• Nie Znaleziono Wyników

A rare indium-bearing mineral (Zn-In-Cu-Fe sulphide) from the Stara Kamienica Schist Belt (Sudetes, SW Poland)

N/A
N/A
Protected

Academic year: 2022

Share "A rare indium-bearing mineral (Zn-In-Cu-Fe sulphide) from the Stara Kamienica Schist Belt (Sudetes, SW Poland)"

Copied!
15
0
0

Pełen tekst

(1)

A rare in dium-bear ing min eral (Zn-In-Cu-Fe sul phide) from the Stara Kamienica Schist Belt (Sudetes, SW Po land)

Rafa³ MA£EK1, * and Stanis³aw Z. MIKULSKI1

1 Pol ish Geo log i cal In sti tute – Na tional Re search In sti tute, Rakowiecka 4, 00-975 Warszawa, Po land

Ma³ek, R., Mikulski, S.Z., 2021. A rare in dium-bear ing min eral (Zn-In-Cu-Fe sul phide) from the Stara Kamienica Schist Belt (Sudetes, SW Po land). Geo log i cal Quar terly, 2021, 65: 7, doi: 10.7306/gq.1572

A rare in dium-bear ing min eral from the stratiform Czerniawa Zdrój-Krobica Sn de posit in the Sudetes (NE part of the Bo he - mian Mas sif) has been rec og nized in the qual i ta tive-quan ti ta tive chem i cal com po si tion stud ies of sul phide-cas sit er ite sam - ples by elec tron microprobe (EMPA). This in dium-bear ing min eral oc curs in the form of sep a rate hipautomorphic mi cro scopic grains (di am e ter 5–20 mm) and as inter growths and dis sem i na tions in chal co py rite. Ob ser va tions in di cate that this phase crys tal lized with the main gen er a tion of chal co py rite, sphalerite and also with a youn ger gen er a tion of cas sit er ite in the min eral suc ces sion. The chem i cal com po si tion of this min eral is as fol lows: S – 29.38–30.77 wt.%, Zn – 29.76–34.02 wt.%, In – 17.52–19.40 wt.%, Cu – 9.05–10.75 wt.%, Fe – 7.76–8.7 wt.% and Sn – 0.03–0.1 wt.%. Its cal cu lated chem i cal for mula is: (Zn2.09In0.67Cu0.65Fe0.64Cd0.02)S4.07S4.0 and it is char ac ter ized by en rich ment of Zn with si mul ta neous de - ple tion in Cu and Sn rel a tive to the ideal chem i cal com po si tion of sakuraiite – the most sim i lar min eral in terms of chem i cal com po si tion. In the light of our new data, it should be con sid ered as a yet un named Zn-In-Cu-Fe sul phide min eral. In ad di - tion, co ex ist ing sul phide min er als – chal co py rite (max. 1580 ppm of In) and sphalerite (max. 1640 ppm of In) were iden ti fied as in dium car ri ers.

Key words: in dium min eral, sul phide-cas sit er ite ore, Sn de posit, Sudetes.

INTRODUCTION

In dium oc cur rences in Po land have been rec og nized in stratiform tin de pos its of the Stara Kamienica Schist Belt in the West Sudetes (Foltyn et al., 2020 and ref er ences therein) and within Zn-Pb ores hosted by Tri as sic car bon ates of the Up per Silesia Coal Ba sin bound ary (Mikulski et al., 2020a, and ref er - ences therein). An in dium-bear ing min eral phase pres ent in the cas sit er ite-sul phide min er al iza tion of the Stara Kamienica Schist Belt had been pre vi ously rec og nized dur ing trace and crit i cal el e ment stud ies in this area (Mikulski et al., 2018).

Based on pre lim i nary EMPA re sults, this min eral was re ferred to as sakuraiite, but there was too lit tle data for ac cu rate iden ti fi - ca tion. Ac cord ingly, ad di tional work has been un der taken, in - volv ing more de tailed EMPA stud ies. They were fo cused on ex - tend ing the set of ana lysed el e ments, mea sur ing chem i cal com po si tion on as many min eral grains and places of oc cur - rence of this in dium-bear ing min eral as pos si ble and in creas ing the sen si tiv ity of EMPA mea sure ments by ap ply ing a higher beam cur rent (40 nA) and us ing dif fer ent In stan dards (InAs and InSb). In this pa per we pro vide re sults of EMPA anal y ses

per formed on a Cameca SX-100 elec tron probe, lead ing to more de tailed char ac ter iza tion and iden ti fi ca tion of this in - dium-bear ing min eral.

OVERVIEW OF INDIUM MINERALOGY

The main car ri ers of in dium are zinc, cop per, iron and tin sulphides (mainly sphalerite, chal co py rite, stannite) and tin ox - ide (cas sit er ite) (Stevens and White, 1990; Schwarz- Scham - pera and Herzig, 2002; Schwarz-Schampera, 2014; Pav lo va et al., 2015; Frenzel et al., 2016; Sahlström et al., 2017). In base metal sulphides in dium re places el e ments with sim i lar ionic ra - dius show ing a ten dency for sub sti tu tion in a mol e cule with tet - ra he dral ge om e try (Schwarz-Schampera and Herzig, 2002). In - cor po ra tion of in dium into sul phide struc tures can oc cur due to sub sti tu tion of cop per, iron, tin and ar senic in the crys tal struc - ture and also by form ing sub mi cro scopic in clu sions of in dium min er als within sulphides. Crys tal li za tion of in dium-bear ing sulphi des can be caused by both pri mary pre cip i ta tion from hy - dro ther mal flu ids and also as a re sult of remobilization and recrystallization in the hy dro ther mal zone through ther mal meta mor phism (Schwarz-Schampera and Herzig, 2002). In - dium re mains in melt dur ing magma crys tal li za tion un til a late stage. The in dium con tent of rock-form ing min er als is usu ally low, but in creased con cen tra tions are pres ent in some mafic and ultra mafic rocks, e.g. peridotite, komatiite, ba salt and dole - rite; stud ies show that slight in dium en rich ment can be found in

* Corresponding author, e-mail: rafal.malek@pgi.gov.pl Received: May 5, 2020; accepted: November 9, 2020; first published online: December 29, 2020

(2)

more frac tion ated Fe-rich py rox enes (Wager et al., 1958). In - dium barely in cor po rates into most rock-form ing min er als that crys tal lize from fel sic mag mas. The av er age con tent of in dium in con ti nen tal crust is 0.05 ppm and in oce anic crust it is 0.072 ppm (Tay lor and McLennan, 1985).

In dium shows chalcophile pref er ences and rarely forms its own min er als – so far 13 in dium min er als have been iden ti fied and char ac ter ized (in clud ing na tive in dium). The oc cur rence of na tive in dium was dis cov ered for the first time by Ivanov (1963), while Nechayev (1987) iden ti fied na tive in dium within tin min er - al iza tion on the Ukrai nian Shield.

The most sig nif i cant and most com mon in dium min er als are roquesite [CuInS2], dzhalindite [In(OH)3], in dite [Fe2+In2S4], laforetite [AgInS2] and sakuraiite [(Cu,Zn,Fe,Ag)3(In,Sn)S4] (Genkin and Murav’eva, 1963; Picot and Pier rot, 1963;

Cantinolle at al., 1985; Schwarz-Schampera and Herzig, 2002).

Sakuraiite was dis cov ered by Kato (1965) in polymetallic vein- type min er al iza tion of the Ikuno de posit (cen tral Ja pan). It was found in al tered Cre ta ceous fel sic tuffs within a fine grained sul - phide as so ci a tion of stannite, cas sit er ite and sphalerite. EMPA stud ies in di cated that the metal con tents are vari able and show the fol low ing ten dency: Cu>Zn>Fe>Ag and In>Sn with dif fer ent sub sti tu tion con fig u ra tions (Shimizu et al., 1986). The av er age chem i cal com po si tion of sakuraiite is given in Ta ble 1 (af ter An - thony et al., 1990) and its em pir i cal for mula is:

(Cu1.4Zn0.9Fe2+0.4Ag0.1)(In0.9Sn0.1)S4.

INDIUM OCCURRENCE IN VARIOUS DEPOSIT TYPES AND ITS RESOURCES

There is no of fi cial data re gard ing global in dium re sources (An der son, 2020) but es ti mates sug gest ~50,000.0 tons (pro - ved and prob a ble, of which proved re sources con sti tute

~15,000.0 tons in 2013; (Lokanc et al., 2015), while the an nual pro duc tion of this metal is ~760 tons (in 2019). In dium is nec es - sary for the pro duc tion of high pu rity al loys in met al lurgy, LCD pan els (liq uid crys tal dis plays), touch screens used in mod ern elec tronic de vices and for man u fac tur ing so lar pan els (Jorgen - son and George, 2005; Torró et al., 2019). Sta tis ti cal anal y sis of the in dium con tent in polymetallic de pos its in di cates that the high est con cen tra tions of this metal oc cur in chal co py rite ore which con tains al most twice as much in dium as sphale rite ore (Ivanov, 1963; Schwarz-Schampera and Herzig, 2002). De - spite this, sphalerite re mains the most im por tant in dium car rier

as In pro duc tion is based on zinc con cen trates. Three main in - dium-en riched met al lo gen ic prov inces have been rec og nized:

–the subduction zone of the west ern edge of the Pa cific plate (SE Asia in par tic u lar);

–the edge of the Nazca and South Amer i can plates (es pe - cially in Bolivia and Peru);

–met al lo gen ic ar eas of cen tral Eu rope (con nected with the Variscan and Al pine orogenies; Schwarz- Schampera and Herzig, 2002);

–In ad di tion, other ar eas con tain ing min er al iza tion with lower in dium con tents were also iden ti fied, such as the Ap pa la - chian Moun tains in North Amer ica and greenstone belts in Can ada and South Af rica.

In dium oc curs in dif fer ent de posit types, mainly within magma togenic ore de pos its (por phyry type de pos its, skarn de - pos its, pegmatites and gran ite-re lated de pos its, epi ther mal Ag- Au de pos its, volcanogenic mas sive sul phide de pos its), sed - i men tary ex ha la tive re lated ore de pos its and hy dro ther mal ore de pos its (stratiform sed i ment-hosted de pos its and MVT de pos - its) (Schwarz-Schampera and Herzig, 2002; Dill, 2010). In each of these de posit types, in dium oc curs in dif fer ent min eral as so - ci a tions and parageneses. In most cases it co ex ists with base met als e.g. Cu, Sn, Zn, Pb, As, Fe but also with other met als – Bi, Co, Ag and W (Schwarz-Schampera and Herzig, 2002).

