• Nie Znaleziono Wyników

Microwave self-healing technology as airfield porous asphalt friction course repair and maintenance system

N/A
N/A
Protected

Academic year: 2021

Share "Microwave self-healing technology as airfield porous asphalt friction course repair and maintenance system"

Copied!
10
0
0

Pełen tekst

(1)

Delft University of Technology

Microwave self-healing technology as airfield porous asphalt friction course repair and

maintenance system

Tabakovic, Amir; O’Prey, Declan; McKenna, Drew; Woodward, David

DOI

10.1016/j.cscm.2019.e00233

Publication date

2019

Document Version

Final published version

Published in

Case Studies in Construction Materials

Citation (APA)

Tabaković, A., O’Prey, D., McKenna, D., & Woodward, D. (2019). Microwave self-healing technology as

airfield porous asphalt friction course repair and maintenance system. Case Studies in Construction

Materials, 10, [e00233]. https://doi.org/10.1016/j.cscm.2019.e00233

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Case

study

Microwave

self-healing

technology

as

air

field

porous

asphalt

friction

course

repair

and

maintenance

system

Amir

Tabakovic

a,b,c,

*

,

Declan

O

’Prey

d

,

Drew

McKenna

e

,

David

Woodward

e

aResearch,EnterpriseandInnovation,TechnologicalUniversityDublin,Ireland bMaterialsandEnvironment,DelftUniversityofTechnology,Netherlands c

SchoolofCivilEngineering,UniversityCollegeDublin,Ireland

d

LaganBitumenLtd,BreedonGroup,Ireland

e

BelfastSchoolofArchitecture,ArtandtheBuiltEnvironment,UlsterUniversity,Ireland

ARTICLE INFO Articlehistory:

Received16October2018

Receivedinrevisedform25February2019 Accepted3March2019

Keywords:

Self-healingofasphaltpavements Microwaveheating

Porousasphalt PorousFrictionCourse

ABSTRACT

Aproblemincreasinglyfacedbyairportauthoritiesisthemaintenanceofrunways.Dueto theirlargeaircraft loadings associatedwith take-offand landingoperations,runways experiencesurfacedeterioration.Poorqualityrunwaysurfacescannotbetoleratedinsuch anenvironment.Maintenanceissuesmustbecarriedouttomaximisesafetyandminimise theriskofaircraftdamage.Arecentdevelopmenthasbeentheintroductionofself-healing technologies such as rejuvenatorencapsulation, inductionand microwave heatingto addresstheseissues.Thispapersummarisesalaboratoryinvestigationtodeterminethe effectivenessofmicrowaveself-healingforcrackrepairofPorousFrictionCourse(PFC) usedforairfields.Fourmixturescontainingvaryingpercentagesofconductivesteelfibre weretested.TheirrelativeperformancewasassessedusingtheIndirectTensileStiffness Modulus(ITSM)andIndirectTensileStrength(ITS)testmethods.Theresultsshowthatthe additionofconductive steelfibreincreasesinitialstiffnessandstrengthofthemix.A combinationofmicro-waveheatingandsteelfibreadditiontothemixindicatesthatitis possible to significantly improve asphalt performance by making it self-healing to structuralproblemssuchascracking.

©2019TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.Introduction

Thetwomostimportantmaterialsusedintheconstructionofrunwaysurfacesaroundtheworldareeithercementor asphalt based.The EAPA [1] reportedthat out of 126runways surveyed,58 wereconstructed withasphalt,37 were constructed using concrete and 31 constructed using some other material. Irrespective of the construction method employed,runwaysneedtobeconstructedwithsufficientstrengthtocarrythemovingaircraft.Theirrunwaysmusthave adequatewetskidresistanceinviewoftheveryhighspeedsinvolved.Poorwetskidresistanceisacommonproblemfor agedconcreterunways.Onewayofmaintainingorrenewingoperationalwetskidresistanceintheseinstancesistooverlay theoldrunwaysurfacewithanewporousopen-gradedsurfacecourseknownasporousasphaltorfrictioncourse(EAPA, 2003).Theporousmaterialactsasadrainagelayertoreducesurfacewateradverselyaffectingaircrafttyregriponthe surfacinginwetweather.However,thehighairvoidscontentoftheseporousasphaltmaterialsi.e.typicallyaround20%,

