• Nie Znaleziono Wyników

On a theorem of Bombieri–Vinogradov type for prime numbers from a thin set

N/A
N/A
Protected

Academic year: 2021

Share "On a theorem of Bombieri–Vinogradov type for prime numbers from a thin set"

Copied!
12
0
0

Pełen tekst

(1)

LXXXI.1 (1997)

On a theorem of Bombieri–Vinogradov type for prime numbers from a thin set

by

D. I. Tolev (Plovdiv) In 1940 I. M. Vinogradov considered the set

S

λ

= {p prime | {

p} < p

−λ

},

where λ > 0 is a fixed number and {t} denotes the fractional part of t.

Vinogradov proved ([17], Chapter 4) that if 0 < λ < 1/10 then

(1) X

p≤x, p∈Sλ

1 ∼ x

1−λ

(1 − λ) log x as x → ∞.

A different approach to this problem was developed by Linnik [11] in 1945. In 1979 Kaufman [10] used the method of Linnik and proved the asymptotic formula (1) for λ < 0.1631 . . . He also proved that if the Riemann Hypothesis is assumed then (1) holds for λ < 1/4.

In 1983 Balog [1] and Harman [8] used Vaughan’s identity and mean value estimates for Dirichlet polynomials and independently proved without assuming the Riemann Hypothesis that the formula (1) is true for λ <

1/4. Later Balog [2] generalized his result to prime numbers in arithmetic progressions. We should also mention the works of Schoissengeier [14], [15], Gritsenko [7] and Rivat [13].

In the present paper we use the method of Balog and Harman and we prove a theorem of Bombieri–Vinogradov type for prime numbers from the set S

λ

.

Let λ, θ be real numbers such that

(2) 0 < λ < 1/4, 0 < θ < 1/4 − λ.

Let x be a sufficiently large real number, L = log x; y, u, v, t, α, ν, τ, V, Y, K, M, N, D real numbers; a, k, l, m, n integers; A an arbitrarily large positive

1991 Mathematics Subject Classification: Primary 11N13.

Research done with the financial support of Bulgarian Ministry of Education and Science, grant MM-430.

[57]

(2)

number; ε an arbitrarily small positive number. In formulas which do not involve ε the constants in O-terms and -symbols are absolute or depend only on A, λ, θ. In formulas which involve ε the constants also depend on ε.

As usual, [t] denotes the integer part of t, e(t) = e

2πit

; µ(n), Λ(n), ϕ(n), τ (n) denote M¨obius’ function, von Mangoldt’s function, Euler’s function and the number of positive divisors of n, respectively. P

χ mod k

denotes the sum over all characters (mod k), and P

χ mod k

the sum over all primitive characters (mod k); finally, ψ

λ

(y; k, a) = X

n≤y n≡a (mod k)

{√ n}<n−λ

Λ(n).

We prove the following theorem:

Theorem. If λ and θ satisfy (2) and A > 0 is arbitrarily large then E = X

k≤xθ

max

y≤x

max

(a,k)=1

ψ

λ

(y; k, a) − y

1−λ

ϕ(k)(1 − λ)

 x

1−λ

L

−A

.

P r o o f. We may suppose that A > 10. Let B = 10A. If k ≤ x

θ

then using only a simple counting argument we find

(3) ψ

λ

(xL

−B

; k, a)  L X

n≤xL−B n≡a (mod k)

{√ n}<n−λ

1  k

−1

x

1−λ

L

2−B/2

.

Note that to prove the last estimate the upper bound for θ need not be so tight as in (2). The same happens in other places as well. We use the strong restriction θ < 1/4 − λ only at the end of the proof to obtain (38) and (39) from (36) and (37).

From (3) we get

(4) E  E

1

+ x

1−λ

L

−A

,

where

E

1

= X

k≤xθ

xL−B

max

≤y≤x

max

(a,k)=1

ψ

λ

(y; k, a) − y

1−λ

ϕ(k)(1 − λ)

.