In stockwork-vein Sn-W de pos its and por phyry Sn de pos its, in dium con cen tra tions are as so ci ated with post-collisional gra - nitic in tru sions, es pe cially with cen tres of subvolcanic poly - phase in tru sions and re lated mag matic hy dro ther mal ac tiv ity.

The in dium min er al iza tion is as so ci ated with frac tures, veinlets, and dis sem i na tions of late-stage polymetallic tin-base metal min er al iza tion which dis play com plex as so ci a tions of cop per- tin-bis muth-lead-sil ver-ar senic-dom i nated min er als (Schwarz- Schampera and Herzig, 2002). Both the Sn-W vein-stockwork and Sn por phyry de pos its are im por tant sources of in dium ac - cu mu la tions, e.g. the Mount Pleas ant de posit (New Bruns wick, Can ada) con tains ~25% of proved in dium global re serves (Kooiman and Ruitenberg, 1992).

Volcanogenic mas sive sul phide (VMS) de pos its, both Archean and pres ently-form ing ores of ac tively-spread ing rid - ges on the mod ern seafloor, are also an im por tant source of in - dium. Large-scale cop per-zinc mas sive sul phide de pos its usu - ally show a close met al lo gen ic as so ci a tion of in dium with the cop per-rich, high-tem per a ture el e ment suite. In dium-bear ing VMS de pos its oc cur in sub ma rine, bi modal vol ca nic se quences of palaeo-trench struc tures and rift bas ins and they are closely as so ci ated with calc-al ka line rhyodacite to rhy o lite flows and

2 R. Ma³ek, S.Z. Mikulski / Geological Quarterly, 2021, 65: 7

T a b l e 1 Chem i cal com po si tion of sakuraiite (wt.%; af ter An thony et al., 1990)

El e ment Chem i cal com po si tion of 3 sakuraiites (af ter An thony et al.,1990)

Av er age chem i cal com po si tion from 3 sakuraiites pro vided

by An thony et al. (1990)

Chem i cal com po si tion of sakuraiite (af ter webmineral.com)

Zn 14.0 13.7 18.0 15.2 13.9

In 23.0 22.0 23.8 22.9 24.4

Fe 5.0 6.9 4.5 5.5 5.3

Cu 21.0 19.6 18.9 19.8 21.0

Ag 3.5 0.2 0.1 1.3 2.5

Sn 4.0 7.2 4.9 5.4 2.8

Cd – 0.6 0.7 0.7 –

S 30.0 29.1 29.0 29.4 30.2

Sum 100.5 99.3 99.9 99.9 100.0

(3)

volcanoclastic rocks. De pos its en riched in in dium usu ally also con tain el e vated con tents of sil ver, lead, tin, co balt, bis muth, and se le nium while they are de pleted in gold.

In the epi ther mal en vi ron ment, in dium min er al iza tion dom i - nates in base metal-rich de pos its of the low-sulphidation sub - type. Mineralizations con tain ing in dium are usu ally con nected with rhy o lite, dacite and an de site vol ca nism. In dium min er al iza - tion is re lated to the late-stage, high- to me dium-tem per a ture (380–250°C) de po si tion of the cop per-sil ver-tin-ar senic-lead as so ci a tion from acidic to near neu tral and re duced en vi ron - ments. In dium-bear ing flu ids have a het er o ge neous source with mix ing be tween high-tem per a ture mag matic flu ids and me - te oric wa ter (Schwarz-Schampera and Herzig, 2002).

OCCURRENCE OF INDIUM IN THE TIN DEPOSITS OF THE STARA KAMIENICA SCHIST BELT

In dium has been rec og nized in the Sudetes within the tin min er al iza tion of the Stara Kamienica Schist Belt by var i ous au - thors (Wiszniewska, 1984; Piestrzyñski and Mochnacka, 2003;

Mikulski et al., 2018; Mikulski and Ma³ek, 2019; Ma³ek et al., 2019; Foltyn et al., 2020). This schist belt, be long ing to the Karkonosze-Izera-Lausitz Block, is a part of the Izera Meta mor - phic Com plex (called also the north ern cover of the Karkonosze gran ite in tru sion) within which there are five lon gi tu di nally ex - tended schist belts (Fig. 1; Smulikowski, 1972; Mazur et al.,

2006; Mochnacka et al., 2015). The larg est one, the Stara Kamienica belt, is com posed of two main rock com plexes. The first is rep re sented by gneiss es, gran ite-gneiss es and pre- Variscan gran ites while the sec ond one con sists of quartz- chlorite-mica schists with vari able pro por tions of in di vid ual min - er als (Sza³amacha and Sza³amacha, 1974; Michniewicz et al., 2006). Some parts of the schists con tain cas sit er ite-sul phide min er al iza tion (Fig. 2).

The mica schists in which the cas sit er ite-sul phide min er al - iza tion oc curs are fine-grained rocks with lepidoblastic or grano blastic tex ture, light grey or sil ver-grey col our (in places with a green ish tint) and with vis i ble fo li a tion and lam i na tion.

The main rock-form ing min er als are quartz and mus co vite with chlorite, bi o tite, gar net and al bite (Sza³amacha and Sza³ama - cha, 1974). Tin-bear ing schists have thick ness from 50 to 180 m and lie be tween pack ets of bar ren schists from which they dif fer in higher amounts of bi o tite, gar net, chlorite and by an el - e vated con tent of iron (Michniewicz et al., 2006 with ref er - ences there in). Within the schists there are quartz lenses, folds and veinlets lo cally con tain ing chlorite, cal cite and flu o - rite (Michniewicz et al., 2006).

The main ore min eral oc cur ring in the Izera tin min er al iza - tion is cas sit er ite (SnO2) which ap pears in the schists as small (max. 300 µm, usu ally up to 100 µm across) hipautomorphic or rarely automorphic grains form ing grape-like con cen tra tions in as so ci a tion with quartz, chlorite and less of ten with sulphides, mus co vite and bi o tite (Sza³amacha and Sza³amacha, 1974;

Fig. 1. Sche matic geo log i cal map of the Stara Kamienica Schist Belt (af ter Michniewicz et al., 2006) with the lo ca tion of the bore holes from which sam ples were sub jected to EPMA re search

(4)

Kowalski et al., 1978; Wiszniewska, 1983, 1984; Mochnacka, 1986; Berendsen et al., 1987; Kucha and Mochnacka, 1987;

Koz³owski et al., 1988; Bobiñski, 1991; Piestrzyñski et al., 1990, 1992; Cook and Dudek, 1994; Michniewicz et al., 2006; Mo - chna cka et al., 2015; Mikulski et al., 2018). In ad di tion, it is ob - served as inter growths in al most ev ery rock-form ing min eral (in - clud ing gar nets) (Wiszniewska, 1984; Bobiñski, 1991).

Base metal sulphides pres ent in the min er al ized zones are usu ally easy to iden tify mac ro scop i cally, how ever, they are not re stricted to the zones min er al ized with tin, as they form an in di - vid ual min eral as so ci a tion (Wiszniewska, 1984; Berendsen et al., 1987 Cook and Dudek, 1994; Piestrzyñski and Mochnacka, 2003; Mikulski et al., 2018). The sulphides oc cur within schist laminae or quartz clus ters and they are mainly rep re sented by pyrrhotite, chal co py rite, ar seno py rite, sphalerite, ga lena, py rite and less com mon bis muthi nite. In to tal, over a dozen ore min er -

als co-oc cur ring with cas sit er ite min er al iza tion have been iden - ti fied. This min eral as so ci a tion is re ferred to a quartz-chlorite- sul phide tin de posit (Wiszniewska, 1984).

METHODS

Sam ples taken from the Czerniawa C-X/46 and Gierczyn G-1/13 ar chi val bore holes were ex am ined in the Pol ish Geo log - i cal In sti tute – Na tional Re search In sti tute as part of a pro ject aimed to quan ti ta tively and qual i ta tively iden tify trace el e ments in var i ous met al lo gen ic de pos its in Po land (Mikulski et al., 2018). Chem i cal anal y ses in ac cor dance with stan dard pro ce - dures were car ried out in the Chem i cal Lab o ra tory of the Pol ish Geo log i cal In sti tute – Na tional Re search In sti tute in the pe riod

4 R. Ma³ek, S.Z. Mikulski / Geological Quarterly, 2021, 65: 7

Fig. 2. Geo log i cal cross-sec tion through the Stara Kamienica Schist Belt with tin min er al iza tion (mod i fied af ter Michniewicz et al., 2006)

(5)

2016–2018. In dium, like most of the trace el e ments from rock sam ples of the Stara Kamienica Schist Belt, was de ter mined by In duc tively Cou pled Plasma Mass Spec trom e try (ICP-MS) (see Mikulski et al., 2020a for the method ap plied). The low est de - tec tion limit of in dium ICP-MS method de ter mi na tion was 0.05 ppm (Mikulski et al., 2020a).

De tailed min er al og i cal and pet ro log i cal in ves ti ga tion with pho to graphic doc u men ta tion of the cas sit er ite-sul phide min er - al iza tion was car ried out on a NICON ECLIPSE LV100 POL mi - cro scope with NIS-El e ments soft ware while quan ti ta tive mea - sure ments were made us ing an elec tron microprobe (EMPA) CAMECA SX-100, pre ceded by pre lim i nary stud ies us ing an elec tron mi cro scope LEO-1430 (ZEISS) with EDS de tec tor.

Chem i cal com po si tion of ore min er als in mi cro-ar eas, us ing WDS spec trom e ters, was de ter mined with the fol low ing pa ram - e ters: ac cel er a tion volt age HV - 15 kV; beam cur rent 40 nA; fo - cused beam (<1 µm in di am e ter); the in ter na tional (com mer - cial) stan dards used were from the SPI-53 set from SPI and from the sulf-16 set from P&H: Cu, S, Fe – chal co py rite; Au – Au metal.; Co, As – skut teru dite; Sb – stibnite Sb2S3; Ni – Ni metal.; Zn – ZnS synt.; Pb – ga lena; Hg – cin na bar HgS; Cd – CdS synt.; Ag – hessite Ag2Te; In – InAs and InSb; Sn – cas sit - er ite SnO2; Ga – Ga2Se3; As – ar seno py rite.