*Correspondingauthorat:Research,EnterpriseandInnovation,TechnologicalUniversityDublin,Ireland. E-mailaddress:amir.tabakovic@dit.ie(A.Tabakovic).

https://doi.org/10.1016/j.cscm.2019.e00233

2214-5095/©2019TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

ContentslistsavailableatScienceDirect

Case

Studies

in

Construction

Materials

(3)

allowwaterandairtopenetrateintothesurfacecourselayer.Thiscanaccelerateageingleadingtorapidhardening,reduced flexibilityandultimatelytoaggregatelossandfretting[2].

Self-healingtechnology[3]offersanalternativemethodforasphaltairfieldrunwaymaintenance.Threemainmethods havebeendeveloped.Rejuvenationisanencapsulatedhealingagentintheformofacapsulethatisaddedintotheasphalt mixduringproductiontorestoretheoriginalbinderproperties[4–10].Whenmicrocracksareinitiatedwithintheasphalt layer,theyencounteracapsuleinthecrackpropagationpath.Thefractureenergyatthetipofthecrackopensthecapsule, releasingthehealingagentwhichthendiffuseswithintheasphaltbindertosealthemicrocrack.Ithasbeenreportedthat rejuvenationmaytakeapproximately20h[9].Inductionheatingandmicrowaveheatinginvolvetheadditionofelectrically conductivefillerssuchassteelfibresorsteelwooltotheasphaltmix[3,11–17]duringproduction.Inductionheatingcreates analternatingcurrentwhichflowsthroughacoilandproducesaninvisibleelectromagneticfieldaroundthecoil.Whenthis electromagneticfieldisinducedoveraconductiveasphaltpavement,itcausesthesteelfibreswithintheasphaltmixtoheat up.Thisheatstheagedbitumenandsoftensit,allowingittoflowandrepairthemicrocrackdamage.Microwaveheating createshighenergywavelengthswhichreactwiththeconductivefibresintheasphalt.Thiscausesthefibrestoheatup whichthenheatstheagedbitumenandsoftensit,allowingittoflowandrepairthemicrocrackdamage.Laboratorystudies haveshownboth methodscanrepair testspecimendamagewithin3minforinduction[18,19]and microwave[15,20] heating.Themicrowavemethodrequireslessconductivefibrestoachievetherequiredtemperaturetohealthedamage. Thestudyreportedinthispaperinvestigatestheeffectivenessofmicrowaveself-healingforthecrackrepairofPorous FrictionCoursemixesthatwouldtypicallybeusedforairfields.Fourmixturescontainingvaryingpercentagesofconductive steelfibrewereevaluatedusingatestingprogrammethatcrackedthetestspecimens,healedthesecracksandevaluatedthis processusingtheIndirectTensileStiffnessModulus(ITSM)andIndirectTensileStrength(ITS)testmethods.Theresults showedthatconductivesteelfibresincreaseinitialstiffnessandstrengthofthemix.Theadditionofsteelfibressignificantly improved asphalt healing performance. The results found that Porous Friction Course containing 5% steel fibres outperformedthecontrolmixwithoutfibresandallofthemixturescontaininghighercontentsofthefibre.

2.Materials

2.1.PorousFrictionCoursemix

ThePorousFrictionCourse(PFC)mixwaspreparedinaccordancewithMODSpecification040.Theaggregatewasahigh skidresistanceSiluriangreywackefromNorthernIreland.ThefillerwasacombinationofcrushedCarboniferouslimestone fillerandhydratedlimetoBSEN459-1.Thebitumenwasa160/220penasspecifiedbyMOD040.Fig.1showsthemix gradingcurve.