Define u

v

= v(1 − (log v)

−B

), and S

λ

(v; k, a) = X

uv<n≤v n≡a (mod k)

{√ n}<n−λ

Λ(n), S

λ

(v; k, a) = X

uv<n≤v n≡a (mod k) {√

n}<√

nv−1/2−λ

Λ(n),

(3)

P

λ

(v; k, a) = X

uv<n≤v n≡a (mod k)

Λ(n)n

−λ

, P

λ

(v; k, a) = v

−1/2−λ

X

uv<n≤v n≡a (mod k)

Λ(n)n

1/2

.

It is not difficult to see that if xL

−2B

≤ v ≤ x and k ≤ x

θ

then (5) S

λ

(v; k, a) − S

λ

(v; k, a)  k

−1

x

1−λ

L

1−2B

,

P

λ

(v; k, a) − P

λ

(v; k, a)  k

−1

x

1−λ

L

1−2B

.

Let us prove, for example, the first of the inequalities above. We have S

λ

(v; k, a) − S

λ

(v; k, a)  L X

uv<n≤v n≡a (mod k)

√n v−1/2−λ≤{√ n}<√

n u−1/2−λv

1.

If l

2

≤ n < (l + 1)

2

and

n v

−1/2−λ

≤ {

n} <

n u

−1/2−λv

then we have l

2

(1 − v

−1/2−λ

)

−2

≤ n < l

2

(1 − u

−1/2−λv

)

−2

.

We use the definition of u

v

and the restriction imposed on k and after some calculations we find that the expression being estimated is

 L X

√uv−1<l≤√ v

(1 + k

−1

l

2

((1 − u

−1/2−λv

)

−2

− (1 − v

−1/2−λ

)

−2

))

 k

−1

x

1−λ

L

1−2B

.

For each y ∈ [xL

−B

, x] we define the sequence y

i

, 0 ≤ i ≤ i

0

, in the following way:

(6) y

0

= y, y

i+1

= y

i

(1 − (log y

i

)

−B

), y

i0+1

< y(log y)

−B

≤ y

i0

. Clearly

(7) i

0

 L

B+1

.

If y ∈ [xL

−B

, x] then using (3), (5)–(7) we get ψ

λ

(y; k, a) − X

n≤y n≡a (mod k)

Λ(n)n

−λ

 X

0≤i≤i0

(|S

λ

(y

i

; k, a) − S

λ

(y

i

; k, a)| + |S

λ

(y

i

; k, a) − P

λ

(y

i

; k, a)|

+ |P

λ

(y

i

; k, a) − P

λ

(y

i

; k, a)|) + k

−1

x

1−λ

L

2−B/2

 X

0≤i≤i0

|S

λ

(y

i

; k, a) − P

λ

(y

i

; k, a)| + k

−1

x

1−λ

L

2−B/2

.

(4)

The last inequality and (7) imply

(8) E

1

 E

2

+ L

B+1

E

3

+ x

1−λ

L

−A

, where

E

2

= X

k≤xθ

xL−B

max

≤y≤x

max

(a,k)=1

X

n≤y n≡a (mod k)

Λ(n)n

−λ

y

1−λ

ϕ(k)(1 − λ)

,

E

3

= X

k≤xθ

xL−2B

max

≤v≤x

max

(a,k)=1

|S

λ

(v; k, a) − P

λ

(v; k, a)|.

We use the Bombieri–Vinogradov theorem [4] to obtain

(9) E

2

 x

1−λ

L

−A

.

Obviously

(10) E

3

 L max

xL−2B≤V ≤x

E

4

, where

E

4

= E

4

(V ) = X

k≤xθ

V /2≤v≤V

max max

(a,k)=1

|S

λ

(v; k, a) − P

λ

(v; k, a)|.

Hence, using (4) and (8)–(10) we have

(11) E  L

B+2

max

xL−2B≤V ≤x

E

4

+ x

1−λ

L

−A

. Suppose that

(12) xL

−2B

≤ V ≤ x, V /2 ≤ v ≤ V, T = V

1/2+λ

L

2B

, T

0

= V

1/2

/10, k ≤ x

θ

, (a, k) = 1.

