

explained b y any form of R u th erfo rd ’s active-centre theory, b u t can be in terp reted qu alitatively by assum ing th a t a-, (3-, an d y-rays produce excited mols., which, returning to th eir in itial state, em it luminous energy. O ther aspects of th e problem are discussed.

N. M. Bl ig h. T h e re c o il p h e n o m e n o n a n d c o n s e rv a tio n of m o m e n tu m . F . Jo l io t (Compt. rend., 1931, 192, 1105— 1107).—The experim ents of A kiyam a (cf. A., 1924, ii, 814) on th e direction of th e recoil atom s of actinon and a c tin iu n w l have been repeated w ith an im proved ap paratus giving recoil tracks up to 7 mm.

long. There are no grounds for assum ing th e emission of y-rays sim ultaneously w ith th a t of the recoil atom . C. A. Si l b e r r a d.

C o m p le x ity of th e a - r a d ia tio n of r a d io a c tin iu m . (Mme.) I. Cu r i e (Compt. rend., 1 9 3 1 , 192, 11 0 2 — 1 1 0 4 ).—M easurem ents of the range of a-particles of radioactinium b y m eans of th e Wilson expansion cham ber show th a t these fall in about equal am ounts into two groups w ith ranges in air, a t 7 6 0 m m . an d 15°, of 4 -6 8 and 4 -4 8 cm. Absence of aetinium -X from th e radioactinium used was definitely proved, as also th e im possibility of the particles of less range being due to re ta rd atio n a t th e source. C. A. Si l b e r r a d.

A rtific ia l d is in te g r a tio n b y a -p a rtic le s . J.

Ch a d w i c k, J . E . R . Co n s t a b l e, an d E . C. Po l l a r d

(Proc. R oy. Soc., 1 9 3 1 , A , 130, 4 6 3 — 4 8 9 ).—An exam ination has been m ade of th e protons em itte d by a num ber of elem ents when bom barded by a-particles from a Po source. Definite effects were found for B, N 2, F, N a, Al, an d P. E xcept in th e cases of F and N a, th e results suggest th e presence of d istin ct groups in th e protons released in disintegration, which are explained on the assum ption of definite levels for th e protons and a-particles in a nucleus. I t is assumed t h a t all th e a-particles of a stable nucleus are in the sam e energy level and th a t no t more th a n tw o protons can be p u t into th e same proton level. Of th e two possible types of disintegration, (1) in which the a-particle is captu red by th e nucleus, (2) in which a p roton is ejected w ith ou t capture of th e a-particle, the first explains th e present results.

L . L . Bir c u m s h a w. S tr u c t u r e of t h e a -p a rtic le . O. K . Ri c e (J.

Amer. Chem. Soc., 1 9 3 1 , 53, 2 0 1 12 0 1 2 ; cf. th is vol., 5 4 4 ).—Theoretical. J . G . A. Gr i f f i t h s.

A b s o rp tio n of ¡3-rays b y m a t t e r . G . Fo u r n i e r

and M. Gu il l o t (Compt. rend., 1 9 3 1 , 192, 1 1 0 01102 ; cf. th is vol., 5 4 3 ).—I f th e source of ¡3-rays and the absorbent m etal are placed so th a t varying p ro ­ portions of th e rad iatio n reach th e ionisation chamber, g/p m ay be calc, from th e slope of th e log. curve, provided th a t th e superficial density is sufficient.

C. A. Si l b e r r a d. W e ak lin e s in th e n a t u r a l [3-ray s p e c tr u m of r a d iu m -C . C. D. El l is and H . H . El l io t t (Proc.

Camb. Phil. Soc., 1 9 3 1 , 27, 2 7 7 — 2 7 9 ; cf. A., 1 9 3 0 , 1 3 3 9 ).—To overcome th e difficulty of distinguishing very faint lines from defects in th e p late several photo­

graphs were com pared. E igh t new lines w ith their estim ated intensities are tab ulated, and previously reported lines are elim inated or corrected.

N. M. Bl ig h.

(6)

7 8 4 B R ITISH CHEMICAL A BSTRACTS.— A .

E lim in a tio n of th e (3-w ave-length f r o m th e c h a r a c te r is tic r a d ia tio n of iro n . W. A. Wood

(Proc. Phys. Soc., 1931, 43, 275—278).—A th in film of Mn, prepared by electrolytic deposition on A1 foil, removes the (3-wave-length by selective absorption.