Table1summarisesthePFCmixconstituentsandshowstheirproportionsinthemix,bothwithandwithoutsteelfibres. Thefibreswereaddedinanamountof5%,10%and15%.Gonzalezetal[21]haddemonstratedthat5%isanoptimumfibre contentwithinanytypeofasphaltmixformicrowavehealingprocess.Liu[22]hadshowedthattheoptimumcontentof conductivefibreforinductionhealingofanPorousasphaltmixis10%.Theaggregategradingwaskeptconstant.Theaddition ofsteelfibreswasusedtoreplacebymasspartofthebitumencontent.

2.2.Steelfibres

ThesteelfibreusedwasGrade3coarse-grainedTrollullSteelWool.Fig.2illustratesthesteelwoolfibreused.Thefibre diameterwas90

m

m.Thefibreswerecutusingscissorstoapproximately10mminlength.

ThemixingprocedurewasamendedtoavoidconglomerationofsteelfibreswithinthePFCmix.Thecoarseaggregate, sand,filler,limeandbitumenweremixedfirst.Thesteelfibreswerethenaddedslowlytothemix.Thisincreasedtheasphalt mixingperiodcausingthemixtostartcoolingandreduceditsworkability.ThePFCmixhadtobereheatedseveraltimesto 160C.ThefinalmixingofthePFCwasperformedbyhandtoensurethatallofthemixconstituentswerefullyandevenly coatedbythebitumen.

Fig.1.PFCmixgrading.

(4)

2.3.Testspecimencompaction

ThetestspecimenswerecompactedinaccordancewithISEN12697-31:2007usingaSERVOPACgyratorycompactor. Eachtestspecimengot100gyrations.Theywere100mmindiameterandapproximately80mminthickness.Thetargetair voidcontentwas16%basedonamaximumdensityof2263kg/m3.Intotal16cylindricalspecimens,4testspecimensper mix,wereproducedperPFCmix.Thespecimenswerecutto50mmthicknessusingamasonrycuttingsawfortesting. 3.Testingmethodology

3.1.PFCBinderDrainagetest

ThebinderdrainagetestwascarriedoutinaccordancewithEN12697-18usingtheSchellenbergMethod.Asampleof mixedPFCmaterialwasplacedintheglassjarandkeptat160Cfor1h.Followingthisthecontentsofthejarwereemptied outandthejarreweighedtocalculatetheamountofbinderleftadheredtotheinsidesoftheglassjar.

3.2.IndirectTensileStiffnessModulustest

Thenon-destructiveIndirectTensileStiffnessModulus(ITSM)testwasconductedinaccordancewithEN12697-26:2012. ThisusedaCooperServo-pneumaticUniversalTestingMachinewithapneumaticcloseloopcontrolsystem.Thespecimens wereconditionedat10Cforfourhourspriortotesting.TwoLinearVariableDifferentialTransformers(LVDT)wereusedto measurethehorizontaldeformation.Thestiffnessvaluewasrecordedontwodiametersorientatedat90toeachotherand anaverageofthesetwovaluesreportedasthespecimenstiffness.

3.3.IndirectTensileStrengthtest

TheIndirectTensileStrength(ITS)testwasconductedinaccordancewithEN12697-23:2003.ThisusedaMarshall/ IndirectTensileCompressiontester.AfterITSMtesting,thespecimenswereconditionedinatemperaturecontrolchamberat 5Cfor1h.TheITStestappliesaverticalcompressivestriploadataconstantloadingrate,inthiscase50mm/s,tothe

cylindricalspecimen.Theloadisdistributedoverthethicknessofthespecimenthroughtwoloadingstripsatthetopand bottomofthetestspecimen.Thetestswereconductedat5Ctoensurecrackinitiationandpropagationalongthetest

specimencentralloadingline.Thespecimenswereloadeduntiltheloadvaluehadfallenbacktozeroorthespecimenhad fullysplitintotwo.UseoftheITStestcreatedtwohalvesofatestspecimenthatcouldthenberecombinedandsubjectedto micro-waveheating.

