• Nie Znaleziono Wyników

Strongly Starlike Functions of Higher Order

N/A
N/A
Protected

Academic year: 2021

Share "Strongly Starlike Functions of Higher Order"

Copied!
6
0
0

Pełen tekst

(1)

UNIVEESITATIS MAEIAE C UE I E-S К Ł O D O W S К A LUBLIN - POLONIA

VOL. XXX, 8 SECTIO A 1976

Department of Mathematics, Howard University, Washington, D. C. 20059, USA

RONALD J. LEACH

Strongly Starlike Functions of Higher Order

Funkcje mocno gwiaździste wyższego rzędu Сильно звездные функции высшего порядка

1. Introduction. In [3], D. Brannan and W. Kirwan defined the class 8* (a) of all function f(z) = z+a2z*+... analytic in the unit disc U for which

(1.1) larg-zf'W

fW

<Х7г/2 ze U, a> 0.

(Note that (1.1) implies that zf'(z)lf(z) is analytic and non-zero in U.) Functions in 8* (a) are called strongly starlike of order a. The class #*(1) is the usual class of normalized univalent starlike functions and if a < 1, 8* (a) consists only of bounded starlike functions [3]. The class S*(a), 0< a<l, has been studied extensively (e.g. [1], [3], [6], [7], [8], [9]).

In this note we consider the case a > 1. We obtain sharp estimates on distortion and coefficients, using extreme point and subordination techniques, the function fa defined by

z

(1.2) fa(z) = zexp(/+

0

being essentially the only extremal function.

2. Basic properties of S*(a).

Theorem 2.1. The extreme points of {log/(z)/z: feS*(a)}, a> 1, are precisely the functions logf(xaz)/xz, |»| = 1.

Proof. As noted in [3], f e S*(a) if and only if (2.1) -f'(z)lf(z) = (p(z))a,

where p(z) is subordinate to (l + «)/(l —z). By [2, Theorem 2.1], the ex­

tremepoints of {pa} are precisely the functionof the form ((1 + a:z)/(l — a?z))“

l®| = 1, for a > 1. The transformation

«(log/(z)/z)' = (p(z))°-1

(2)

is linear and 1—1 from {logf(z)lz: fe8*(a)} onto {pa}. The result now follows since extreme points of {logf(z)/z:fe8*(a)} are of the form

wwz,=/[(|^) -i]4 - / [(4^) -1]v -

Corollary 2.2. Let fe 8* (a), a > 1, then (2.2) /o(-r)< \f(reie)\^fa(r),

(2.3) ((i-r)l(l +r))af'a(-r)lr^\f'(rei6)\ < (l +r/(l-r))a/a(r)/r.

Proof. Inequality (2.2) follows upon exponentiation. To prove (2.3), note that by (2.1), if z =re’8,

((l-r)/(l + r))°< |z/'(z)//(*)l < ((l + r)/(l-r))°.

Since/a(r) > r/(l —r)2 for a > 1,fa is not univalent in the unit disc U and thus the radius of univalence Rv of 8* (a) isless than 1. The next three theorems give successively better lower bounds on Rv; an upper bound is obtained in Corollary 3.2. The exactdetermination of Rv appears quite difficult since 8*(a) is not a linear invariant family. We note that the ideas ofTheorems 2.3 and 2.4 are essentially dueto Stankiewicz who proved analogous results if a < 1.

Theorem 2.3. If f eS*(a) with a 1, then f is convex for |#| <rc, where

rc =a+l-(a2 + 2a)1/J. The result is sharp with equality for f —fa.

Proof. The proof given in [7] using a result of Causey and Merkes [4]

is valid for all a > 0.

Theorem 2.4. If f e 8* (a) with a > 1, then f is starlike for |z| < r3, where

rs = csc(Ti/2a)—cot(%/2a).

The result is sharp, with equality for f =fa.

Proof. Since zf'(z)/f(z) is subordinate to ((l +z)/(l — z))a, (2.4) \a,Tgzf'(z)lf(z)\< a|arg(l + z)/l —z)|.

A short calculation yields, with z = ret6,

(2.5) arg(l + z)/(l — z) — arctan(2rsin0/(l — r2)).

Combining (2.4) and (2.5) we have

(2.6) |argz/'(z)lf(z)\< arctan(2r/l —r2).

(3)

The result now follows since the left hand side of (2.6) is less than n/2 for r< rs. Clearly equality holds in all these inequalities if and only if f(z) =x~lfa(xz).

Theorem 2.5. If feS*(a) with a > 1, then f is close-to-convex in

|z| < rk, where rk is the radius of close-to-convexity of fa.

Proof. Following an idea of Krzyż [5], we will determine

where the minimum is taken over all z — re'0 and z0 = rei0° with |0| < n,

|0O| < 71.

It follows from (2.1) that (2.7) arg 2/'(2)

20/'(2«)

P(«) /(2)

a arg--—- +arg ■ -P(2„) /(20)

" +logf +Im[/- / fW-M *]

Since {P°} is rotationally invariant, the minimum of (2.7) depends only on 0—0O. Let 0O be fixed. Now / (P°(t) —l) dt/t is the limit of sums of

the form 0

Consequently, (2.7) is the limit of 0n(logp“(z)) where <pn is entire.

Since P(z) is subordinate to (l + z)l(l — z), 0„logP°(«)) attains its mini­ mum for eachz only ifP(z) — (l + xz)l(l—xz), |a?| — 1. Let zn be chosen so this minimum is 0„logPa(z„)). If Jf is the minimum of (2.7), there is a subsequence 0mlogPa(zm)) for which zm converges to z', xm converges to x' and hence (2.7) is minimized when z — z' for the function P(z)

— (l + x'z)l(l — x'z). This completes the proof.