Let χ be a character (mod k). We define F (s) = X

uv<n≤v n≡a (mod k)

Λ(n)n

s

, F

χ

(s) = X

uv<n≤v

χ(n)Λ(n)n

s

,

L(s) = X

V1/2/10<l≤10V1/2

l

−s

, H(s) = 1

s (1 − (1 − v

−1/2−λ

)

s

),

I = 1 2πi

1/2+iT

\

1/2−iT

F (s/2)L(s)H(s) ds, I

0

= 1 2πi

1/2+iT

\

0

1/2−iT0

F (s/2)L(s)H(s) ds.

We use Perron’s formula ([6], §17) to get S

λ

(v; k, a) = X

uv<n≤v n≡a (mod k)

Λ(n)([

n ] − [

n(1 − v

−1/2−λ

)])

(13)

(5)

= X

uv<n≤v n≡a (mod k)

Λ(n)

× X

V1/2/10<l≤10V1/2

 1 2πi

1/2+iT

\

1/2−iT

n

s/2

l

−s

H(s) ds

+ O

 min

 1, T

−1

log

n l

−1



+ min

 1, T

−1

log

n

l (1 − v

−1/2−λ

)

−1



= I + O(L(∆

1

+ ∆

2

)), where

1

= X

V /4≤n≤V n≡a (mod k)

X

V1/2/10<l≤10V1/2

min

 1, T

−1

log

n l

−1

 ,

2

= X

V /4≤n≤V n≡a (mod k)

X

V1/2/10<l≤10V1/2

min

 1, T

−1

log

n

l (1 − v

−1/2−λ

)

−1

 .

We use (12) and after some standard calculations we obtain (14)

1

, ∆

2

 k

−1

x

1−λ

L

2−2B

.

If s = 1/2 + it, |t| ≤ T

0

then we may approximate the exponential sum L(s) by an integral ([9], Chapter III, §1, Corollary 1) to get

L(s) = (10V

1/2

)

1−s

− (V

1/2

/10)

1−s

1 − s + O(V

−1/4

) = O

 V

1/4

1 + |t|

 . We also have

(15) H(s)  V

−1/2−λ

, H(s) = v

−1/2−λ

+ O(|s − 1|V

−1−2λ

).

Hence

I

0

= v

−1/2−λ

2πi

1/2+iT

\

0

1/2−iT0

F (s/2) (10V

1/2

)

1−s

− (V

1/2

/10)

1−s

1 − s ds

(16)

+ O



V

−3/4−λ

T

\

0

−T0

F

14

+

12

it  dt 

.

Using the orthogonality of characters (mod k), Cauchy’s inequality and

Theorem 6.1 of [12] we get

(6)

T

\

0

−T0

F

14

+

12

it 

dt  1 ϕ(k)

X

χ mod k T

\

0

−T0

F

χ 1

4

+

12

it  dt

 1

ϕ(k) X

χ mod k

T

01/2



T

\

0

−T0

F

χ 14

+

12

it 

2

dt



1/2

 x

3/2

L.

We substitute the last estimate in (16) and apply Perron’s formula again.

We get

(17) I

0

= P

λ

(v; k, a) + O(k

−1

x

1−λ

L

−2B

).

From (13)–(17) and from the orthogonality of the characters (mod k) we obtain

S

λ

(v; k, a) − P

λ

(v; k, a)

 k

−1

x

1−λ

L

3−2B

+ V

−1/2−λ

ϕ(k)

X

χ mod k T

\

T0

F

χ 1

4

+

12

it  ·

L

12

+ it  dt.

The last estimate and (11) imply

(18) E  L

B+3

max

xL−2B≤V ≤x

(V

−1/2−λ

E

5

) + x

1−λ

L

−A

, where

E

5

= E

5

(V ) = X

k≤xθ

1 k

X

χ mod k

V /2≤v≤V

max

T

\

T0

F

χ 1

4

+

12

it  ·

L

12

+ it  dt.