3.4.HealingefficiencyofPFCmixcontainingsteelfibres

Atestingprogrammewasdesignedtoinvestigatetheeffectoftheconductivesteelfibresonthemechanicalpropertiesof thePFCmixandevaluatethehealingefficiencyofthemicrowavehealingsystem.Theprogrammeisasfollows:

Table1

PFCmixcomposition.

MixConstituent(mm) Control 5%Steelfibre 10%Steelfibre 15%Steelfibre

14to10 3.0% 3.0% 3.0% 3.0% 10to6.3 50.0% 50.0% 50.0% 50.0% 6.3to2.0 25.0% 25.0% 25.0% 25.0% 2.0to0.063 17.5% 17.5% 17.5% 17.5% Filler 2.5% 2.5% 2.5% 2.5% Hydratedlime 2.0% 2.0% 2.0% 2.0% Bitumen(160/220) 5.5% 5.22% 4.95% 4.67% Steelfibre 0.0% 0.275% 0.55% 0.825%

(5)

1 Specimensarefirsttestedfornon-destructiveITSMat10CanddestructiveITSat5C.

2 AftercompletionoftheITStestingthetwohalvesofthetestspecimenarerecombined.Itisthenplacedintoaspecially designedcylindricalplasticcollarwith100mminternaldiameterandconditionedfor1hatanambienttemperatureof 203C.

3 Thecplasticcollarandrecombinedcrackedspecimenisthenplacedinamicro-waveovenandheatedfor3minusingthe Defrostsettingat300W.

4 Theplasticcollarisremovedandthespecimenisleftundisturbedtocooltoroomtemperature203Cduringwhichthe healingprocesstakesplace.

5 Thistestingandhealingprocedureisrepeatedtwice.

Fig.3illustratesthemainelementsofthetestprogramme.ThemicrowaveovenusedwasaTescoSolo,ModelNo:MM08 with700Wpoweroutput.Thedefrostsettingof300Wfor3minwasfoundtobetheoptimumhealingconditionforthePFC mix.Somesparkswerevisibleduringthefirsthealingcycleprobablycausedbysomeofthefibresnotbeingfullycoatedwith bitumen.Nosparkswereobservedforthesecondhealingcycle.Thisisdifferenttothatfoundinliteraturewherethetest specimensarehealedbyheatingfor40sonthehighestmicrowavepowersettingof600W.Thestudysummarisedinthis paperobservedthatatthislaboratorymicrowavesettingintensesparksandsmokewereemittedasthehealingbegan. Subsequentattemptstoreducepowerhadlittleeffectonthesamples.

3.5.Thermalimaging

Thermalimagingwascarriedouttoobserveheatdistributionthroughoutthetestsampleduetothemicrowavebased healingprocess.ThisusedaMicroEpsilonThermoIMAGERTIM400.Recordingbeganimmediatelyaftertheplasticcollarwas removedfromthemicro-waveheatedspecimen.Fig.4showsathermalimageofatestspecimen60saftermicrowave healing.Theimageshowstemperaturedistributionacrossthesurfaceofthetestspecimen.Theaveragetemperatureis 61.8Crangingfrom56Cattheedgesofthetestspecimento66Catitscentre.Fig.4showsthatthiselevatedtemperature isrelativelyevenlydistributedacrossthesurfacesuggestinggoodsteelfibredistributionthroughouttestspecimenandin turngoodasphaltmixhealing.

4.Results

4.1.PFCBinderDrainage

TheprinciplebehindtheBinderDrainagetestistoquantifytheamountofmateriallostbydrainagei.e.materialthathas adheredtothetruckormixerattheplant.Therefore,itisimportanttoverifywhateffecttheadditionofsteelfibreswould haveonBinderDrainageofthePFCmix.

TheequationusedforBinderDrainageBD¼100½W5½W4W3W3W6  ð2Þ Where:BD=theDrainedmaterial(%);W3=massoftheemptybeaker(g);W4=massofthebeakerplusbatch(g);W5=mass ofthebeakerplusretainedmaterialafterupturning(g);W6=massofthedriedresidueretainedonthesieve(g).”