RESULTS

INDIUM IN GEOCHEMICAL INVESTIGATION

El e vated con cen tra tions of in dium were iden ti fied in core sam ples taken from the ar chi val bore holes (Fig. 1) of doc u - mented tin de pos its in Krobica, Gierczyn and Krobica Zachód – Czerniawa (Mikulski et al., 2018). Geo chem i cal in ves ti ga tion of 42 sam ples us ing ICP-MS in di cated min i mum In con tent be low de tec tion limit (which is 0.05 ppm) and max i mum of 7.42 ppm (Mikulski et al., 2018). The arith me tic mean of In is 0.93 ppm and geo met ric mean is 0.41 ppm. In dium shows pos i tive cor re la tion with cop per (cor re la tion co ef fi cient r = 0.79, Fig. 3A), weak cor re - la tion with gold (r = 0.50) and very weak with zinc (Fig. 3B), ura - nium, bis muth (r = 0.42), chro mium, co balt and sil ver.

The av er age in dium con tent in Earth’s crust is 0.049 ppm (Barbalace, 2019) while chem i cal data of tin-bear ing sam ples from the Stara Kamienica Schist Belt shows an In geo met ric mean of 0.41 ppm (me dian = 0.42 ppm) which in di cates

>8-times en rich ment in com par i son to the crustal abun dance of in dium (in the case of the arith me tic mean of 0.92 ppm,

>18-times en rich ment).

INDIUM-BEARING MINERALS INDIUM IN CHALCOPYRITE

Sev eral grains of chal co py rite up to 2 mm across were in - ves ti gated for in dium con tent. Chal co py rite forms xenomorphic grains and of ten oc curs as sul phide ag gre gates mainly with py - rite, pyrrhotite and less of ten with ar seno py rite, sphalerite or bis muthi nite. Chal co py rite com monly con tains in clu sions of other min er als, mostly sulphides such as sphalerite, bis muthi - nite and also cas sit er ite and na tive bis muth. It also ap pears in the form of inter growths in other sul phide min er als or in cracks within gar nets (Fig. 4A–C).

A to tal of 56 WDS points were mea sured within chal co py rite grains. The re sults showed an in dium con tent rang ing from

<149 ppm (de tec tion limit) up to a max i mum con tent of 1580 ppm. Most (40 of 56) mea sure ments showed an in dium con tent above the de tec tion limit, the arith me tic mean be ing 330 ppm.

The av er age chem i cal com po si tion of the chal co py rite is 34.45 wt.% Cu, 29.99 wt.% Fe and 34.47 wt.% S (Ta ble 2). Fig - ure 4D pres ents a WDS spec trum of chal co py rite with vis i ble peaks of in dium, cad mium and iron. Fig ure 4C shows some of the chal co py rite grains with WDS points marked, the re sults of which are shown in Ta ble 2.

INDIUM IN SPHALERITE

Sphalerite oc curs oc ca sion ally and much less of ten than chal co py rite in the sam ples stud ied. It co-cre ates sul phide ag gre - gates of hy dro ther mal or i gin in which there are xenomorphic grains (Fig. 5A–C). Sphalerite usu ally oc curs as inter growths in chal co py rite and pyrrhotite. Chem i cal com po si tion anal y ses for in dium ad mix tures were made on seven sphalerite grains with 21

Fig. 3. Cor re la tion chart of In ver sus Cu (A) and In vsersus Zn (B) with marked trend lines from sam ples of cas sit er ite-sul phide min er al iza tion (Stara Kamienica Schist Belt, Sudetes; af ter Mikulski et al., 2018)

(6)

WDS mea sur ing points. The re sults showed an in dium con tent rang ing from less than 154 ppm (de tec tion limit) up to a max i - mum of 1640 ppm. In dium was only not de tected in one ana lysed spot and the arith me tic mean of In con tent in the rest of the points is 380 ppm (n = 20). The av er age mea sured chem i cal com po si - tion of sphalerite is 57.4 wt.% Zn, 8.1 wt.% Fe and 32.6 wt.% S.

In ad di tion, high con cen tra tions of some el e ments have been noted: Cd (mean 5570 ppm), Cu (mean 3720 ppm), Ga (mean 1001 ppm) and Co (mean 580 ppm). Fig ure 5D pres ents a WDS spec trum of sphalerite with vis i ble peaks of in dium, cad mium and iron. Fig ure 5C shows a sul phide ag gre gate con tain ing sphale - rite with mea sure ment points in di cated (re sults in Ta ble 3).

INDIUM-BEARING MINERAL

The In dium-bear ing min eral (IBM), which is a Zn-In-Cu-Fe sul phide, has been iden ti fied so far only in one sam ple taken from 223.6 m depth of the C-X/46 ar chi val bore hole and it oc - curs in the form of sep a rate hipautomorphic grains, 5 to ~20 mm in size and as inter growths in chal co py rite (also with di am e ter up to 20 mm; Fig. 6). In ad di tion, back scat tered elec tron im age (us ing higher con trast) shows that in dium-bear ing min eral grains have ho mo ge neous in ter nal struc ture.

A to tal of 7 WDS mea sure ment points were se lected on 6 grains of the Zn-In-Cu-Fe sul phide (two oc cur ring as inter -

6 R. Ma³ek, S.Z. Mikulski / Geological Quarterly, 2021, 65: 7

Fig. 4. The cas sit er ite (2nd gen er a tion) – sul phide as so ci a tion within quartz-chlorite schist from the C-X/46 bore hole (depth 235.5 m)

A – cas sit er ite (Cst) – ag gre gate of chal co py rite (Ccp), rutile (Rt), py rite (Py) and ar seno py rite (Apy) within quartz (Qz) – chlorite (Chl) schist, BSEI (Back scat tered Elec tron Im age); B – chal co py rite with pyrrhotite (Po), re flected light; C – BSEI of chal co py rite grains with mea sure ment points; D – WDS spec trum of chal co py rite with peaks of in dium, cad mium and iron marked

T a b l e 2 WDS re sults of the mea sure ment points in chal co py rite from Fig ure 4C

Point# S

[wt.%] Cu

[wt.%] Fe

[wt.%]

Si [ppm]

Ag [ppm]

Pb [ppm]

Zn [ppm]

Ni [ppm]

Co [ppm]

Au [ppm]

Ba [ppm]

Ga [ppm]

In

[ppm] To tal

1 34.34 34.38 30.23 260 160 b.d.l. 910 320 330 240 610 350 400 99.4

2 34.47 34.68 30.3 240 170 b.d.l. b.d.l. b.d.l. 380 1080 100 140 470 99.8

3 34.57 34.5 30.23 220 590 550 1290 500 540 690 b.d.l. 90 710 99.84

4 34.84 34.52 30.27 360 520 280 b.d.l. 600 640 b.d.l. 1350 b.d.l. 680 100.1

5 34.58 34.03 30.36 230 450 390 660 280 440 b.d.l. 1110 230 540 99.5

6 35.24 34.34 29.77 410 620 b.d.l. 1070 b.d.l. 550 790 570 170 510 99.92

Al, Te, Ca, Cd, Cl, Sb, Bi, Se, As, Mg and Mo be low de tec tion lim its; b.d.l. – be low de tec tion limit

(7)

growths in chal co py rite and four as sep a rate ones) and their re - sults are shown in Ta ble 4. Min i mum con tent of in dium in the IBM is 17.07 wt.%, max i mum – 19.41 wt.% (de tec tion limit = 660 ppm) while arith me tic mean of mea sure ments is 18.097 wt.% (geo met ric mean = 18.082 wt.%) and me dian 17.74 wt.%. Con tents of Fe, Zn and Cu in the IBM vary and shows a gen eral Zn>Cu>Fe pro por tion trend. Zn en rich ment and a si mul ta neous de crease in Cu + Fe con tents is no tice able.

In com par i son with the av er age chem i cal com po si tion of sakuraiite (Ta ble 1) there is a sig nif i cant en rich ment in Zn and a slight en rich ment in Fe with de ple tion in Cu and In. Ad di tion ally, con tents of Sn and Ag, found in an av er age for mula in the range of 2–3 wt.%, in the IBM from Stara Kamienica, is at trace level.

A spec trum of the in dium-bear ing min eral with vis i ble in dium peaks is shown in Fig ure 7.

In cases where In-rich sul phide forms inter growths with chal co py rite, both phases were mea sured (Fig. 6B). The re sults in di cate that in dium ac cu mu lates within the Zn-In-Cu-Fe sul - phide ad mix ture: points in chal co py rite ad ja cent to this inter - growth show sig nif i cant de ple tion in in dium while far ther away the in dium con tent in the chal co py rite in creases. This prob a bly rep re sents a mixed phase of chal co py rite and polymetallic in - dium-bear ing min eral formed in the pres ence of var i ous cat ions e.g. Cu, Zn, Fe, Ag and In. Fig ure 8 il lus trates this sit u a tion:

point 1, lo cated di rectly within the in dium-bear ing min eral, con - tains 3.18 wt.% of In; point 2, lo cated in the near est area of the In-rich sul phide, con tains a sig nif i cantly re duced con tent of In (0.07 wt.%), while in points 3, 4, 5 and 6, as the dis tance from the in dium phase inter growth in creases, the con tent of In also in creases (Ta ble 5).

Fig. 5. Ex am ples of sphalerite oc cur rences in sul phide ag gre gates, bore hole G-1/13, depth 158.5 m A – sul phide ag gre gate within chlorite (Chl) lamina con sist ing of pyrrhotite (Po) with costibite inter growth [CoSbS] (Cos) and sphalerite (Sp), BSEI; B – chal co py rite (Ccp)-sphalerite (Sp) ag gre gate on the edge of quartz (Qz) and chlorite (Chl) laminae, re flected light; C – sul phide ag gre gate con sist ing of pyrrhotite (Po) – ar seno py - rite (Apy) – chal co py rite (Ccp) – sphalerite (Sp) with bastnäsite [Ce(CO3)F] (Bsn) with WDS mea sur ing points on sphalerites marked, BSEI; D – WDS spec trum of sphalerite with peaks of in dium, cad mium and iron marked

T a b l e 3 WDS re sults of the mea sure ment points in sphalerite from Fig ure 5C

Point# S [wt.%] Zn [wt.%] Fe [wt.%] Si [ppm] Cd [ppm] Cu [ppm] Co [ppm] Ga [ppm] In

[ppm] To tal

1 33 57.23 8.07 90 8820 480 760 1070 230 99.59

2 32.87 56.21 7.6 480 7820 10660 1550 980 310 99.18

3 32.92 57.11 7.86 290 8570 670 1170 940 170 99.14

4 32.61 57.14 7.51 130 8820 4830 1450 940 220 99.11

5 33.13 56.47 8.24 270 7660 5420 1060 1140 170 99.63

Al, Ca, Cl, Ag, Te, Sb, Bi, Ni, Pb, Se, As, Mg, Au, and Ba be low de tec tion lim its

(8)

DISCUSSION

INDIUM CARRIERS

The pres ence of in dium in the form of ad mix tures in chal co - py rite and sphalerite in the area stud ied has been re ported pre - vi ously and con firmed by the lat est in ves ti ga tions (Piestrzyñski and Mochnacka, 2003; Mikulski et al., 2018; Ma³ek et al., 2019;

Mikulski and Ma³ek, 2019, Pietrzela, 2019, Foltyn et al., 2020).

