• Nie Znaleziono Wyników

On some property of the modified power of an algebraic nucleus

N/A
N/A
Protected

Academic year: 2022

Share "On some property of the modified power of an algebraic nucleus"

Copied!
7
0
0

Pełen tekst

(1)

ON SOME PROPERTY OF THE MODIFIED POWER OF AN ALGEBRAIC NUCLEUS

*UDĪ\QD&LHFLHUVND

University of Warmia and Mazury in Olsztyn, grac@matman.uwm.edu.pl

Abstract. Given two pairs

;,&

,

ȍ,8

of conjugate linear spaces, we show that the modified power of an algebraic nucleus preserves

ȍ,X

- weak continuity of multilinear functionals. An application of the result in the determinant theory is also considered.

Introduction

Algebraic nuclei play an essential role in the theory of determinant systems [1- -4]. They allow to construct determinant systems for nuclear perturbations of Fred- holm operators, i.e. if

Dn nN‰^ `0 is a determinant system for Fredholm operator

ȍ ,X Y

,

op

A o; o then one can obtain effective formulae for determinant system for ATF, where Fan

ȍo;,X oY

. The terms Dn, n N‰

^ `

0,

are, in particular, bi-skew symmetric multilinear

ȍ,X

- weakly continuous func- tionals. It is well known that functionals FpkDnk, kN, are bi-skew symmetric.

We shall prove that the modified power of an algebraic nucleus transforms

ȍ,X

-

weakly continuous functionals into

ȍ,X

- weakly continuous functionals. There- fore, in view of the result, FpkDnk are also

ȍ,X

- weakly continuous functionals.

1. Terminology and notation

Let

;,&

,

ȍ,8

denote pairs of conjugate linear spaces over the same real or complex field K. A bilinear functional A:ȍu& oK, whose value at a point

Z,x ȍuX is denoted by ZAx, satisfying the condition ZAx Z

Ax ZAx, where AxY and ZA;, is called

;,8

- operator on ȍu&. Let

X Y

op :o ,; o denotes the space of

;,8

- operators on :u&. Each

X Y

op

A ȍo;, o can simultaneously be interpreted as a linear operator 8

& o :

A and as a linear operator Ao;. For fixed non-zero elements

(2)

0 X,

x  Z0;, x0˜Z0 denotes the bilinear functional on ;uY, defined by

x0 Z0

y [x0 Z0y

[ ˜ ˜ for

[,y ;uY. A linear functional

K

op

F: ; oȍ,8 o& o is called an algebraic nucleus, if there exists

o; & o8

op ȍ ,

TF such that F

x˜Z ZTFx for

Z,x ȍu&. The opera- tor TF is called a nuclear operator determined by F. The space of all algebraic nuclei on op

; o ,ȍ8 o&

is denoted by an

ȍo;,X oY

. The value of a

Pm

-linear functional D:;Pu8moK, P,m N‰

^ `

0, at a point

[1,, [P,y1,, ym

;Pu8m is denoted by . , ,

, ,

1

1 ¸¸¹·

¨¨©§

ym

D y



 [P

[ A

Pm

-

linear functional D on ;Pu8 m is said to be bi-skew symmetric if it is skew sym- metric in variables from both ;, and Y. A

Pm

-linear functional

K

: u mo

D ;P 8 is said to be

ȍ,&

- weakly continuous functional on

m, 8

;Pu if for any fixed elements [1,,[i1,[i1,,[P;

i 1,,P

,

8

m y , ,

y1 there exists an element xi& such that

¸¸¹·

¨¨©§  

m i

i

i D y y

x , ,

, , , , , ,

1

1 1 1





 [ [ [ [P

[ [ for every [; and for any fixed elements

, ,

1, [ ;

[  P y1,,yj1,yj1,,ym8

j 1,,m

there exists an element ȍ

j

Z such that

¸¸¹·

¨¨©§



 j m

j

jy D y y y y y

, , , , , ,

, ,

1 1 1

1





 [P

Z [ for every y8.

For Fan

: o;,& o8

and a bi-skew symmetric

ȍ,&

-weakly conti- nuous functional D on ;Pu8m, interpreted as a function of variables [1, y1 only, we define a

P m2

-linear functional F y D

1

[1 on ;P1u8m1 by the formula

,, ,,

1, 2

2 1

1 F A

y D y

F

m

y ¸¸¹·

¨¨©§



 P

[ [ [

where

¸¸¹·

¨¨©§

ym

y D y

y

A , , ,

, , ,

2 1

2 1 1

1

1 

 [P [

[ [

for [1;,y18.

If k min

^ `

P, m, then assuming that F y F y F yD

k k k

k 1 1 [ 2 2 [11

[     is

ȍ,&

- weakly continuous functional and interpreting it as a function of variables [k,yk only, we define a

Pm 2 k

-linear functional F y F y F yD

k k k

k [ 1 1 [11

[    on

k m

k 

 u8

;P by

,, ,,

,

1 1 1

1 1

1 k

m k

k y y

y F A

y D y

F F

Fk k k k ¸¸¹·

¨¨©§







 

 [  P

[

[ [ [

where

¨¨©§ ¸¸¹·













m k

k k k y y

y k

k

k y , y , , y

, , D ,

F F

F y

A k k k k 

 

1 1 1

1 2 2 1 1

P [

[

[ [ [ [

[ for [k;,yk8 .