C. W. Gl b b y. E v e ’s c o n s ta n t. A. W . R e i t z (Z. Physik, 1931, 69, 259—286).—A stu d y of th e secondary electrons em itted by Ra-G y-radiation from Al, Zn, an d P b has led to a redeterm ination of E v e’s const, for air, which a t 0° and 760 mm. is 4-3 x 10°. The significance of the const, in cosmic-ray m easurem ents is discussed.

A. 13. D. Ca s s i e. E x is te n c e of a n o d e sp u tte rin g '. M. Ba r e i s s

(Z. Physik, 1931, 68, 5S5—590).—Anode sputtering of Ba and Au m ay occur, b u t th e effect is very small.

R . W. Lu n t. A c tio n of r a d ia tio n o n a to m ic n u c le i. G. I.

Po k r o v s k i (Ann. Physik, 1931, [v], 9, 505—512).—

I t is deduced generally th a t exotherm ic at. dis­

integration m ust be accelerated by radiation. The effect observed m ust always be positive, b u t its abs.

magnitude cannot be calc, w ithout closer knowledge of th e nuclear structure. J . W . Sm i t h.

O p a c ity a n d s t e l l a r s t r u c t u r e . D. S. Ko t h a r i

(Nature, 1931,127, 740—741).

O rig in of c o ro n a lin e s . E . A. Hy l l e r a a s (Z.

Physik, 1931, 69, 361—365).—Theoretical.

A. B. D . Ca s s i e. Q u a n tu m th e o r y of r a d ia tio n . L. Ro s e n f e l d

and J . So l o m o n (J. P hys. R adium , 1931, [vii], 2, 139— 147).

A p p lic a tio n of s o m e th e r m o d y n a m ic la w s to th e e x p la n a tio n of a to m ic n u c le a r p ro c e s s e s . G. I.

Po k r o v s k i (Physikal. Z„ 1931, 32, 374—377).—The Boltzmann principle is applied to at. nuclear processes w ith results agreeing satisfactorily with experiment.

A. J . Mee. R e la tio n c o n c e rn in g a to m ic n u c le i. W. D.

Ha r k i n s (J. Amer. Chem. Soc., 1931, 53, 2009—2011).

—Concerning the au th o r’s and L atim er’s theories (this vol., 5 4 4 ). J . G . A. Gr i f f i t h s.

Q u a n tis e d r o ta t io n of th e p o ta s s iu m a to m . R . G. Lo y a r t e and R . Gr i n f e l d (Univ. Nac. La P la ta , E stud. Cienc., 1929, No. 89, 103—10S).

Ch e m ic a l Ab s t r a c t s. D is c h a rg e in p u r e w a te r v a p o u r. S. Fr a n c k

(Z. Physik, 1931, 69, 409— 417).—In itial and spark discharges in w ater vapour a t atm . pressure were studied w ith plane, spherical, and pointed electrodes opposed to a plane electrode. A. B. D. Ca s s i e.

A b s o r p tio n of lig h t b y s im p le io n ic c r y s ta ls a n d e le c tric a l d e te c tio n of l a t e n t im a g e s . R . Hi l s c h and R . W. Po i i l (Z. Physik, 1931, 68, 721—

734).—W ork on form ation of laten t images in K B r crystals is sum m arised and experim ents showing th a t there is no m easurable m otion of electricity during form ation of a la te n t image are described; a m ovem ent of electricity occurs during irreversible bleaching of

the image. A. B. D. Ca s s i e.

C ry s ta l s t r u c t u r e o f n i tr a te s . C. Sc h a e f e r

(Z. Physik, 1931, 68, 766—767).—Differences in the reflexion m axim a of calcspar an d N a N 0 3, observed by

Schaefer and others (A., 1 9 2 8 , 3 4 9 ), could not be detected w ith a new specimen. A. B. D. Ca s s i e.

R o ta tio n a l c o n s ta n ts of th e io d in e m o n o ­ c h lo rid e m o le c u le . W. E. C u r t i s and J . P a t - k o w s k i (Nature, 19 3 1 , 127, 7 0 7 ).—D etails of the ro tatio n stru ctu re in th e region 6 4 8 2 — 6 8 3 7

A.

and the ro tatio n al constants obtained are recorded.