TheBinderDrainageresultsareshowninTable2.TheresultsshowthattheadditionofsteelfibrestothePFCmixin concentrationsofupto15%byweightofthebitumenhasno/negligibleeffectonthebitumenanditsBinderDrainage. 4.2.PFCmixstiffness

Fig.5plotstheITSMtestdata.ThisshowsasignificantimprovementinITSMbetweenthecontrolPFCmixcontainingno steelfibresandthePFCmixcontaining5%steelfibres.Theadditionof10%and15%steelfibrescausedareductiononITSM valuescomparedtothe5%PFCmixes.

Fig.6plotstheaverageITSMdatafortheinitialtestingandthenafter2rehealingperiodssimulating2periodsof simulated crack treatment. This shows a gradual linear stiffness decrease for the control mix with a significant

Fig.3.Microwavehealingtestsystemsetup.

(6)

deteriorationinstiffnessgivenbyanISTMratioof0.58.Theresultsshowthatthecontrolsampleswithnosteelfibre havenostiffnessrecovery.ThePFCmixescontainingsteelfibresshowbetterinitialITSMcomparedtothecontrol.Asthe specimensarecrackedandhealedthereisareductioninstiffnessafterthefirstre-healingcycle.Thedatashowsthe ITSMtoeitherremainthesameortoslightlyimproveafterthesecondre-healingcycle.Afterthesecondre-healing cyclethePFCspecimenscontaining5%steelfibrehaveapproximatelytwicetheITSMofthecontrolPFCcontainingno steelfibre.Whilstthisisasimplelaboratoryinvestigationtheimplicationsofthisaresignificantformaintenanceofan airportrunway.

4.3.IndirectTensileStrength

Fig.7plotstheITSdata.AsummaryoftheaveragevaluesisgiveninTable3.TheITSdatashowsteelfibreadditionhas apositiveeffectonITS.ThecontrolPFCgroupcontainingnosteelfibreshadthelowestITSvaluesthroughouttesting. ThePFCmixeswith5%steelfibreshadthebestITSdatasimilartotheITSMtestdata.Increasingamountsofsteelfibre gaveITSvaluesgreater thanthe controlPFCcontainingnosteelfibre.Thisisduetohowthe fibresaredistributed throughoutthemix.

Fig.4.ExamplePFCtestspecimenthermalimage60safterremovalfrommicrowave.

Table2

BinderDrainageResults.

Mixture TargetTestTemperature(C) ActualTemperature(C) AverageBinderDrainage(%)

Control 160 160 0.1

5%Steelfibre 160 160 0.1

10%Steelfibre 160 159 0.1

15%Steelfibre 160 159 0.1

(7)

4.4.Thermalimaging

Fig.8plotstheaveragemaximumsurfacetemperaturereachedimmediatelyafterremovalfromthemicro-waveandafter 60scooling.ItshowsastrongpositivelinearcorrelationbetweentheamountofsteelfibresaddedtothePFCmixand temperatureaftermicro-waveheatingwithR2valuesof0.9832and0.9524respectively.Forexample,aftermicrowave heatingPFCspecimens with0%steelfibresreachedanaverageof55Cwhich after60scoolingdroppedto45C.PFC specimenswith15%fibresreachedanaverageof81C whichafter60scoolingdroppedto73C.Fig.9illustratesthe temperaturedistributionacrossthesurfaceofselectedPFCspecimens60safterremovalfromthemicrowave.ThePFC

Fig.6.AveragedITSMdata.

Fig.7.AverageIndirectTensileStrengthbeforeandafterhealing.

Table3

AverageIndirectTensileStrengthbeforeandafterhealing.