(3)

Since for fixed Fan

ȍo;,& o8

and every permutation W of integers ,

, ,

1 k 11

1

1y y y

y F F F

F[Wk Wk [W W [k k [ [3], the common value of all

1 W1 W W

W [

[ y F y

F

k

k  is

denoted by



times k

F F



‡

‡ [2]. Moreover, F‡k denotes the modified k-th power of a nucleus F, i.e. 

times k

k F F

F k



‡

! ‡ p 1

.

2. Main theorem

Given Fan

ȍo;,X oY

, Bop

; oȍ,YoX

, let T TF and

BT m B

TB m for m N‰

^ `

0 . Obviously,

BT m op

; oȍ,YoX

. If

2 1

1m  m

m , m1,m2 N‰

^ `

0 , then

BT m y Fcyc

[c

BT m1 y˜[

BT m2 yc

[ [ for

[,y ;uY (1)

BT mx Fcxc

[c

BT m1x˜[

BT m2 xc

[ [ for

[,x ; uX (2)

TB my F cyc

Zc

BT m1 y˜Z

TB m2yc

Z Z for

Z,y ȍuY (3)

Lemma. Let Fan

ȍo;,X oY

, Bop

; oȍ,YoX

,

^

n, m

`

,

min

r c c nc,mN‰

^ `

0, z1,,zncX, 91,,9mcȍ. If nN andp

p1,,pnncr

, q

q1,,qnmcr

are permutations of the integers

r n n c , ,

1 and 1,,nmcr, respectively, then for every integer

^

n n r n m r

`

kd  c  c

d min ,

0

¸¸¹·

¨¨©§

–

–

–

 c  mc 

i q i n

i

i p r

n

i

q p y

y Fk k iBy i nriz y nri

F

1 1

1

1

1 [ [ [ 9

[  (4)

– –

–

k i i i c k nki i nmcrknk i nki

i

l i n

k r n n

i

i k n

i

m

k BT y BT z TB y

c

1 1

1

W V

W

V [ 9

[

for every

[1,,[nncr,y1,,ynmcr

;nncruYnmcr, where ck ,K

^

,

`

,

minn n r k n m r k

nk d  c   c 

1, nk i i

m

1 ,

nk k r n n i i

k  c  

li ni 1mcrknk are finite sequences of non-negative integers, V

V1,,Vnncrk

,

IJ , IJ,n m r k

IJ 1  c are permutations of integers k1,,nncr and ,

, ,

1 n m r

k   c respectively.

(4)

Proof. Induction on k

k 0, ,min

^

nncr,nmcr

`

. Let

1, , , 1, ,

.

r m n r n n r m n r

n

n c y y  c ;  c uY  c [

[   If k = 0, then (4) holds for c0 1,

0 n r,

n  mi 0

i 1, ,nr

, ki 0

i 1, ,nc

, li 0

i 1, ,mc

,

.

, q

p W

V Suppose that (4) holds for k

0dkmin

^

nncr,nmcr

`

. Then

¸¸¹·

¨¨©§

–

–

–

 c  c 





m

i q i n

i

i p r

n

i

q p y

y Fk k iBy i nriz y nri

F

1 1

1

1 1 1

1 [ [ [ 9

[ 

¸¸

¹

·

¨¨

©

§

–

 c

–

     c

–

   





k

k i n i k

i k i

n k

i i i k

k

n k r m n

i

l i n

k r n n

i

i k n

i

m k

y c BT y BT z TB y

F

1 1

1

1

1 V W V W

[ [ [ 9

In the case: 1

0 k

Vi , Wi0 k1, 1di0dnk, we obtain

¸¸

¹

·

¨¨

©

§

–

 c

–

     c

–

   





k

k i n i k

i k i

n k

i i i k

k

n k r m n

i

l i n

k r n n

i

i k n

i

m k

y c BT y BT z TB y

F

1 1

1

1

1 V W V W

[ [ [ 9

˜

– –

–



 c





 c



z













k

k i n i k

i k i

n

k

i i i i

k k

n k r m n

i

l i n

k r n n

i

i k

n

i i i

m k

m k

y k

y TB z

BT

y BT y

BT F

c

1 1

1 1 1

0 0

1 1

W V

W V

[

9 [

[ [

– –

–

 c    c  

z

  

k

k i n i k

i k i

n k

i i i

n k r m n

i

l i n

k r n n

i

i k n

i i i

m

k BT y BT z TB y

c

1 1

1 1

0

W V

W

V [ 9

[

where ck1 ckF

>

BT mi0

@

If 1,

1 k

Vi Wi2 k1, 1di1,i2 dnk, i1zi2, then according to (1)

¸¸¹

·

¨¨©

§

–

 c

–

   