El e vated In con tents in sam ples from the Stara Kamienica schists was first re ported as traces in cas sit er ite by Wisznie - wska (1984) and later by Piestrzyñski and Mochnacka (2003) who, us ing the microprobe in ves ti ga tion method (Jeol 733), de - ter mined ad mix tures of in dium in sphalerite (max. 1.39 wt.%) and stannite (max. 0.36 wt.%). Pietrzela (2019) noted the pres - ence of in dium in sphalerite (EMPA data) in the range of 0.05–0.11 wt.% and also in cas sit er ite in the range of

8 R. Ma³ek, S.Z. Mikulski / Geological Quarterly, 2021, 65: 7

Fig. 6. Oc cur rence of the in dium-bear ing min eral A, B – as inter growths in chal co py rite and sep a rate grains;

C, D – cross-sec tional sur face mor phol ogy of IBM grains with vis i ble hipautomorphic form within quartz, BSEI;

IBM – in dium-bear ing min eral, Ccp – chal co py rite, Cst – cas sit er ite, Py – py rite, Chl – chlorite, Qz – quartz

T a b l e 4 EPMA re sults of the in dium-bear ing min eral hosted by cas sit er ite-sul phide min er al iza tion

in the Stara Kamienica Schist Belt in the Sudetes

Point# S

[wt.%]

Zn [wt.%]

In [wt.%]

Cu [wt.%]

Fe [wt.%]

Sn [ppm]

Si [ppm]

Cd [ppm]

Ga [ppm]

Co

[ppm] To tal

1 30.43 33.68 17.52 9.14 8.13 640 2280 3950 b.d.l. b.d.l. 99.77

2 29.39 30.83 18.61 10.56 8.86 590 1010 3600 b.d.l. b.d.l. 98.96

3 29.78 29.76 19.41 10.75 8.62 720 950 3890 b.d.l. b.d.l. 99.07

4 30.37 34.02 17.67 9.32 7.76 840 3140 3960 b.d.l. b.d.l. 100.16

5 30.22 33.98 17.07 9.12 8.1 970 1730 3910 1260 b.d.l. 99.46

6 29.42 29.99 18.63 9.8 8.39 b.d.l. 2160 3840 b.d.l. b.d.l. 96.99

7 30.77 31.66 17.77 9.05 8.7 590 3510 6610 b.d.l. 830 99.29

Av er age

de tec tion limit 0.02 0.13 0.05 0.10 0.05 421 241 583 1086 670

Ag, Al, Ca, Sb, Cl, Bi, Pb, Se, As, Mg, Ba, Au, Te, Sb, Bi, Ni, and Mo be low de tec tion lim its; b.d.l. – be low de tec tion limit

(9)

0.06–0.15 wt.%. Foltyn et al. (2020) in di cated an av er age con - tent of In (EMPA data) in sphalerite of 0.04 wt.%, in chal co py rite of 0.01 wt.% (approx. to the de tec tion limit) and in cas sit er ite of 0.01 wt.% (approx. to the de tec tion limit). Our re sults of EMPA anal y sis of sphalerite for In con tent cor re spond to the re sults re - ported by other re search ers. How ever, the av er age In con tent in chal co py rite is three times higher than the av er age given by Foltyn et al. (2020). We have only per formed EMPA test anal y -

ses for in dium con tent in cas sit er ite and the re sults in di cated val ues be low de tec tion lim its.

A very rare in dium min eral, sakuraiite, from the very mo - ment of its first ob ser va tion, cre ates prob lems of cor rect iden ti fi - ca tion. It has been rec og nized in the Senju-hon vein lo cated within Cre ta ceous rhyolitic and andesitic vol ca nic rocks of the Ikuno unit, Ja pan (Ichikawa et al., 1968). The vein showed a zonal struc ture and sakuraiite was found within a sakuraiite- stannite-cas sit er ite-sphalerite as so ci a tion (Kato, 1965). Kato (1965) con cluded that sakuraiite was the in dium equiv a lent of kesterite (Kissin and Owens, 1986) and be cause of that he de - scribed its struc ture as tetragonal. Kissin and Owens (1986) sug gested a cu bic struc ture of sakuraiite. This hy poth e sis seems to be con sis tent with their chem i cal com po si tion re sults, which in di cate a lack of stoichiometry in the atomic pro por tions of met als, sug gest ing that the metal sites in the struc ture are in equiv a lent po si tions (Kissin and Owens, 1986). The lat est sin - gle-crys tal X-Ray dif frac tion stud ies of Momma et al. (2017) re - veal a pseudo-cu bic crys tal struc ture with a space group P-42m. Two non-equiv a lent sites in the sakuraiite struc ture were dis cov ered. Cu, Zn and Fe at oms are ran domly dis trib uted in two crys tal lo graphic sites (1a and 2f), while In and Sn oc cur in an other site (1d). Within each of these sites un lim ited sub sti tu - Fig. 7. Spec trum of the in dium-bear ing min eral

A – WDS (Cameca SX-100); B – EDS (SEM Leo 1430)

Fig. 8. In clu sions of the in dium-bear ing min eral mix ture (IBM?) in chal co py rite (Ccp); BSEI

1–6 – mea sure ment WDS points

T a b l e 5 WDS re sults of the mea sure ment points of the Zn-In-Cu-Fe sul phide

from Fig ure 8

Point# S

[wt.%]

Zn [wt.%]

In [wt.%]

Cu [wt.%]

Fe [wt.%]

Sn [ppm]

Si

[ppm] Cd

[ppm] Co

[ppm] To tal

1 31.46 33.02 3.18 16.36 15.01 1420 3820 2240 570 100.01

2 34.47 0.15 0.07 34.44 29.93 490 1110 b.d.l. 270 99.32

3 34.6 0.03 0.14 34.55 30.19 270 560 b.d.l. 440 99.85

4 34.53 0.15 0.13 34.62 30.03 b.d.l. 580 320 420 99.65

5 34.51 0.04 0.14 34.57 30.17 190 560 280 500 99.76

6 34.59 0.09 0.13 34.60 30.06 140 430 310 520 99.71

Ag, Al, Ca, Te, Sb, Cl, Ga, Bi, Ni, Mo, and Mg be low de tec tion lim its; b.d.l. – be low de tec tion limit

(10)

10 R. Ma³ek, S.Z. Mikulski / Geological Quarterly, 2021, 65: 7

IBM (n = 7; this publication) sakuraiite (n = 2; Kato, 1965)

sakuraiite (n = 2; Kissin and Owens, 1986)

sakuraiite (n = 5; Shimizu et al., 1986)

sakuraiite (n = 2; Dill et al., 2013)

IICZP (n = 17; average; Dill et al., 2013)

sakuraiite (n = 16; average;

Bachmann et al., 2017) Zn-Cu-Fe-In-Sn-S (n = 4, Tosham;

Murao et al., 2008)

Zn-Cu-Fe-In-Sn-S (n = 4, Goka;

Murao et al., 2008)

Fig. 9. Ter nary plots of the chem i cal com po si tion of sakuraiites and in dium-bear ing min er als ob tained by dif fer ent au thors

(11)

tions of met als can oc cur, which ex plains the wide compo - sitional range of this min eral.

Elec tron mi crobe anal y ses by Shimizu et al. (1986) of five sakuraiite grains showed that they are inhomogeneous in chem i cal com po si tion. The mea sured con tents of the el e ments dis play pos i tive cor re la tions be tween Zn, In and Cd, and neg a - tive for Cu and Zn (Shimizu et al., 1986). Af ter ful fil ment of the charge bal ance, as sum ing that Cu, Zn, Fe, Sn and In have the va len cies 1 +, 2 +, 2 +, 4 + and 3 + re spec tively, as in stannite (Yamanaka and Kato, 1976; Nakai et al., 1978), the anal y ses yield an ideal sakuraiite for mula of (Cu,Zn,Fe,Ag)3(In,Sn)S4. In ad di tion, they as sumed that two vari ants of the el e ment pro por - tions are pos si ble: the first one is Cu>Zn>Fe + In>Sn and the sec ond one is Zn>Cu>Fe + In>Sn.

Data ob tained by us show sim i lar i ties with the chem i cal com po si tion of dif fer ent sakuraiites and in dium sul phide phases pro vided by other au thors, and com par i son of EMPA re sults re - ported by var i ous re search ers is shown in Fig ure 9 and Ta ble 6.

The main dif fer ences be tween the in dium-bear ing min eral from the Stara Kamienica Schist Belt and the sakuraiite anal y ses by Kato (1965), Shimizu et al. (1986), Kissin and Owens (1986) are:

–sig nif i cant en rich ment in Zn (~9–24 wt.%), –sig nif i cant de ple tion in Cu (~7–16 wt.%) and Sn

(>1000 ppm ver sus 4–12 wt.%),

sig nif i cant de ple tion in Ag (>50 ppm ver sus 0.2 wt.%), es pe cially in com par i son with Kato’s (1965) re sults (up to 4 wt.%).

In dium, iron and sul phur con tents are, with small dif fer - ences, at a sim i lar level, as are trace con tents of Cd (3000–8000 ppm).

Dill et al. (2013) re port sakuraiite oc cur rence in the epi ther - mal Au-Cu-Zn-Pb-Ag San Roque de posit (Ar gen tina), where it has been ob served as small inter growths in sin gle py rite grains within a quartz ma trix. Be sides sakuraiite, roquesite and an un known sul phide min eral named “In ter me di ate

In-Cu-Zn Phase” (IICZP) have been iden ti fied as in dium car ri - ers. This un known phase may be a mix ture of in dium-bear ing min er als intergrown with each other and dif fi cult to dis tin guish.