L. S. Th e o b a l d. B a n d s p e c tr a of a lk a lin e - e a r th h a lid e s . K.

He d f e l d (Z . Physik, 1 9 3 1 , 68, 6 1 0 — 6 3 1 ).—The band spectra of CaCl2, SrCl2, BaCl2, CaBr2, SrB r2, B aB r2, and C al2 have been investigated for th e visible spectral region. Photographs of th e spectra were obtained by incorporating a q u a n tity of th e appropriate salt in a C arc and in an oxy-acetylene flame. I n practically all th e substances th e stric t isotope separations were

obtained. W. R. An g u s.

V alen cy. XV. A b s o rp tio n s p e c tr a of p o ly ­ h a lid e io n s . F . L. Gi l b e r t, (Mr s.) R . R . Go l d­

s t e i n, and T. M. Lo w r y (J.C.S., 1 9 3 1 , 1 0 9 2 — 1 1 0 3 ; cf. A., 1 9 2 6 , 4 5 4 ).—Mol. extinction coeffs. were ob­

tained for 7 arom atic polyhalides of th e series BrCGH (;NMe3+ in E tO H , for 8 Cs polyhalides in EtO H and in w ater, and for a series of aq. K polyhalides prepared b y adding free halogens to th e K halides.

The polyhalide ions from I 3' to B rC l/ gave charac­

teristic absorption spectra n o t attrib u tab le to hydrolysis, dissociation, reduction, or double decomp.

Dissociation, especially m arked in aq. solutions, dim inishes th e in ten sity of the strong selective absorp­

tion of th e ions, w ithout changing th e form of the absorption curves. N. M. Bl i g h.

A b s o rp tio n of [lig h t b y ] a c e to n e v a p o u r in th e S c h u m a n n re g io n . G. S c h e i b e and C. F . L i n - s t r o m (Z . physikal. Chem., 1 9 3 1 , B , 12, 3 8 73 8 8 ).— Three narrow bands, separated by the sam e intervals as in th e Me halides, have been observed between X 19 0 0 and 1 8 6 0

A.

They are attrib u te d to oscillation of th e Me group. F. L. U s h e r .

A b s o rp tio n s p e c tr a of o -c h lo ro p h e n o lin d o - p h e n o l a n d o -c re s o lin d o p h e n o l. M. M. Br o o k s

(J. Amer. Chem. Soc., 1931, 53, 1S26— 1830).—

o-Chlorophenolindophenol shows an absorption max.

a t 625 mu in solutions (0-00005—0-00021/) of p u 8-0—9-6; th e dye is alm ost com pletely dissociated at Pn 9-6. o-Cresolindophenol a t p a 8-0 shows a max. at 500 m;jt w ith a slight secondary m ax. a t 610 m u ; increase in p a causes a rise in the m ax. (610 mu).

H. Bu r t o n. U ltra - v io le t a b s o r p tio n s p e c tr a of b a r b it u r ic a c id , v e ro n a l, a n d o th e r h y p n o tic s . N. G 6 m ez (Anal. Fis. Quim., 1 9 3 1 , 29, 2 8 0 — 2 8 3 ).—The u ltra ­ violet absorption spectra of veronal, luminal, and isopropylallylbarbituric acid are similar, and do not show a b a n d ; barbituric acid has a band m ax. about 2 5 0 0

A.

Benzylidenebarbituric acid has one band at 2 5 0 0

A.

an d another a t about 3 3 0 0

A.,

attrib u ted to the presence of conjugate'double linkings; reduction b y nascent H causes the disappearance of both bands, and the spectrum is like th a t of veronal.

H. F. Gi l l b e. C o n s titu tio n a n d s p e c tr a of th e p o rp h y r in s . H . He l l s t r o m (Z . physikal. Chem., 1 9 3 1 , B , 1 2 ,

(7)

G ENERAL, PH Y SIC A L, A N D IN OR G A N IC CHEMISTRY'. 7S5 353—363).—The absorption and fluorescence spectra

of different porphyrins have been exam ined in neutral, acid, and alkaline solution. Certain broad bands are resolvable into groups, th e significance of which is

discussed. F . L . Us h e r.