–

c  





k

k i n i k

i k i

n k

i i i k

k

n k r m n

i

l i n

k r n n

i

i k n

i

m k

y c BT y BT z TB y

F

1 1

1

1

1 V W V W

[ [ [ 9

–

z



 ˜





k

i i i i

i i i k

k

n

i i i i

m k

m m

k y

kF BT y BT y BT y

c

2 1 2

2 1 1 1

1

, 1 1

1 W V V W

[ [ [ [

–

–

   c  

c







k

k i n i k

i k i

n

n k r m n

i

l i n

k r n n

i

i

k z TB y

BT

1 1

W

V 9

[

,

1 1

, 1 1

2 1

–

–

–

c   c 

z

  

k

k i n i k

i k i n k

i i i

n k r m n

i

l i n

k r n n

i

i k n

i i i i

m

k BT y BT z TB y

c [V W [V 9 W

where 1 2

1 2 1 i1.

i i

i BT y

c

ck k[V m m  W

If 1,

1 k

Vi n i2 k1,

W k 1di1dnk, 1di2dnmcrknk, then by (3)

(5)

¸¸

¹

·

¨¨

©

§

–

 c

–

     c

–

   





k

k i n i k

i k i

n k

i i i k

k

n k r m n

i

l i n

k r n n

i

i k n

i

m k

y c BT y BT z TB y

F

1 1

1

1

1 V W V W

[ [ [ 9

–

z



 ˜





k

i i i i

i i k

k

n

i i i

m k

l i m

k y

kF BT y TB y BT y

c

1 2

1 2 1 1

1

1 1

1 W V W

[ [ 9 [

–

–

 c  

z



 c







k

k i n i k

i k i

n

n k r m n

i i i

l i n

k r n n

i

i

k z TB y

BT

2 1 1

W

V 9

[

–

–

 c

–

  

z





 c



z









k

k i n i k

i k i n k

i i i i i i

n k r m n

i i i

l i n

k r n n

i

i k n

i i i

m l

m i

k TB y BT y BT z TB y

c

2 1

1 2 1 2

1 1

1 1

W V

W V

W [ [ 9

9 .

If 1,

1 

i k

nk

V Wi2 k1, 1di1dnncrknk, 1di2 dnk, then by (2)

¸¸¹

·

¨¨©

§

–

 c

–

   

–

c  





k

k i n i k

i k i

n k

i i i k

k

n k r m n

i

l i n

k r n n

i

i k n

i

m k

y c BT y BT z TB y

F

1 1

1

1

1 V W V W

[ [ [ 9

–

z



 ˜





k

i i i i

i i k

k

n

i i i

m k

m i

k k

y

kF BT z BT y BT y

c

2 2

1 2 1 1

1

1 1

1 V V W

[ [ [ [

–

–

   c  

c



z





k

k i n i k

i k i

n

n k r m n

i

l i n

k r n n

i i i

i

k z TB y

BT

1 1

1

W

V 9

[

– –

–

 c  

z



 c



z

  

k

k i n i k

i k i

n k

i i i

n k r m n

i i i

l i n

k r n n

i

i k n

i i i

m

k BT y BT z TB y

c

2 1

1 1

1

1 [V W [V 9 W ,

where 2

1 2 1.

1

1 c TB i i y i

ck k9i m l  W

If 1,

1 

i k

nk

V n i2 k1,

W k 1di1dnncrknk,

,

1di2dnmcrknk then we obtain

¸¸

¹

·

¨¨

©

§

–

 c

–

     c

–

   





k

k i n i k

i k i

n k

i i i k

k

n k r m n

i

l i n

k r n n

i

i k n

i

m k

y c BT y BT z TB y

F

1 1

1

1

1 V W V W

[ [ [ 9

 ˜ 

–





k

i i i i

i k

k

n

i

m k

l i i k k y

kF BT z TB y BT y

c

1 1

1 1 2 2

1 1

1 V W

[ [ 9 [

–

–

 c  

z



 c



z





k

k i n i k

i k i

n

n k r m n

i i i

l i n

k r n n

i i i

i

k z TB y

BT

2 1

1 1

W

V 9

[

Cytaty

Powiązane dokumenty

The density modulo 1 of the sequence (nα) is but a special case of a result which asserts that, given any polynomial P with real coefficients, at least one of which (besides

Before we start the derivation of the fundamental pursuit equation in the electromagnetic and gravitational field, we remind the basic notions of the relativistic theory

For instance, we prove that if an operator maps normalized basic sequences to such bounded sequences which become basic after deleting a finite number of their

We investigate absolute continuity and continuity with respect to a modular, mutual relations of these two types of continuity of operators over the spaces L*9, V

The n × n matrix has a determinant which is the generalization of this rule of alternating sums determinant of such submatrices, mutiplied by the entry that is in the row and

According to Sadullaev’s theorem ([3], p.. A Property of Polynomials ... ,Td) be the j-th elementary symmetric function. U Vk be

Some authors gave similar univalence conditions by using bounded functions f (z) ∈ A in their papers, see the works (for example Breaz et al.. We note that the functions f ∈ A do

The aim of this paper is to give a new existence theorem for a stochastic integral equation of the Volterra-Fredholm type of [9] and [10] (cf. also [13]) and to investigate