We approximate the exponential sum L in the last expression by a shorter one ([9], Chapter III, §1, Theorem 1) and we obtain

L

12

+ it 

 1 +

X

tV−1/2/(20π)<l≤5tV−1/2

l

−1/2−it

= 1 + |L

1

(t)|, say. Hence we have

E

5

 X

k≤xθ

1 k

X

χ mod k

V /2≤v≤V

max

T

\

T0

F

χ 14

+

12

it 

(1 + |L

1

(t)|) dt (19)

 L max

x1/2L−1−B≤Y ≤x1/2+λL2B

E

6

,

where

E

6

= E

6

(V, Y ) = X

k≤xθ

1 k

X

χ mod k

V /2≤v≤V

max

Y

\

Y /2

F

χ 14

+

12

it 

(1 + |L

1

(t)|) dt.

(7)

The interval of summation in L

1

(t) depends on t. To get rid of this depen- dence we apply, for example, Lemma 2.2 of [5] to get

|L

1

(t)| 

\

−∞

K(α)|L

2

(t, α)| dα, where

L

2

(t, α) = X

Y V−1/2/200<l≤2Y V−1/2

e(αl)l

−1/2−it

and where the kernel K(α) depends only on α, Y, V and satisfies the in- equalities

K(α) ≥ 0, 1 

\

−∞

K(α) dα  L.

Therefore

(20) E

6

 L max

0≤α≤1

E

7

, where

E

7

= E

7

(V, Y, α)

= X

k≤xθ

1 k

X

χ mod k

V /2≤v≤V

max

Y

\

Y /2

F

χ 1

4

+

12

it 

(1 + |L

2

(t, α)|) dt.

We use the properties of primitive characters and the inequality (21)

Y

\

Y /2

|L

2

(t, α)| dt  Y,

which is a consequence of Cauchy’s inequality and Theorem 6.1 of [12]. After some calculations we get

(22) E

7

 L(E

8

+ E

9

) + x, where

E

8

= E

8

(V, Y, α) = max

V /2≤v≤V Y

\

Y /2

X

uv<n≤v

Λ(n)n

1/4+it/2

(1 + |L

2

(t, α)|) dt, E

9

= E

9

(V, Y, α)

= X

k≤xθ

1 k

X

χ mod k

V /2≤v≤V

max

Y

\

Y /2

F

χ 1

4

+

12

it 

(1 + |L

2

(t, α)|) dt.

It remains to prove that if V and Y satisfy the conditions imposed in (18), (19) then we have

(23) E

8

, E

9

 x

3/2−ν

(8)

for some ν > 0. The proof of the theorem follows from (18)–(20), (22), (23).

Let us consider E

9

. The estimation of E

8

is similar and, in fact, it was done in [1]. Clearly

(24) E

9

 L max

K≤xθ

(K

−1

E

10

), where

E

10

= E

10

(V, Y, α, K)

= X

k≤K

X

χ mod k

V /2≤v≤V

max

Y

\

Y /2

F

χ 14

+

12

it 

(1 + |L

2

(t, α)|) dt.

Let

(25) D = x

λ+(1−4λ)/400

.

We apply Vaughan’s identity [16] to get F

χ 14

+

12

it 

= F

1

− F

2

− F

3

− F

4

, where

F

1

= X

m≤D

X

uv/m<n≤v/m

µ(m)(log n)χ(mn)(mn)

1/4+it/2

,

F

2

= X

m≤D

X

uv/m<n≤v/m

c(m)χ(mn)(mn)

1/4+it/2

,

F

3

= X

D<m≤D2

X

uv/m<n≤v/m

c(m)χ(mn)(mn)

1/4+it/2

,

F

4

= X X

uv<mn≤v, m,n>D

a(m)Λ(n)χ(mn)(mn)

1/4+it/2

,

|c(m)| ≤ log m, |a(m)| ≤ τ (m).

We have

(26) E

10

 E

10(1)

+ E

(2)10

+ E

10(3)

+ E

10(4)

, where E

10(i)

denotes the contribution to E

10

arising from F

i

.