SteelFibreContentinPFCMix(%) InitialIndirectTensileStrength(MPa) IndirectTensileStrengthafterhealing(MPa)

0 2.00 2.27

5 2.93 3.00

10 2.66 3.03

15 2.64 2.51

Fig.8.Averagesurfacetemperaturevssteelfibrecontent. 6 A.Tabakovicetal./CaseStudiesinConstructionMaterialsxxx(2019)e00233

(8)

specimenwithnosteelfibreisatanaveragetemperatureof40.8C.IncontrastthePFCwith15%steelfibreis33Chotter. PFCmixescontainingsteelfibreswerefoundtohavebettertemperatureretention,withthe5%mixretaining95%ofitsinitial temperatureafter60s.10%and15%mixesretained89%and90%oftheirinitialheatrespectively,whilethecontrolsample onlyretained82%ofitsinitialheat.Thisheatretentioncapabilityisdirectlyattributedtothethermalconductivityofthe steelfibres.

4.5.PFCmixmicrowavehealingefficiency

ThePFCmixcontaining15%fibresdidnotperformaswellasthe5%and10%PFCmixes.Thisisprobablyduetothe clusteringofsteelfibressubsequentlysuperheatingthebitumenbeyonditsflashpoint.

Fig.10showsanexampleofsteelfibreclusteringandsubsequentsteelfibreoxidationinoneofthetestspecimens. Theyellowcirclesshowlocalisedareasofbitumenbinderdamageduetotheexcessiveheatingofsteelfibreclusters. Theredcircledepictsanoxidizedsteelfibrecluster.Largersteelfibreclusterswererecordedashavingaheatspikeof upto400C.Temperaturesofthismagnitudeareabovetheflashpointofthebitumeni.e.approximately250C,and wouldcauseittoinstantlyvaporize.Thisiswhatlikelycausedtheflashesandblackfumesthatwereemittedfromthe 15%PFCmixduringmicrowaveheating.Thismayhaveweakenedthetestspecimenstructureleadingtoitspoorertest data.

ThelinearlossinITSMforthecontrolPFCmixescontainingnosteelfibresuggestnothingtoassisttheheatingand softeningofthebitumentoinfillthecracksformedbyITStesting.Consequently,theinitialITScrackandsubsequentcracks didnotsubstantiallyhealduringmicrowaveheatingi.e.thetemperaturewasnotsufficienttobebeneficial.Thisrepeated stressinginevitablycontinuedtoweakenthePFCmix.ThisisshowninFig.11whichshowsPFCspecimen#4containing0% steelfibres.TheimageontheleftisthetestspecimenafterthesecondITSphase.Theinducedcrackisvisible.Theimageon therightshowsthecrackstilltobevisibleindicatinginsufficienttemperatureduring healing.Thetestspecimenwas heatedto41C,asshowninFig.9whichisjustslightlygreaterthanthebitumen’ssofteningpointof37C.Although slightly greater it wasnot able tosufficientlysoften thebitumen toflow and repair thedamageclosing microand macrocracks.

ThePFCtestspecimenswith5%steelfibresincreasedstiffnessvalueafterthehealingcycles.Fig.12showsPFCsample#6 containing5%steelfibresbeforeandafterhealingcycle2.ComparedtoFig.11,thecrackiscompletelyhealed.Theincreasein heathasprobablyreducedbinderviscosityallowingittoflownotonlyintothevisiblecracksbutalsointoothermicrocracks withinthespecimen.Thisagreeswiththemajorhealingmechanismofinductionhealingbeingcapillaryflow[23]and diffusionoftheasphaltbinderathightemperatures.Fig.13showsPFCsample#15whichcontains15%steelfibres.Thecrack isfullyrepaired.