The Zn-In-Cu-Fe sul phide de scribed by us dif fers from the two sakuraiites re ported from the San Roque de posit. The most sig nif i cant dif fer ence is de ple tion in Cu (~8–16 wt.%), In (~8–11 wt.%), Sn (>1000 ppm ver sus 4–7 wt.%) and Ag (>100 ver sus 1700 ppm) with si mul ta neous en rich ment in Zn (26–30 wt.%), The con tent of S (29–34 wt.%) and trace con - tent of Cd (800–6000 ppm) are sim i lar.

Re sults of EMPA stud ies in the in dium-bear ing min eral phase anal y ses de fined by Dill et al. (2013) as an IICZP (n = 17) seems to be very sim i lar to the re sults of the Zn-In-Cu-Fe sul - phide re ported in this pub li ca tion. In both cases, the same Zn>Cu>Fe and In>Sn pro por tion of metal con tents can be found. The av er age re sults ob tained from 17 mea sure ments of Zn, Cu, In and Sn con tent are sim i lar to our re sults. A larger dif - fer ence is pres ent only in Fe con tent (av er age con tent in IICZP is lower, ~5–6 wt.%).

Sakuraiite was rec og nized within the Zn-Pb-Ag Santa Fe (Bolivia) de posit in the form of fine grains in as so ci a tion with stannite, cas sit er ite, sphalerite and ga lena. It con tains a max i - mum 2.03 wt.% of in dium and shows sig nif i cant en rich ment in Cu (21.68–27.54 wt.%) and Sn (18.30–26.67 wt.%) (Jiménez- Franco et al., 2018), which makes it sig nif i cantly dif fer ent from the in dium-bear ing phase de scribed here.

The pres ence of a sakuraiite in the Chappara de posit in south ern Peru was re ported by Yáñez and Alfonso (2014). Sul - phide min er al iza tion is pres ent in quartz veins within ig ne ous rocks con nected to the Coastal batholith. Sakuraiite oc curs in as so ci a tion with ga lena, sphalerite and ar seno py rite as very small grains con tain ing 5.43–6.41 wt.% of In (Yáñez and Alfonso, 2014).

A min eral called sakuraiite has been also re ported from the Neves-Corvo mine (The Ibe rian Py rite Belt, Por tu gal) by Bachmann et al. (2017). An av er age con tent from 16 EMPA

T a b l e 6 Com par i son of the EMPA re sults of sakuraiite and its un named in dium-bear ing min eral

ob tained by var i ous au thors

S [wt.%] Zn [wt.%] Cu [wt.%] In [wt.%] Fe [wt.%] Sn [wt.%] Ag [wt.%] Cd [wt.%] Ga [wt.%]

Sakuraiite

(n = 2; Kato, 1965) 30–31 10–14 21–23 17–23 5–9 4–9 3.5–4.0 – –

Sakuraiite (n = 5;

(Shimizu et al., 1986) 28.83–29.29 14.40–20.26 17.71–21.03 15.71–21.43 5.12–7.28 5.12–12.01 0.10–0.15 0.5–0.82 – Sakuraiite (n = 2; Kissin

and Owens, 1986) 29.0–29.1 13.7–18 18.9–19.6 22.0–23.8 4.5–6.9 4.9–7.2 0.1–0.2 0.6–0.7 – Sakuraiite (n = 2;

Dill et al., 2013) 30.90–33.53 3.11–3.34 18.83–25.07 27.96–28.25 7.03–15.33 4.20–7.37 0.14–0.17 0.08–0.18 0.89–1.45 IICZP (n = 17;

Dill et al., 2013) 29.02–30.77 25.32–47.83 6.98–16.20 13.93–29.91 0.85–5.07 0.07–0.37 b.d.l.–0.04 0.27–0.35 b.d.l.

Sakuraiite (n = 16, av er aged;

Bachmann et al., 2017) 29.0 31.45 12.75 20.91 2.44 b.d.l. b.d.l. 3.52 –

Zn-Cu-Fe-In-Sn-S (n = 4, Tosham; Murao

et al., 2008) 29.4–30.9 29.1–34.3 10.2–12.0 18.0–21.0 6.9–8.1 b.d.l. 0.5–0.7 b.d.l.–0.2 – Zn-Cu-Fe-In-Sn-S

(n = 2, Goka; Murao et

al., 2008) 29.7–30.6 7.9–25.4 14.3–23.9 8.8–19.8 8.7–12.0 1.4–18.1 b.d.l.–0.3 b.d.l. – IBM (n = 7;

this pub li ca tion) 29.39–30.77 29.76–34.02 9.05–10.75 17.07–19.41 7.76–8.86 b.d.l.–0.09 b.d.l. 0.36–0.40 b.d.l.–0.1 3

b.d.l. – be low de tec tion limit, IICZP – In ter me di ate In-Cu-Zn phase

(12)

mea sure ments of this sakuraiite was: Cu – 12.75 wt.%, In – 20.91 wt.%, Zn – 31.45 wt.%, Fe – 2.44 wt.%, Cd – 3.52 wt.%, S – 29 wt.%, Ag and Sn be low de tec tion limit. The chem i cal com - po si tion of the in dium-bear ing min eral we de scribe is sim i lar to the sakuraiite from Neves-Corvo, with the larg est dif fer ences be ing an en rich ment in Fe (7.76–8.86 wt.% ver sus 2.44 wt.%) and lower con tent of Cd (>4000 ppm ver sus 3.5 wt.%).

Murao et al. (2008) and Murao and Furuno (1990), de - scribed two dif fer ent tin-polymetallic vein-type de pos its with a sim i lar ore min er al ogy and chem is try. The first is the Tosham Sn-Cu de posit (Bhiwami dis trict, In dia) with an un usu ally high con tent of in dium. Dis sem i nated, vein and stockwork min er al - iza tion is hosted by greisenised metasedimetary rocks which were in truded by a porphyrytic gran ite stock. The sec ond is the Goka de posit (Naegi dis trict, Ja pan) which rep re sents tin- poly - metallic vein-type min er al iza tion hosted by welded tuffs which are close to a subvolcanic granodiorite por phyry. In both de pos - its the main in dium hosts are sphalerite, stannite, chal co py rite and un iden ti fied Zn-Cu-Fe-In-Sn-S phases. Rep re sen ta tive anal y ses of In-bear ing phases from the Tosham and Goka de - pos its are shown in Ta ble 6.

Sakuraiite has been also rec og nized in two lo cal i ties in Rus - sia (Alekseev and Marin, 2015; Damdinova et al., 2019), how - ever, the au thors do not pro vide EPMA re sults.

Ter nary plots (Fig. 9) in di cate that the Zn-In-Cu-Fe sul phide we de scribe shows a great re sem blance to the IICZP from the San Roque de posit (Dill et al., 2013), the min eral called saku - raiite from the Neves-Corvo mine (Bachmann et al., 2017) and the Zn-Cu-Fe-In-Sn-S min eral phase from the Tosham and Goka de pos its (Murao et al., 2008).

Based on av er age EMPA re sults, the em pir i cal for mula of the in dium min eral phase from the Stara Kamienica Schist Belt has been es tab lished – (Zn2.09In0.67Cu0.65Fe0.64Cd0.02)S4,07S4,0. This for mula is sig nif i cantly dif fer ent from the sakuraiite for mula given by Kato (1965) as (Cu1.41Zn0.92In0.86Fe0.38Sn0.14Ag0.14)S3.85S4.00

and later by Fleischer (1968) as (Cu1.36Zn0.92In0.84Fe0.54Sn0.27Cd0.02Ag0.01)S3.96S4.00 (af ter An thony et al., 1990). Shimizu et al. (1986) cal cu lated the fol low ing for - mula of sakuraiite: (Cu1.32Zn1.22In0.92Fe0.36Sn0.18Cd0.03)S4.03S4.00. The main dif fer ences are in the pro por tions of in di vid ual com po - nents; es pe cially sig nif i cant is the more than dou bled en rich ment in Zn com pared to other cat ions and cor re spond ing de ple tion in Cu. Com pared to Kato (1965), the dif fer ence in S de fi ciency rel a - tive to cat ions is no ta ble, while in the for mula given by Shimizu et al. (1986) there is also an ex cess of cat ions. Murao et al. (2008) pro vide for mu lae of the rep re sen ta tive anal y ses of In- bear ing phases from both the Tosham and Goka oc cur rences. The av er - age cal cu lated for mula of the Zn-Cu-Fe-In-Sn-S min eral from the Tosham de posit is (Zn0.52Fe0.14Cu0.18In0.18)S0.98 while from the Goka de posit it is (Zn0.27Fe0.19Sn0.08Cu0.40In0.13)S. In spite of the fact that these for mu lae were cal cu lated to one sul phur atom, the

sim i lar ity be tween the min eral from the Stara Kamienica Schist Belt and from the Tosham oc cur rence is clear. A more sig nif i cant dif fer ence was ob served in the case of the Goka min eral phase due to its higher Sn and lower Zn pro por tion. Nei ther Dill et al.

(2013) nor Bachmann et al. (2017) pro vide em pir i cal for mu lae of their in dium-bear ing min er als. De tails of es tab lish ing the em pir i - cal for mula for the Zn-In-Cu-Fe sul phide are shown in Ta ble 7.

INDIUM EVENT IN AN ORE-MINERAL SUCCESSION

The gen e sis of tin and base metal (cas sit er ite-sul phide) min er al iza tion is re lated to the ac tiv ity of hy dro ther mal so lu tions closely linked with the evo lu tion of the Izera meta mor phic com - plex, but in ter pre ta tions dif fer. For ex am ple, ac cord ing to Wisznie wska (1984), the gen e sis of the tin-sul phide min er al iza - tion is ge net i cally linked di rectly to the in tru sion of the Variscan Karkonosze Granitoid Mas sif (mag matic em place ment

~320–300 Ma), but ear lier de vel op ment of mag matic-meta mor - phic pro cesses (Michniewicz et al., 2006) as well as pre- and syn-Variscan mul ti ple min er al iza tion events have also been pro posed (Cook and Dudek, 1993; Mikulski et al., 2007). Nu - mer ous stud ies of gar nets, which are ac ces sory in tin-bear ing schists, and es pe cially of in clu sions in cassiterites and ilme - nites, as well as the zonation of meta mor phic gar nets them - selves, may in di cate a hy dro ther mal and post-meta mor phic gen e sis of cas sit er ite min er al iza tion (Koz³owski et al., 1988;

Wiszniewska et al., 1998). On the other hand, Cook and Dudek (1994) cor re lated the for ma tion of at least part of the polymetallic (Co-Ni-As-Bi-Ag) sul phide min er al iza tion with one of the phases of high-tem per a ture re gional meta mor phism (~400–340 Ma). There are also a num ber of stud ies sug gest ing the sed i men tary pre-meta mor phic (syngenetic) gen e sis of the cas sit er ite min er al iza tion (i.e. Sza³amacha, 1976). Some of the re search ers (e.g., Piestrzyñski and Mochnacka, 2003), as well as the au thors of this ar ti cle, sup port a more com plex meta - somatic-hy dro ther mal gen e sis con nected with multi-stage de - vel op ment of in tru sive-meta mor phic pro cesses of pre-, syn- and post-Variscan events (Mikulski et al., 2007).