R a m a n s p e c tr u m of s o lid n itr o g e n p e ro x id e . A. C. Me n z ie s and C. 0 . Pr in g l e (Nature, 1931,127, 707).—The R am an spectrum of solid N 0 2 a t approx.

—80° consists of one line w ith a shift of 275 cm .'1 L . S. Th e o b a l d. S m e k a l- R a m a n effect. K . W . F . Ko h l r a u s c h

(Physikal. Z., 1931, 32, 385— 406).—A review.

R a m a n effec t a n d m o le c u la r c o n s titu tio n . IV.

B. Tr u m p y (Z. Physik, 1931, 68, 675—682).—The R am an effects for SiBr4 have been m easured and com­

pared w ith th e displacem ents for SnBr4 (cf. th is vol., 284). W ith an appropriate selection of mol. constants it is foimd th a t th e displacem ents calc, on th e basis of a tetrahedral mol. configuration agree very well with th e observed shifts. M ixtures of SiCl4 and SiBr4 exhibited no new R am an lines, indicating th a t no m ixed mois, are found.

PC13 an d P B r3 give four fundam ental R am an dis­

placements which are in good agreem ent w ith the frequencies expected on th e assum ption of a pyram idal structure. F rom these fundam entals certain mol.

constants have been evaluated. The R am an spectra of m ixtures of PC13 and P B r3 indicate th e existence of two new mol. species in the m ixture. These are assumed to be PCl2Bi’ and PClBr2. The alternation of intensities, of th e R am an displacem ents according as th e ra tio PC13 : P B r3, is 2 :1 or 1 : 2 indicates th a t the m ixed halides are in chemical equilibrium w ith the simple halides. W . R . An g u s.

R a m a n effec t of c e r ta i n s u lp h u r c o m p o u n d s . F. Ma t o s s i and H . Ad e r h o l d (Z. Physik, 1931, 68, 683—695).—The R am an effect has been studied for liquid S2C12, S 0 2, CS2, SOCl2, S 0 2C12, C1S03H , Me2S 0 3, E t2S 0 3, Me2S, E t 2S, M eEtS, and cryst. S. Good agreement is found w ith results of other investigators.

Characteristic displacements are satisfactorily assigned to several groups, b u t there is some doub t as to the justification of assigning a particular displacem ent to other groups. I t is concluded th a t S2C12 and S0C12 are Y-shaped mois, w ith a S atom a t th e centre. Binding const, ratios (S—-S 0)/(S —Cl) and th e semi-angle of the Y are calc. The theory of valency and deform ­ ation oscillations (A., 1930, 1236) is discussed.

W. R . An g u s. R a m a n effec t in o r g a n ic s u b s ta n c e s a n d its u se i n c h e m ic a l p r o b le m s . A. D a d i e uan d K . W. F.

Ko h l r a u s c h (J. O pt. Soc. Amer., 1931, 21, 286—

322).—A review.

In flu e n c e of ty p e of c h e m ic a l c o m b in a tio n on th e p r o p e r tie s of p o l a r m o le c u le s in th e s t a t e of v a p o u r. K . Bu t k o v (Z. physikal. Chem., 1931, B , 12, 369—376).—The determ ining character of the ionisation potential of th e positive constituent of a binary mol. is illustrated by plotting heats of dissoci­

ation into atom s, energy of dissociation in to ions, th e product of the exponents in th e expression for nuclear potential energy, and th e Rosen-M ecke const, severally against th e first-nam ed q u an tity , for th e halides of

Cs, R b, K , N a, Tl1, Ag, and Cu1. A system atic change in th e order nam ed is observed in each case, tending to th e value of th e respective p ro p erty of th e non-polar

halogen mol. F . L . Us h e r.

In flu e n c e of s e c o n d a ry e m is s io n on v alv e c h a r a c te r is tic s . H . Bi t t m a n n (Ann. Physik, 1931, [v], 8, 737— 776).—The system atic irregularities appearing in D yn atron characteristics have been experim entally investigated. W . Go o d.

P h o to - e le c tr ic p r o p e r t ie s of c o m p o s ite s u rfa c e s a t v a r io u s t e m p e r a t u r e s a n d p o te n tia ls . D.