(9)

5.Conclusion

Thislaboratorystudyhasprovidedpositiveevidencethattheuseofsteelfibreandmicrowaveheatingisapotentialand viableoptionforairfieldasphaltrunwayrepairandmaintenance.Ithasshownthatadditionofsteelfibresand3minof microwavehealingcreatesarapidhealingprocessthatoffersscopeforbusyairportsfacedwithrealproblemsofrunway closure.PFCmixescontainingsteelfibresoutperformedthecontrolmixwithnosteelfibres.EventhoughthePFCmix withoutsteelfibreswasabletopartiallyrepairitscrackdamagethemixturescontainingfibresmanagedtoachievefullcrack closure. The addition of steel fibres reinforced the PFC mix structure improving its stiffness and tensile strength characteristics.Mixturescontaining10% and15%steelfibresinthemixhadlowerstiffnessand strengthrecoveryafter healingincomparisonwithmixturecontaining5%offibres.Thismaybeduetotheclusteringofthesteelfibre[24]causing hightemperatehotspotsinthetestspecimenduringthehealingprocess.Theselocalisedhotspotsmayhavecausedbitumen

Fig.10.PFCspecimen#16showinglocalisedissuesofoxidationandbinderdamage.

Fig.11.PFCcontrolspecimen#4:Left:beforehealingandRight:afterhealingshowingpartiallyclosedcrack.

Fig.12.PFCspecimen#6with5%steelfibre:Left:beforehealingandRight:afterhealingwithfullyrepairedcrack. 8 A.Tabakovicetal./CaseStudiesinConstructionMaterialsxxx(2019)e00233

(10)

evaporationthusweakeningstructuralintegrityofthetestspecimen.Thelaboratorytestingconcludesthattheoptimum steelfibrecontentforthePFCmixis5%agreeingwithpreviousstudies[8,15,21].Itbeenhasfoundthatalowerpower heatingof300WismoresuitableforcrackhealingofthePFCusedinthisinvestigationcomparedtothepossiblemaximum poweroutputof700Wforthemicrowaveused.Thisissignificantasitshowstheimportanceofthistypeoflaboratory investigationtooptimisenotonlytheamountofsteelfibreadditionbutalsotheamountofenergyrequiredtohealcracksin this PFCmix. It maybeconcludedthat this laboratory studyclearlyshowsthat theself-healing technologyusedhas significantpotentialinrunwaymaintenance.

Conflictofinterest

Theauthorsdeclarethattherearenoconflictsofinterstregardingthepublicationofthispaper. References

[1](EAPA),E.A.P.A,AirfieldUsesofAsphalt,(2003) p.27.

[2]C.L.Hill,I.W,ImprovedperformancemixturedesignmethodologyforUKairfiledporousfrictionCourse,5thEurasphalt&EurobitumeCongress(2012). [3]E.Schlangen,etal.,in:M.eRooij(Ed.),OtherMaterials,ApplicationsandFutureDevelopments,inSelf-HealingPhenomenainCement-BasedMaterials,

2013RILEMSeries:State-of-the-ArtReports.p.241–256.

[4]J.F.Su,E.Schlangen,Synthesisandphysicochemicalpropertiesofhighcompactmicrocapsulescontainingrejuvenatorappliedinasphalt,Chem.Eng.J. 198-199(2012)289–300.

[5]J.F.Su,J.Qiu,E.Schlangen,Stabilityinvestigationofself-healingmicrocapsulescontainingrejuvenatorforbitumen,Polym.Degrad.Stab.98(6)(2013) 1205–1212.

[6]J.F.Su,etal.,Experimentalinvestigationofselfhealingbehaviourofbitumen/microcapsulecompositesbymodifiedbeamonelasticfoundation method,MaterialsandStructures,Springerpublication,RILEM,2014.

[7]J.F.Su,etal.,Investigationthepossibilityofanewapproachofusingmicrocapsulescontainingwastecookingoil;in-siturejuvenation,Constr.Build. Mater.74(2015)83–92.

[8]A.Tabakovic,etal.,Thecompartmentedalginatefibresoptimisationforbitumenrejuvenatorencapsulation,J.TrafficTransp.Eng.(2017). [9]A.Tabakovic,etal.,Anevaluationoftheefficiencyofcompartmentedalginatefibresencapsulatingarejuvenatorasanasphaltpavementhealing

system,MPDIAppl.Sci.7(2017)16.