The un named Zn-In-Cu-Fe sul phide de scribed here is ge - net i cally con nected with in dium-bear ing chal co py rite, be cause its only ob served oc cur rences are inter growths in chal co py rite, ag gre gates with chal co py rite and sep a rate grains in the im me - di ate vi cin ity of chalcopyrites.

Anal y ses of mu tual min eral re la tions in di cate that sphalerites and chalcopyrites, which later re search ers de ter - mined as car ri ers of trace in dium ad mix tures (Piestrzyñski and Mochnacka, 2003; Mikulski et al., 2018; Ma³ek and Mikulski, 2019; Foltyn et al., 2020) crys tal lized to gether. In the ore min - eral suc ces sion they rep re sent the late stage of high and me - dium tem per a ture (550–250°C) events of the epigenetic min er -

12 R. Ma³ek, S.Z. Mikulski / Geological Quarterly, 2021, 65: 7

T a b l e 7 Av er aged con tents of in di vid ual com po nents in the em pir i cal for mula of the Zn-In-Cu-Fe sul phide

Atomic [%]

S In Cd Ga Zn Cu Sn Fe To tal

Av er age (n = 7) 49.30 8.29 0.20 0.05 25.72 8.02 0.03 7.88 99.48

Nor mal ized to 100% 49.56 8.34 0.20 0.05 25.85 8.06 0.03 7.92 100.00

Nor mal ized to 4

sul phur at oms 4.00 0.67 0.02 0.00 2.09 0.65 0.00 0.64 8.07

(13)

al iza tion (postmagmatic-hy dro ther mal; Wiszniewska, 1984;

Wiszniewska et al., 1998). It is con sid ered that tin min er al iza - tion crys tal lized in two stages: cassiterites of the first gen er a tion (1st) crys tal lized at the be gin ning of the high tem per a ture stage (460–420°C) while later cassiterites of the sec ond gen er a tion (2nd) crys tal lized si mul ta neously with sulphides (365–325°C;

Wiszniewska et al., 1998). Stud ies based on an ar seno py rite ther mom e ter car ried out by Cook and Dudek (1994) to de ter - mine P/T con di tions of sul phide min er al iza tion in the Stara Kamienica area in di cates, de pend ing on the parageneses ana - lysed, tem per a tures of 430–448°C, 463°C and 508–517°C and P/T con di tions for the crys tal li za tion of sphalerites ac com pa ny - ing the cassiterites at 550–500°C and 6.0–7.5 kbar. Foltyn et al.

(2020), though, de ter mined the crys tal li za tion tem per a tures of in dium-bear ing sphalerites at 349–331°C.

A costibite min eral ac com pa ny ing chal co py rite and sphale - rite ap pears to be the low-tem per a ture polymorph of CoSbS (Cabri et al., 1970); the pres ence of bastnäsite also in di cates lower crys tal li za tion tem per a tures (it is sta ble only in green - schist fa cies; Savko and Bazikov, 2011). The sphalerite, on the other hand, con tain ing an av er age of 8.1 wt.% Fe, in di cates high crys tal li za tion tem per a tures (Cook and Dudek, 1994).

The in dium-bear ing chal co py rite with which the in dium min eral phase is as so ci ated seems to be long to the main gen - er a tion of chal co py rite, de fined by Wiszniewska (1984) as chal co py rite 2nd. In ad di tion, this is sup ported by the prox im ity of cas sit er ite 2nd gen er a tion and py rite (Fig. 6A) and sim i larly by the sulphosalts which also oc cur as inter growths in chal co - py rite (Wiszniewska, 1984). Tak ing into ac count a ge netic con nec tion be tween the in dium min eral phase and chal co py - rite 2nd, we can as sume that their P/T crys tal li za tion con di - tions are sim i lar and cor re spond with the mid dle and high tem - per a ture stage of the sul phide suc ces sion. At this stage of min eral crys tal li za tion suc ces sions there are cas sit er ite 1st, pyrrhotite, ar seno py rite, cobaltite, loellingite, safflorite, na tive bis muth, mag ne tite, py rite, sphalerite, chal co py rite 2nd, cas - sit er ite 2nd, ga lena (Bi-bear ing), bis muthi nite, galeno bis mu - thite and cosalite (Wisznie wska, 1984; Speczik and Wisznie - wska, 1984). A very sim i lar polymetallic sul phide as so ci a tion (with sub or di nate cas sit er ite) has been de scribed in the east meta mor phic cover of the Karkonosze Gran ite Mas sif where, in the aban doned Czarnów As-polymetallic de posit, iso to pic Re-Os in ves ti ga tion in di cated ar seno py rite crys tal li za tion at 312 ±3 Ma (Mikulski and Stein, 2011).

In dium-bear ing min er al iza tion is of ten con nected to and de - vel oped in or around vol cano-plutonic com plexes, es pe cially in tran si tional zones be tween the Sn-bear ing and epi ther mal zones (Murao, 2008; Dill et al., 2013). There are many ex am - ples world wide: the Toyoha de posit (Ja pan) where In-bear ing polymetallic min er al iza tion is lo cated in a tran si tional zone be - tween the prod ucts of I-type magmatism and the epi ther mal zone (Ohta, 1989, 1995); the Tigrinoe de posit (Rus sia) where Sn-sul phide vein min er al iza tion is con nected to the Zinnwaldite gran ite-por phyry com plex and monzonite Burelomny stock (Pav lo va et al., 2015), the Pravourmiiskoe de posit (Rus sia) where a ge netic link be tween in dium-bear ing Sn min er al iza tion and gran ite of the Verhneurmiisky pluton is widely in ferred; the Tosham de posit (In dia) where Sn-Cu min er al iza tion with a high in dium con tent is hosted by greisenised metasedimentary rocks in truded by a por phy ritic gran ite stock and rhyolitic ef fu - sive rocks (Murao et al., 2008). The Karkonosze gran ite mas sif seems to cor re spond to this vol cano-plutonic in dium-bear ing

Sn-sul phide en vi ron ment. This sim i lar ity may pro vide an other clue that the cas sit er ite-sul phide min er al iza tion stage with in - dium en rich ment at Stara Kamienica is ge net i cally linked with the pres ence and hy dro ther mal ac tiv ity of the Karkonosze gran - ite. Karkonosze pluton mag mas are strongly evolved and frac - tion ated, mak ing them a po ten tial source of met als such as Mo-W-Sn-Fe-Cu-REE-Nb-Y-U-Th (Mikulski, 2007). Within the Karkonosze pluton and its near vi cin ity much sul phide min er al - iza tion com pris ing Mo-W-Sn-Bi-Fe-Cu as so ci a tions oc cur that were ge net i cally re lated to the pluton (Mochnacka et al., 2015 with ref er ences therein; Mikulski et al., 2020b).

CONCLUSIONS

– Based on EMPA stud ies, an un named in dium-bear ing min eral (Zn-In-Cu-Fe sul phide) has been rec og nized in sam - ples from the stratiform tin de posit of the Stara Kamienica schist belt (Sudetes). This min eral con tains up to 19.41 wt.%

of In and has the fol low ing em pir i cal for mula:

(Zn2.09In0.67Cu0.65Fe0.64Cd0.02)?4,07S4,0.

– This in dium-bear ing min eral dif fers from sakuraiite in the pro por tion of in di vid ual cat ions, hav ing more than dou ble en - rich ment in Zn, more than dou ble de ple tion in Cu and a very low Sn con tent. The range of the metal pro por tions and con - tents in the Zn-In-Cu-Fe sul phide in ves ti gated from the Stara Kamie nica area in di cates sig nif i cant sim i lar ity to un named In-Cu-Zn phase de scribed from San Roque (Ar gen tina) (Dill et al., 2013), an un iden ti fied Zn-Cu-Fe-In-Sn-S min eral from the Tosham de posit (In dia) and the Goka de posit (Ja pan; Murao et al., 2008) and also to the min eral called “sakuraiite” from the Neves-Corvo mine (Por tu gal) de scribed by Bachmann et al.

(2017). In all these cases, sig nif i cant en rich ments in Zn rel a - tive to the rest of the cat ions were found, as well as low (trace) con tents of Sn and Ag and a mea sured Cd con tent at level above the de tec tion limit.

– The Zn-In-Cu-Fe sul phide de scribed is ge net i cally linked with the main gen er a tions of chal co py rite and sphalerite in the sul phide suc ces sion, the for ma tion of which is as so ci ated with me dium and high tem per a ture postmagmatic-hy dro ther mal min e r al i za tion, most likely af ter the in tru sion of the Karkonosze gran ite.

– In ad di tion, EPMA mea sure ments iden ti fied ad mix tures of in dium in sphalerites and chalcopyrites, which have al ready been de scribed in the case of cas sit er ite-sul phide min er al iza - tion from the Stara Kamienica schist belt in the Sudetes.

– Other ex am ples of in dium-bear ing min er al iza tion world - wide con nected with vol cano-plutonic com plexes may empha - sise the ge netic link be tween the Stara Kamienica Sn-sul phide min er al iza tion and the Karkonosze gran ite pluton.

Ac knowl edg ements. We are grate ful to the re view ers K. Foltyn and J. Janeczek for their con struc tive re views and valu able sug ges tions that greatly im proved the first ver sion of the manu script. This work was fi nan cially sup ported by the Eu - ro pean Un ion’s Ho ri zon 2020 re search and in no va tion pro - gramme un der grant agree ment no. 731166. Sci en tific work was co-funded by na tional funds al lo cated for sci ence within the pe riod 2018–2021 un der grant agree ment 4091/H2020/2018/2 and by the Pol ish Geo log i cal In sti tute – Na tional Re search In sti - tute through an in ter nal grant no. 61.2905.1802.00.0. for S.M.