Raa ly d a n o ff (Physical Rev., 1931, [ii], 37, 884—

896).—The variation of photo-electric current w ith tem p, and plate potential for B a photo-electric cells w ith steady an d in terru pted illum ination is plotted.

The variation in photo-electric sensitivity w ith tem p, for com posite surfaces of B a and 0 2 on P t can be explained b y th e diffusion of B a or 0 2 on th e surface.

N . M. Bl ig h. P h o to - e le c tr ic c e lls w ith s ilv e r /s ilv e r b r o m id e e le c tro d e s . I. B. Va n s e l o w and S. E . Sh e p p a r d

(Z. wiss. P hot., 1931, 30, 13—39).—The p.d. between A gBr-coated Ag electrodes in K B r solution was m easured by a vacuum -tube voltm eter. The small in itial negative effect in th e illum inated electrode was quickly superseded b y an increasing positive effect which reached a m ax. The voltage increased w ith th e thickness of the AgBr and also w ith th e con­

centration of K B r. R eproducibility is difficult.

H alogen acceptors (e.g., N a N 0 2, MeCN) decrease th e positive effect, an d B r increases it. An explanation is advanced on th e basis of th e discharge of electrons from B r ions on illum ination, th e positive effect being produced on recom bination of B r atom s w ith Ag.

J . Le w k o w it s c h. P h o to - e le c tr ic effec t f r o m a b a r i u m o x id e- c o a te d p l a t i n u m fila m e n t. K . Ne w b u r y and F . Le m e r y (J. Opt. Soc. Amer., 1931, 21, 276—281).

—The current approaches a satu ratio n value a t a plate p otential of 13 volts. F o r const, voltage i t passes through a max. a t filam ent tem p, of 1000°. The long wave-length lim it of th e effect is not above

4046 A . C. W. Gi b b y.

C o n d u c tiv ity of d e fo rm e d a n d te m p e r e d ro c k - s a l t c r y s ta ls . F . Qu i t t n e r (Z. Physik, 1931, 68, 796—S02).—The tru e conductivity of rock salt obeys v an ’t Hoff’s law w ith constants dependent on the ex ten t of tem pering and deform ation.

A. B. D. Ca s s i e. T e m p e r a t u r e v a r ia tio n of th e c o n d u c tiv ity of le a d c h lo rid e w ith a d m ix e d p o t a s s i u m c h lo rid e . Z. Gy u l a i (Z. Physik, 1931, 67, 812— 816).—Temp, v ariation of th e conductivity of PbCl2 containing 0-005 p a rt of KC1 follows a v a n ’t Hoff law, as does pure PbCl2, except for changes in const, param eters.

A. B. D. Ca s s i e. C o n d u c tio n of t h i n g la s s p la te s w ith h ig h fie ld s t r e n g t h s . W. Hu b m a n n (Ann. Physik, 1931, [vj, 9, 733—755).—The conduction of an ordinary glass and Je n a glass using Hg and am algam electrodes is examined. J . Fa r q u h a r s o n.

E le c tr o n ic c o n d u c tiv ity of s o lid o x id e s of v a r io u s v a le n c ie s . M. Le Bl a n c an d H . Sa c h s k

Cytaty

Powiązane dokumenty

Free energy of lactic acid oxidationU. Scale for biological oxidation-reduction

U se of antim ony electrode in the electrom etric determ ination of j>H- T. Electrodes obtained by electrolytically coating a P t rod with Sb gave gradually

Cancerous tissue and rat’s brain tissue both show an aerobic lactic acid (I) content higher than the normal.. The lessened respiration in the diseased tissue

ferometer with the aid of standard reference mixtures. The combined weight of the two esters in the mixture was then found by difference, and then- individual proportions

electrodialysis. displaced by the no. of adsorbed org. compound, but is proportional to the no. It is therefore concluded that there is no sp. poisoning of the centres

Journal of the College of Agriculture, Imperial University of Tokyo, Japan.. Journal of the College of Engineering, Imperial University of Tokyo, Journal of the College

Apparent contradictions to the author’s thermodynamic treatm ent of such solutions (loc. cit.) are due to adsorption of water by the ions or molecules of the dissolved

321— 322° (from naphthalene and the acid chloride in presence of carbon disulphide and aluminium chloride), is treated with manganese dioxide in sulphuric acid