We note that it is possible to compute numerical values of rk for specific a using (2.5).

9. Coefficient bounds. In [1], Brannan, Clunie and Kirwan studied the coefficient problem for #*(a) if 0 < a< 1. They showed that

(3.1) |«2I < 2a (0 < a< 1) (3.2) |«sl < a (0< a< 1/3)

(3.3) < 3a2 (l/3<a<l)

(3.4) |«3l <1/3 a = 1/3.

5 — Annales

(4)

The extremal functions for (3.1) and (3.3) are the functions f(z) = g+

+ 2az2 + 3a2z3+ ... of (1.2) together with its rotations. Extremal functions for (3.2) and (3.4) are defined by

zf(z)lf(z) = ((l+»«2)/(l-®s,))a |®| = 1 and

ll + xz\a ll + XsfV

=1’ °<A<1- In addition they showed that for each n, if a is sufficiently close to 1, |a„|

is maximized by An, where

(3.5) fa(z) =z + j?Anzn

n-2

We are able to solve completely the coefficient problem if a > 1.

Theorem 3.1. Let f(z)=z+a2zt +...eS*(a), a >1. Then |an| <

Proof. Let (P(z))a — l + b1z + b2zi+... be the function defined by (2.1). By a result of Brannan, Clunie and Kirwan [2, Corollary 2.1],

|6„| < Bn, where

(3.6) ((l + z)/(l-z))a = l+B1z+BiS+....

Comparing coefficients in (2.1) we obtain

(3.7) (n—l)an =b1a„_l +62«„_2 +...+bn.

Since «2 = bi, the result is true if n = 2. Suppose that |oA| <Ak, 2^fc<w—1. Then from (3.6) and (3.7) we see that

(«—1) |a„| B1An_1 +B2An_2+...+Bn = An. This completes the proof.

Corollary 3.2. -Rr^l/a.

Proof. j42 = 2 a.

Theorem 3.3. Let g(z) —z+ am+1zm+1 +... be an m-fold symmetric function in S*(a), a>l. Then

l®„»fc+ll @mk+l 1, 2, ...

where O(z) = z+Cm+1zm+1 +... is defined by zG'(z) /l+ 2m\a _ G(z) ~ \l-z”7 ’

(5)

Proof. The proof is analogous to that of Theorem 3.1, using the factthatifQ (z) is anw-fold symmetric function with Q (0) = 1,ReQ («) > 0, then the coefficients of (Q(z))a are bounded by those of /l + zm\a

REFERENCES

[1] Brannan, D., Clunie, J. and Kirwan, W., Coefficient estimates for a class of starlike functions, Canad. J. Math., 22 (1970), 476-485.

[2] ,, , On the coefficient problem for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. AI, 523 (1973), 18 pp.

[3] Brannan, D. and Kirwan, W., On some classes of bounded univalent functions, J. London Math. Soc.. (2), 1 (1969), 431-443.

[4] Causey, W. and Merkes, E., Radii of starlikeness of certain classes of analytic functions, J. Math. Anal. Appl., 31 (1970), 201-204.

[5] Krzyż, J., The radius of close-to-convexity within the family of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 20 (1962), 201-204.

[6] Leach, R., On some classes of multivalent starlike functions, Trans. Amer. Math.

Soc., 209 (1975), 267-273.

[7] Stankiewicz, J., Some extremal problems for the class Sa, Ann. Univ. Mariae Curie-Sklodowska, Sect. A., 25 (1971), 101-107.

[8] ,, , Quelques problèmes extremaux dans les classes des fonctions a-angulairement etoilees, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 20 (1966), 59-75.

[9] ,, , Some remarks concerning starlike functions, Bull. Acad. Polon. Soi. Sér.

Sci. Math. Astronom, Phys., 23 (1970), 143-146.

STRESZCZENIE

W pracy autor bada tzw. funkcjo mocno gwiaździste rzędu a, przy a > 1. Otrzy­

mał on twierdzenia o zniekształceniu, oszacowanie współczynników, a także promień gwiaździstości i wypukłości dla funkcji rozważanej klasy.

РЕЗЮМЕ

В этой работе автор занимается так называемыми сильно звездообразными функциями порядка а, а>1. Получил он теоремы об искажению, оценку коэффициентов, а также радиус звездообразности и выпуклости для функции этого класса.

(6)

Cytaty

Powiązane dokumenty

We investigate, in this paper, the family J2a(A, J?J in terms of its coefficients, and then determine extreme points, radii of univalence, starlikeness, and convexity, and order

We shall give the geometrical interpretation of functions of this family and prove a theorem connected with the circular symmetrization of strongly starlike domains..

Współczynniki Grunsky’ ego funkcji meromorficznycłi gwiaździstych i wypukłych Коэффициенты Грунского мероморфных, звёздных и

By fixing the exponents in our previous classes, we may vary the orders of starlikeness and convexity to obtain results analogous to the previous theorems. 8 —

Współczynniki funkcji odwrotnych do funkcji regularnych gwiaździstych Коэффициенты функций обратных к регулярным звездным функциям.. Except for rotations the

formly convex and uniformly starlike, and some related classes of univalent functions. We also introduce a class of functions ST«) which is given by the property that the image of

M., On classes of functions related to starlike functions with respect to symmetric conjugate points defined by a fractional differential operator, Complex Anal.. M., Coefficient

The author warmly thanks the referee for his careful reading and making some valuable comments which have essentially im- proved the presentation of this