Let us consider E

10(1)

. We have F

1

= X

m≤D

µ(m)χ(m)m

1/4+it/2

W

m

,

(9)

where

W

m

= X

uv/m<n≤v/m

(log n)χ(n)n

1/4+it/2

= X

1≤l≤k

χ(l) X

uv/m<n≤v/m n≡l (mod k)

(log n)n

1/4+it/2

= X

1≤l≤k

χ(l)Γ

l

,

say. We use (2) and (25) to conclude that the exponential sum Γ

l

may be approximated by an integral ([9], Chapter III, §1, Corollary 1). More precisely, we have

Γ

l

= 1 k

v/m

\

uv/m

(log y)y

1/4+it/2

dy + O

 x m



1/4

L

 .

Since the character χ is primitive we have P

1≤l≤k

χ(l) = 0. Hence W

m

 K

 x m



1/4

L, F

1

 DKx

1/4

L.

The last estimate and (21) imply

(27) E

10(1)

 DK

3

x

1/4

Y L.

Using the bounds for Y and K imposed in (19) and (24) and also (2), (25), (27) we get

(28) E

10(1)

 Kx

11/8

.

We estimate E

10(2)

analogously and we obtain

(29) E

10(2)

 Kx

11/8

.

Consider now E

10(4)

. We have E

10(4)

 X

k≤K

X

χ mod k

V /4≤v≤V

max

Y

\

Y /2

X X

m,n>Dmn≤v

a(m)Λ(n)χ(mn)(mn)

1/4+it/2

(30)

×(1 + |L

2

(t, α)|) dt

 L

2

max

D≤M,N ≤x/D M N ≤x

E

11

,

where

E

11

= E

11

(V, Y, α, K, M, N ) (31)

= X

k≤K

X

χ mod k

V /4≤v≤V

max

Y

\

Y /2

|F

(t)|(1 + |L

2

(t, α)|) dt,

(10)

F

(t) = X X

M <m≤2M N <n≤2N

mn≤v

a(m)Λ(n)χ(mn)(mn)

1/4+it/2

.

We may suppose that the maximum in (31) is taken over v of the form 1/2 + l where l is an integer. Applying again Perron’s formula we obtain

F

(t) = X

M <m≤2M

X

N <n≤2N

a(m)Λ(n)χ(mn)(mn)

1/4+it/2

×

 1 2πi

L−1

\

+ix L−1−ix

 v mn



s

ds

s + O

 x

−1

log v

mn

−1



. Hence

(32) F

(t)  L

x

\

−x

|M| · |N |

1 + |τ | + x

1/3

, where

M = X

M <m≤2M

a(m)χ(m)m

1/4−L−1+i(t/2−τ )

,

N = X

N <n≤2N

Λ(n)χ(n)n

1/4−L−1+i(t/2−τ )

. Formulas (21), (31) and (32) imply

(33) E

11

 L

x

\

−x

E

12

1 + |τ | + Kx

13/12

where

E

12

= E

12

(Y, α, K, M, N, τ ) = X

k≤K

X

χ mod k Y

\

Y /2

|M| · |N |(1 + |L

2

(t, α)|) dt.

Suppose, for example, that M ≤ N . Then M, N satisfy (34) D ≤ M ≤ x

1/2

, D ≤ N ≤ x/D, M N ≤ x.

By the Cauchy inequality we have

(35) E

12

 (E

13

)

1/2

(E

14

)

1/2

, where

E

13

= E

13

(Y, α, K, N, τ ) = X

k≤K

X

χ mod k Y

\

Y /2

|N |

2

dt,

E

14

= E

14

(Y, α, K, M, τ ) = X

k≤K

X

χ mod k Y

\

Y /2

|M |

2

(1 + |L

2

(t, α)|

2

) dt.

(11)

We estimate E

13

by Theorem 7.1 of [12] to get (36) E

13

 L(K

2

Y + N )N

3/2

.

To estimate the integral in the expression for E

14

we use Theorem 6.1 of [12] and also Theorem 1 of [3]. We obtain

Y

\

Y /2

|M|

2

(1 + |L

2

(t, α)|

2

) dt  x

ε

M

3/2

Y, hence

(37) E

14

 x

ε

M

3/2

K

2

Y.

We use (2), (24), (25), (30), (33)–(37) to get

(38) E

10(4)

 Kx

3/2−ν

for some ν > 0. Let us point out that only in this place do we need the tight restriction θ < 1/4 − λ.