(14)

REFERENCES

Alekseev, V.I., Marin, Y.B., 2015. Com po si tion and evo lu tion of ac - ces sory min er al iza tion of Li–F gran ites in the Far East as in di ca - tors of their ore po ten tial. Ge ol ogy of Ore De pos its, 57:

635–644.

An der son, C.S., 2020. In dium. In: Min eral Com mod ity Sum ma ries 2020: 78–79. United States Geo log i cal Sur vey.

An thony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C., 1990.

Hand book of Min er al ogy (I – El e ments, Sul fides, Sulfosalts):

Min eral Data Pub lish ing, Tuc son, Ar i zona http://www.hand - bookofmineralogy.com/pdfs/sakuraiite.pdf .

Bachmann, K., Frenzel, M., Krause, J., Gutzmer, J., 2017. Ad - vanced iden ti fi ca tion and quan ti fi ca tion of In-bear ing min er als by scan ning elec tron mi cro scope-based im age anal y sis. Mi - cros copy and Microanalysis, 23: 527–537.

Barbalace, K., 2019. Pe ri odic Ta ble of El e ments. Environ - mentalChemistry.com

Berendsen, P., Speczik, S., Wiszniewska, J., 1987. Sul phide geo - chem i cal stud ies of the stratiform tin de pos its in the Stara Kamienica Chain (SW Po land). Archiwum Mineralogiczne, 42:

31–42.

Bobiñski, W., 1991. Wrostki kasyterytu w minera³ach ska³o - twórczych (in Pol ish). In: Mineralizacja Sn i jej pozycja w ewolucji geologicznej pasma Kamienieckiego (Góry Izerskie – Sudety Zachodnie). Materia³y CXXXI Sesji Nauk PIG:

4–5.VI.1991. Wroc³aw.

Cabri, L.J., Har ris, D.C., Stew art, J.M., 1970. Costibite (CoSbS), a new min eral from Bro ken Hill, N.S.W., Aus tra lia. Amer i can Min - er al o gist, 55: 10–17.

Cantinolle, P., Laforet, C., Maurel, C., Picot, P., Grangeon, I.J., 1985. Con tri bu tion a la min er al ogy de l’indium. Decouverte en France de deux nou veaux sulfures d’indium de deux nouvelles oc cur rences de roquesite. Bul le tin de Minéralogie: Min eral Cristallographie, 108: 245–248.

Cook, N.J., Dudek, K., 1994. Min eral chem is try and meta mor phism of gar net chlorite–mica schist as so ci ated with cas sit er ite–sul - phide min er al iza tion from the Kamienica Range, Izera Moun - tains, S.W. Po land. Chemie der Erde, 54: 1–32.

Damdinova, L.B., Damdinov, B.B., Huang, X.W., Bryansky, N.V., Khubanov, V.B., Yudin, D.S., 2019. Age, con di tions of for ma - tion, and fluid com po si tion of the Pervomaiskoe mo lyb de num de posit (Dzhidinskoe ore field, south-west ern Transbaikalia, Rus sia). Min er als, 9: 572.

Dill, H.G., 2010. The “chess board” clas si fi ca tion scheme of min eral de pos its: min er al ogy and ge ol ogy from alu mi num to zir co nium.

Earth-Sci ence Re views, 100: 1–420.

Dill, H.G., Garrido, M.M., Melcher, F., Gomez, M.C., Weber, B., Luna, L.I., Bahr, A., 2013. Sulfidic and non-sulfidic in dium min - er al iza tion of the epi ther mal Au-Cu-Zn-Pb-Ag de posit San Roque (Provincia Rio Ne gro, SE Ar gen tina) – with spe cial ref er - ence to the “in dium win dow” in zinc sul phide. Ore Ge ol ogy Re - views, 51: 103–128.

Fleischer, M., 1968. New min eral names. Amer i can Min er al o gist:

53: 1421.

Frenzel, M., Hirsch, T., Gutzmer, J., 2016. Gal lium, ger ma nium, in - dium, and other trace and mi nor el e ments in sphalerite as a func tion of de posit type – a meta-anal y sis. Ore Ge ol ogy Re - views, 76: 52–78.

Foltyn, K., Bertrandsson Erlandsson, V., Kozub-Budzyñ, G.A., Melcher, F., Piestrzyñski, A., 2020. In dium in polymetallic min - er ali sa tion at the Gierczyn mine, Karkonosze-Izera Mas sif, Po - land: re sults of EPMA and LA-ICP-MS in ves ti ga tions. Geo log i - cal Quar terly, 64 (1): 74–85.

Genkin, A.D., Murav’eva, I.V., 1963. Novyye min eral indiya (in Rus - sian). Zapiski Vsesoyuznogo Mineralogicheskogo Obshche - stva, 92: 445.

Ichikawa, K., Murakami, N., Hase, A., Wadatsumi, K., 1968. Late Me so zoic ig ne ous ac tiv ity in the In ner Side of South west Ja pan.

Pa cific Ge ol ogy, 1: 97–118.

Ivanov, V.V., 1963. In dium in some ig ne ous rocks of the USSR.

Geo chem is try, 12: 1–15.

Jiménez-Franco, A., Alfonso Abella, M.P., Canet Miquel, C., Trujillo, J.E., 2018. Min eral chem is try of In-bear ing min er als in the Santa Fe min ing dis trict, Bolivia. An dean Ge ol ogy, 45:

410–432.

Jorgenson, J.D., George, M.W., 2005. Min eral Com mod ity Pro file:

In dium. U.S. Geo log i cal Sur vey Open-File Re port 2004–1300.

Kato, A., 1965. Sakuraiite, a new min eral (in Jap a nese). Chigaku Kenkyu, Sakurai Vol ume: 1–5.

Kissin, S.A., Owens, D.R., 1986. The crys tal log ra phy of sakuraiite.

Ca na dian Min er al o gist, 24: 679–683.

Kooiman, G.J.A., Ruitenberg, A.A., 1992. In dium de pos its and their eco nomic po ten tial: re port on a mis sion to Ja pan. New Bruns wick De part ment of Nat u ral Re sources and En ergy, Min - eral Re sources, Geoscience Re port, 92–3.

Kowalski, W., Karwowski, £., Œmietañska, I., Do Van Phi., 1978.

Ore min er al iza tion of the Stara Kamienica Schist Belt in the Izera Moun tains (in Pol ish with Eng lish sum mary). Prace Naukowe Uniwersytetu Œl¹skiego, 243: 7–89.

Koz³owski, A., Wiszniewska, J., Metz, P., 1988. Gar net-bear ing parageneses of the tin de pos its in the Stara Kamienica Chain, Lower Silesia. Fortschritte der Mineralogie, 66: 85–86.

Kucha, H., Mochnacka, K., 1987. Pre lim i nary re port on bis muth min er als from the Gierczyn tin de posit, Lower Silesia, Po land.

Mineralogica Polonica, 17: 55–61.

Lokanc, M., Eggert, R., Redlinger, M., 2015. The Avail abil ity of In dium: the Pres ent, Me dium Term, and Long Term, Na tional Re new able En ergy Lab o ra tory (NREL) re port (https://www.nrel.gov/docs/fy16osti/62409.pdf).

Ma³ek, R., Mikulski, S.Z., 2019. Geo chem i cal-min er al og i cal re - search of the rare and as so ci ated el e ment con cen tra tions within cas sit er ite-sul phide min er al iza tion in the Stara Kamienica schist belt in the West ern Sudetes – pre lim i nary re sults (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 67: 179–182.

Ma³ek, R., Mikulski, S.Z., Chmielewski, A., 2019. The geo chem i - cal-min er al og i cal char ac ter is tic of cas sit er ite-sul phide min er al - iza tion in the his toric Saint John and Saint Leopold shafts in the Stara Kamienica schist belt (West ern Sudetes) (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 67: 910–920.

Mazur, S., Aleksandrowski, P., Kryza, R., Oberc-Dziedzic, T., 2006. The Variscan orogen in Po land. Geo log i cal Quar terly, 50 (1): 89–118.

Michniewicz, M., Bobiñski, W., Siemi¹tkowski, J., 2006. Tin min - er al iza tion in the mid dle part of the Stara Kamienica Schist Belt (West ern Sudetes) (in Pol ish with Eng lish sum mary). Prace Pañstwowego Instytutu Geologicznego, 186: 1–137.

Mikulski, S.Z., 2007. Metal ore po ten tial of the par ent magma of gran ite – the Karkonosze mas sif ex am ple. Archivum Mineralo - giae Mono graph, 1: 123–145.

Mikulski, S.Z., Ma³ek, R., 2019. In dium and other crit i cal el e ments en rich ment in cas sit er ite-sul phide min er al iza tion from the stratiform tin de pos its in the West Sudetes (SW Po land). 15th SGA Bi en nial Meet ing, 27–30 Au gust 2019, Glas gow, Scot land, 4: 1818–1821.

Mikulski, S.Z., Stein, H.J., 2011. Re-Os age for mo lyb de nite from the Variscan Karkonosze mas sif and its east ern meta mor phic cover (SW Po land). Pro ceed ings of the 11th SGA Bi en nial Meet - ing, Antofagasta, 130–133. Ediciones Universidad Católica del Norte; Antofagasta.

Mikulski, S.Z., Koz³owski, A., Speczik, S., 2007. Fluid in clu sion study of gold-bear ing quartz-sul phide veins and cas sit er ite from the Czarnow As de posit ore (SW Po land). Pro ceed ings of the Ninth Bi en nial SGA Meet ing, Dub lin 2007: 805–808.

Mikulski, S.Z., Oszczepalski, S., Sad³owska, K., Chmielewski, A., Ma³ek, R., 2018. The oc cur rence of as so ci ated and crit i cal el e ments in the se lected doc u mented Zn-Pb, Cu-Ag, Fe-Ti-V, Mo-Cu-W, Sn, Au-As and Ni de pos its in Po land (in Pol ish with

14 R. Ma³ek, S.Z. Mikulski / Geological Quarterly, 2021, 65: 7

(15)

Eng lish sum mary). Biuletyn Pañstwowego Instytutu Geolo - gicznego, 472: 21–52.

Mikulski, S.Z., Oszczepalski, S., Sad³owska, K., Chmielewski, A., Ma³ek, R., 2020a. Trace el e ment dis tri bu tions in the Zn-Pb (Mis sis sippi val ley-type) and Cu-Ag (Kupferschiefer) sed i ment - -hosted de pos its in Po land. Min er als, 10: 1–47.