[10]S.Xu,etal.,Calciumalginatecapsulesencapsulatingrejuvenatorashealingsystemforasphaltmastic,Constr.Build.Mater.169(2018)379–387. [11]A.García,etal.,Electricalconductivityofasphaltmortarcontainingconductivefibersandfillers,Constr.Build.Mater.21(10)(2009)3175–3181. [12]A.García,E.Schlangen,M.vandeVen,Inductionheatingofmasticcontainingconductivefibersandfillers,Mater.Struct.44(2)(2011)499–508. [13]Á.García,E.Schlangen,M.vandeVen,Twowaysofclosingcracksonasphaltconcretepavements:microcapsulesandInductionHeating,KeyEng.

Mater.417-418(2010)573–576.

[14]A.García,etal.,Asimplemodeltodefineinductionheatinginasphaltmastic,Constr.Build.Mater.31(2012)38–46.

[15]J.Norambuena-Contreras,etal.,Effectoffibresadditiononthephysicalandmechanicalpropertiesofasphaltmixtureswithcrack-healingpurposesby microwaveradiation,Constr.Build.Mater.127(2016)369–382.

[16]J.Gallego,etal.,Heatingasphaltmixtureswithmicrowavestopromoteself-healing,Constr.Build.Mater.42(2013)1–4.

[17]M.Bueno,M.Arraigada,M.N.Partl,Damagedetectionandartificialhealingofasphaltconcreteaftertraffickingwithaloadsimulator,Mech. Time-DependentMater.20(3)(2016)265–279.

[18]Q.Liu,etal.,Inductionheatingofelectricallyconductiveporousasphaltconcrete,Constr.Build.Mater.24(2010)1207–1213. [19]Á.García,etal.,Asimplemodeltodefineinductionheatinginasphaltmastic,Constr.Build.Mater.31(2012)38–46.

[20]J.Norambuena-Contreras,A.Garcia,Self-healingofasphaltmixturebymicrowaveandinductionheating,Mater.Des.106(2016)404–414. [21]A.González,etal.,Self-healingpropertiesofrecycledasphaltmixturescontainingmetalwaste:anapproachthroughmicrowaveradiationheating,J.

Environ.Manage.214(2018)242–251.

[22]Q.Liu,InductionHealingofPorousAsphaltConcreteFacultyofCivilEngineeringandGeosciences,TUDelft,TheNetherlands,2012. [23]A.García,Self-healingofopencracksinasphaltmastic,Fuel93(2012)264–272.

[24]B.A.Bednarcyk,J.Aboudi,S.M.Arnold,Analysisoffiberclusteringincompositematerialsusinghigh-fidelitymultiscalemicromechanics,Int.J.Solids Struct.69-70(2015)311–327.

Cytaty

Powiązane dokumenty

The innovation and transformation needed in seaport regions demand innovative planning concepts and governance arrangements on the interplay between economic and spatial

Spośród wszystkich danych serii pomiarowych osuszania metanu na rysunku 6 przedstawiono kształtowanie się stopnia odwodnienia strumienia metanu po kontakcie z membraną w

Czynniki, które hamują ekspansję gospodarczą Wspól- noty, wynikają z relatywnie niskiej wydajności pracy, która jest konsekwen- cją ograniczonej efektywności nakładów na

Physisorbed PE layers are not covalently attached; nevertheless they are very stable, due to the multivalent character of the interaction. The multivalency is also beneficial

W diecezji przemyskiej, organiza­ cją rekolekcji dla członków poszczególnych stowarzyszeń, zajął się wnet po utw orzeniu Diecezjalny Instytut Akcji Katolickiej.. Dążył

Model 1 considers independent pipelines and nozzles for both turbines; model 2 connects the parallel lines to a common line and nozzle; model 3 uses the same configurations as

C harakter pisma autora, który przez pewnych badaczy określany jest jako nieczytelny, nie był dla mnie największą prze­ szkodą, natom iast zatarcie miejscami ołówka, którym

szybko w zrosła2, mnożyły się też przywileje królewskie na targi i jarm arki, nie wspom inając już o funkcjonowaniu tychże bez podstaw prawnych, bez przywileju