We proceed with E

10(3)

analogously to obtain

(39) E

10(3)

 Kx

3/2−ν

for some ν > 0.

We use (24), (26), (28), (29), (38), (39) to find that E

9

 x

3/2−ν

for some ν > 0. The estimation of E

8

is similar, so we have proved (23) and the proof of the theorem is complete.

Finally, the author would like to thank the referee for his useful remarks.

References

[1] A. B a l o g, On the fractional parts of p

θ

, Arch. Math. (Basel) 40 (1983), 434–440.

[2] —, On the distribution of p

θ

(mod 1), Acta Math. Hungar. 45 (1985), 179–199.

[3] A. B a l o g and G. H a r m a n, On mean values of Dirichlet polynomials, Arch. Math.

(Basel) 57 (1991), 581–587.

[4] E. B o m b i e r i, On the large sieve, Mathematika 12 (1965), 201–225.

[5] E. B o m b i e r i and H. I w a n i e c, On the order of ζ(

12

+ it), Ann. Scuola Norm. Sup.

Pisa 13 (1986), 449–472.

[6] H. D a v e n p o r t, Multiplicative Number Theory (revised by H. Montgomery), Sprin- ger, 1980.

[7] S. A. G r i t s e n k o, On a problem of I. M. Vinogradov, Mat. Zametki 39 (1986), 625–640 (in Russian).

[8] G. H a r m a n, On the distribution of

p modulo one, Mathematika 30 (1983), 104–

116.

[9] A. A. K a r a t s u b a and S. M. V o r o n i n, The Riemann Zeta-Function, de Gruyter, 1992.

[10] R. M. K a u f m a n, The distribution of

p, Mat. Zametki 26 (1979), 497–504 (in

Russian).

(12)

[11] Yu. V. L i n n i k, On a theorem in prime number theory, Dokl. Akad. Nauk SSSR 47 (1945), 7–8 (in Russian).

[12] H. L. M o n t g o m e r y, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971.

[13] J. R i v a t, Doctoral thesis, Universit´e de Paris-Sud, 1992.

[14] J. S c h o i s s e n g e i e r, The connection between the zeros of the ζ-function and se- quences (g(p)), p prime mod1, Monatsh. Math. 87 (1979), 21–52.

[15] —, Eine neue Diskrepanz f¨ ur gewisse Primzahlfolgen, Sitzungsber. Math.-Naturwiss.

Kl., Abt. II, 187 (1978), 219–224.

[16] R. C. V a u g h a n, An elementary method in prime number theory, Acta Arith. 37 (1980), 111–115.

[17] I. M. V i n o g r a d o v, Special Variants of the Method of Trigonometric Sums, Nauka, Moscow, 1976 (in Russian).

Department of Mathematics Plovdiv University “P. Hilendarski”

Plovdiv 4000, Bulgaria

E-mail: dtolev@ulcc.uni-plovdiv.bg

Received on 30.8.1996

and in revised form on 20.1.1997 (3041)

Cytaty

Powiązane dokumenty

This indicates the trajectories of solutions as they evolve over the independent variable (time, perhaps) and you can investigate whether they approach or retreat from the

As a consequence we can show that a Dirichlet L-function (in- cluding the Riemann zeta-function) satisfies the Riemann hypothesis and its all nontrivial zeros are simple if and only

By taking S to be intuitionistic logic, the many-valued logic of Lukasiewicz, modal logic (with the necessitation rule), and BCK logic, we get a functional representation theorem

The above remark completes the proof of the

The formula of Theorem 1 seems to be the proper formu- lation of a condition equivalent to the RH in terms of a short interval sum of % ν ’s themselves since it gives not only

We present a stability theorem of Ulam–Hyers type for K-convex set-valued functions, and prove that a set-valued function is K-convex if and only if it is K-midconvex

We have already seen how we can use the position vector r for a general point on the line, and then use the condition to write an equation for λ.. See Worked

We define a Nielsen equivalence relation on C f,g and assign the co- incidence index to each Nielsen coincidence class.. The converse, however, is false