Mikulski, S.Z., Wil liams, I.S., Stein, H.J., Wierchowiec, J., 2020b.

Zir con U-Pb Dat ing of Magmatism and Min er al iz ing Hy dro ther - mal Ac tiv ity in the Variscan Karkonosze Mas sif and Its East ern Meta mor phic Cover (SW Po land). Min er als, 10: 787

Mochnacka, K., 1986. Struc tures and tex tures of ores from the Gierczyn tin ore de posit (Sudetes, Po land) and their ge netic in - ter pre ta tion. Mineralogica Polonica, 16: 85–96.

Mochnacka, K., Oberc-Dziedzic, T., Mayera, W., Pieczka, A., 2015. Ore min er al iza tion re lated to geo log i cal evo lu tion of the Karkonosze–Izera Mas sif (the Sudetes, Po land) – to wards a model. Ore Ge ol ogy Re views, 64: 215–238.

Momma, K., Miyawaki, R., Matsubara, S., Shigeoka, M., Nagase, T., Kamada, S., Ozawa, S., Ohtani, E., Shimizu, M., Kato, A., 2017. The crys tal chem is try of sakuraiite. Acta Crystallo gra - phica Sec tion A: Foun da tions and Ad vances, 73: 910.

Murao, S., Furuno, M., 1990. In dium-Bear ing Ore from the Goka Mine Naegi Dis trict, South west ern Ja pan. Min ing Ge ol ogy, 40:

35–42.

Murao, S., Deb, M., Furuno, M., 2008. Min er al og i cal evo lu tion of in - dium in high grade tin-polymetallic hy dro ther mal veins – a com - par a tive study from Tosham, Haryana state, In dia and Goka, Naegi dis trict, Ja pan. Ore Ge ol ogy Re views, 33: 490–504.

Nakai, I., Sugitani, Y., Nagashima, K., Niwa, Y., 1978. X-ray pho to - elec tron spec tro scopic study of cop per min er als. Jour nal of In - or ganic and Nu clear Chem is try, 40: 789–791.

Nechayev, I., 1987. Na tive in dium and Fe in tin-bear ing grei sens of the Ukrai nian Shield (in Rus sian with Eng lish sum mary).

Mineralogicheskiy Zhurnal, 9: 74–78.

Ohta, E., 1989. Oc cur rence and chem is try of in dium-con tain ing min er als from the Toyoha mine, Hokkaido, Ja pan. Min ing Ge ol - ogy, 36: 355–372.

Ohta, E., 1995. Com mon fea tures and gen e sis of tin-polymetallic veins. Re source Ge ol ogy Spe cial Is sue, 18: 187–195.

Pav lo va, G.G., Palessky, S.V., Borisenko, A.S., Vladimirov, A.G., Seifert, T., Luu Anh, P., 2015. In dium in cas sit er ite and ores of tin de pos its. Ore Ge ol ogy Re views, 66: 99–113.

Picot, P., Pier rot, R., 1963. La roquesite, pre mier min eral d’indium.

Bul le tin de Minéralogie: Min eral Cristallographie, 86: 7–14.

Piestrzyñski, A., Mochnacka, K., 2003. Dis cus sion on the sul phide min er al iza tion re lated to the tin-bear ing zones of the Kamienica schist belt West ern Sudety Moun tains, SW (in Pol ish with Eng - lish sum mary). In: Sudety Zachodnie od wendu do czwartorzêdu (eds. W. Ciê¿kowski, J. Wojewoda and A. ¯elaŸniewicz):

169–182. WIND, Wroc³aw.

Piestrzyñski, A., Mochnacka, K., Mayer, W., Kucha, H., 1990.

Schee lite and fer ber ite from the tin-bear ing schists of the Kamienica Range (the Sudetes, SW Po land). Mineralogica Polonica, 21: 5–14.

Piestrzyñski, A., Mochnacka, K., Mayer, W., Kucha, H., 1992. Na - tive gold (electrum), Fe-Co-Ni ar sen ides and sulphoarsenides in the mica schists from Przecznica, the Kamienica Range, SW Po land. Mineralogica Polonica, 23: 27–43.

Pietrzela, A., 2019. Re as sess ment of Sn-Co min er al iza tion in mica schists of the Krobica-Gierczyn area (SW Po land). 15th SGA Bi - en nial Meet ing, 27–30 Au gust 2019, Glas gow, Scot land, 4:

1454–1457.

Sahlström, F., Arribas, A., Dirks, P., Cor ral, I., Chang, Z., 2017.

Min er al og i cal dis tri bu tion of ger ma nium, gal lium and in dium at

the Mt Carlton high-sulfidation epi ther mal de posit, NE Aus tra lia, and com par i son with sim i lar de pos its world wide. Min er als, 7:

1–28.

Savko, K.A., Bazikov, N.S., 2011. Phase equi lib ria of bastnaesite, al la nite and monazite: bastnaesite-out isograde in metapelites of the Vorontsovskaya Group, Voronezh Crys tal line Masiff. Pe - trol ogy, 19: 445–469.

Schwarz-Schampera, U., 2014. In dium. In: Crit i cal Met als Hand - book (ed. G. Gunn). Wiley-Blackwell, Lon don.

Schwarz-Schampera, U., Herzig, P.M., 2002. In dium. Ge ol ogy, Min er al ogy, and Eco nom ics. Springer, Berlin.

Shimizu, M., Kato, A., Shiozawa, T., 1986. Sakuraiite: chem i cal com po si tion and ex tent of (Zn,Fe)In-for-CuSn sub sti tu tion. Ca - na dian Min er al o gist, 24: 405–410.

Smulikowski, W., 1972. Petro gen etic and struc tural prob lems of the north ern cover of the Karkonosze Gran ite (in Pol ish with Eng lish sum mary). Geologica Sudetica, 6: 97–188.

Speczik, S., Wiszniewska, J., 1984. Some com ments about stratiform tin de pos its in the Stara Kamienica Chain (south west - ern Po land). Mineralium Deposita, 19: 171–175.

Stevens, L.G., White, C.E.T., 1990. In dium and Bis muth. Met als Hand book, 2, ASM In ter na tional, USA.

Sza³amacha, M., 1976. On the or i gin of cas sit er ite min er al iza tion in the meta mor phic schists of the Karkonosze-Góry Izerskie (Mts.) Block, the Sudetes. In: The Cur rent Met al lo gen ic Prob - lems of Cen tral Eu rope (ed. J. Fedak): 343–349. Wyd. Geol., Warszawa.

Sza³amacha, M., Sza³amacha, J., 1974. Geo log i cal and petrographic char ac ter is tic of schists min er al ized with cas sit er - ite on the ba sis of ma te ri als from the quarry at Krobica (in Pol ish with Eng lish sum mary). Biuletyn Pañstwowego Instytutu Geologicznego, 279: 59–89.

Tay lor, S.R., McLennan, S.M., 1985. The con ti nen tal crust: its com - po si tion and evo lu tion. The Ma te ri als In for ma tion So ci ety, Ohio.

Torró, L., Melgarejo, J.C., Gemmrich, L., Mollinedo, D., Cazorla, M., Martínez, Á., Pujol-Sol´, N., Farré-de-Pablo, J., Cam - prubí, A., Artiaga, D., Torres, B., Alfonso, P., Arce, O., 2019.

Spa tial and tem po ral con trols on the dis tri bu tion of in dium in xenothermal vein-de pos its: the Huari Huari dis trict, Potosí, Bolivia. Min er als, 9: 304.

Wager, L.R., van Smit, R., Irving, H., 1958. In dium con tent of rocks and min er als from the Skaergaard in tru sion, East Green land.

Geochimica et Cosmochimica Acta, 13: 81–86.

Wiszniewska, J., 1983. Or i gin of tin min er al iza tion of the Izera schists in Kamienieckie Range (Sudetes). Archiwum Mineralogiczne, 38: 45–55.

Wiszniewska, J., 1984. The gen e sis of ore-min er al iza tion of the Izera schists in the Kamienieckie Range (Sudetes) (in Pol ish with Eng lish sum mary). Archiwum Mineralogiczne, 40: 115–187.

Wiszniewska, J., Koz³owski, A., Metz, P., 1998. Sig nif i cance of the com po si tion of gar net to clar ify the or i gin of tin min er al iza tion in the Stara Kamienica schist belt, south west Po land. Proc. of IX-th Qadrennial Symp. IAGOD Beijing, China, Stuttgart:

463–473.

Yamanaka, T., Kato, A., 1976. Mossbauer ef fect study of 57Fe and

119Sn in stannite, stannoidite and mawsonite. Amer i can Min er al - o gist, 61: 260–265.

YáÔez, J., Alfonso, P., 2014. Min er al ogy of the Chaparra IOCG de posit, south ern Peru. In EGU Gen eral As sem bly Con fer - ence Ab stracts, 16: https://meetingorganizer.co per ni - cus.org/EGU2014/EGU2014 - 15675.pdf

Cytaty

Powiązane dokumenty

O  zezwierzęceniu w  kon- tekście przejawiania skłonności do  zadawania cierpień bliźniemu pisze Smaga w cytowanym już tutaj tekście, zwracając uwagę, że choć

Na niechętny stosunek polskich historyków literatury do badania wpływów fi- lozofii niemieckiej na literaturę polskiego romantyzmu silnie oddziałały więc, krytyczne w dużej

Very high concentrations of Mn were also found in the thalli of marine Ulva species (Table 9 ). In the thalli of the two Ulva freshwater populations, the Co concentration was found

„W spółpraca ta przyczynia się do spotęgow ania badań n au k o ­ wych wykładowców oraz do lepszej formacji studentów; sprzyja metodzie interdyscyplinardnej, k

In this paper an unsteady aerodynamic model (Beddoes-Leishman type) and an CFD model (URANS) are used to analyze the aeroservoelastic response of a 2D three degree of freedom rigid

Należą do nich: wzajem ne zaakceptow a­ nie, zdolność okazywania uczuć, wzajemny szacunek, poczucie szczęścia w m ał­ żeństwie, w zajem na miłość, satysfakcja z

That is, we examined how kinematic landmarks of reaching and grasping changed in directly grasping an object and in indirectly grasping an object (i.e., handing over an ob- ject

[Dotychczas nakładem Towarzystwa] Nadwarciański Rocznik Historyczno-Archiwalny 2/7,