• Nie Znaleziono Wyników

Program scores-ship structural response in waves

N/A
N/A
Protected

Academic year: 2021

Share "Program scores-ship structural response in waves"

Copied!
71
0
0

Pełen tekst

(1)

PROGRAM SCORES-SHIP STRUCTURAL

RESPONSE IN WAVES

This document has been approved

for public release and sale;

its

distribution is unlimited.

SHIP STRUCTURE COMMITTEE

(2)

MEMBER AGENCIES:

UNI FED STATES COAST GUARD

NAVAl SHIP SYSTEMS COMMAND

MILITARY SEALIFT COMMAND MARITIME ADMINISTRATION AMERICAN BUREAU OF SHIPPING

Dear Sir:

AN INTERAGENCY ADVISORY COMMITTEE DEDICATED TO IMPROVING

THE STRUCTURE OF SHIPS

A major portion of the effort of the Ship Structure Committee

program has been devoted to improving capability of predicting

the loads which a ship's hull experiences.

This report contains details of a computer program, SCORES,

which predicts these loads. Details of the development and

verification of the program are contained in SSC-229, Evaluation and Verification of Computer Calculations of Wave-Induced Ship

Structural Loads. Additional information on this program may

be found in SSC-23l, Further Studies of Computer Simulation of

Slamming and Other Wave-Induced Vibratory Structural Loadings. Comments on this report would be welcomed.

Sincerely,

ADDRESS CORRESPONDEN SECRETARY

SHIP STRUCTURE COMMIUEE

U.S. COAST GUARD HEADOUA WASHINGTON. D.C. 20591

SR-174 1972

W. F. REA, III

Rear Admiral, U. S. Coast Guard

Chairman, Ship Structure Committee

E TO:

(3)

SSC-230

Final Report on

Project SR-174, "Ship Computer Response" to the

Ship Structure Committee

PROGRAM SCORES - SHIP STRUCTURAL RESPONSE IN WAVES

by

Alfred I. Raff Oceanics, Inc.

under

Department of the Navy Naval Ship Engineering Center Contract No. N00024-70-C-5076

This document has been approved for public release and

sale; its distribution is unlimited.

U. S. Coast Guard Headquarters Washington, D. C.

(4)

Information necessary for the use of the SCORES digital

compu-ter program is given. This program calculates both the vertical and

lateral plane motions and applied loads of a ship in waves. Strip

theory is used and each ship hull cross-section is assumed to be of

Lewis form for the purpose of calculating hydrodynamic forces. The

ship can be at any heading, relative to the wave direction. Both

regular and irregular wave results can be obtained, including short

crested seas (directional wave spectrum). All three primary ship

j hull loadings are computed, i.e. vertical bending, lateral bending

and torsional moments.

L

All the basic equations used in the analysis are given, as

well as a description of the overall program structure. The input

data requirements and format are specified. Sample input and

out-put are shown. The Appendices include a description of the FORTRAN

program organization, together with flowcharts and a complete cross-referenced listing of the source language.

(5)

Page

INTRODUCTION 1

METHOD OF ANALYSIS 1

VERTICAL PLANE EQUATIONS 3

LATERAL PLANE EQUATIONS 8

WAVE SPECTRA EQUATIONS 16

NON-DIMENSIONAL FORMS 19 PROGRAM ORGANIZATION 20 GENERAL 20 RESTRICTIONS 21 RUNNING TIME 22 DATA INPUT 22 UNITS 22

DATA CARD PREPARATION 23

SAMPLE INPUT 30 PROGRAM OUTPUT 29 DESCRIPTION 29 SAMPLE OUTPUT 32 ERROR MESSAGES 37 ACKNOWLEDGEMENTS 37

APPENDIX A - PROGRAM DESCRIPTION 38

APPENDIX B - FLOWCHARTS 40

(6)

Capt. J. E. Rasmussen, USN Head, Ship Systems Engineering

and Design Department Naval Ship Engineering Center Naval Ship Systems Command

Mr. K. Morland, Vice President

American Bureau of Shipping

The SHIP STRUCTURE COMMITTEE is constituted to prosecute a research

program to improve the hull structures of ships by an extension of knowledge

pertaining to design, materials and methods of fabrication. RADM W. F. Rea, III, USCG, Chairman Chief, Office of Merchant Marine Safety

U. S. Coast Guard Headquarters

Mr. P. M. Pafermo - Chairman

Mr. J. B. O'Brien - Contract Administrator Mr. G. Sorkin - Member

Mr. H. S. Sayre - Alternate

Mr. I. Fioriti - Alternate

U. S. COAST GUARD

LCDR C. S. Loosmore, USCG - Secretary

CAPT C. R. Thompson, USCG - Member

CDR J. W. Kime, USCG - Alternate

CDR J. L. Coburn, USCG Alternate

MARITIME ADMINISTRATION Mr. F. Dashnaw - Member Mr. A. Maillar - Member Mr. R. Falls - Alternate

Mr. R. F. Coombs - Alternate

MILITARY SEALIFT COMMAND Mr. R. R. Askren - Member

LTJG E. T. Power, USNR - Member

AMERICAN BUREAU OF SHIPPING

Mr. S. G. Stiansen Member

Mr. F. J. Crum - Member

iv

SHIP STRUCTURE SUBCOMMITTEE

The SHIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee on technical matters by providing technical coordination for the determination of

goals and objectives of the program, and by evaluating and interpreting the

re-sults in terms of ship structural design, construction and operation.

NAVAL SHIP ENGINEERING CENTER OFFICE OF NAVAL RESEARCH

Mr. E. S. Dillon Chief

Office of Ship Construction Maritime Administration Capt. L. L. Jackson, USN

Maintenance and Repair Officer Military Sealift Command

Mr. J. M. Crowley - Member Dr. W. G. Rauch - Alternate

NAVAL SHIP RESEARCH & DEVELOPMENT CENTER

Mr. A. B. Stavovy - Alternate

NATIONAL ACADEMY OF SCIENCES

-Ship Research Committee Mr. R. W. Rumke, Liaison Prof. R. A. Yagle, Liaison

SOCIETY OF NAVAL ARCHITECTS & MARINE ENGINEERS

Mr. T. M. Buermann, Liaison BRITISH NAVY STAFF

Dr. V. Flint, Liaison

CDR P. H. H. Ablett, RCNC, Liaison

WELDING RESEARCH COUNCIL Mr. K. H. Koopman, Liaison Mr. C. Larson, Liaison

(7)

This manual describes in detail the use of SCORES, which is a digital computer program for the calculation of the

wave-induced motions and loads of a ship. Both the vertical and

lateral plane motions are treated, so that results for vertical

bending, lateral bending and torsional hull moments can be

ob-tained. The principal assumptions of the method are that the

motions are linear, can be solved by "strip theory" and that

the ship sections can be approximated by-"Lewis forms" for the

purpose of calculating the 1-iydrodynamic forces, that is, the

required two-dimensional added mass and wave damping properties

Both regular or irregular waves can be specified, and for the

latter multi-directional (short crested) seas are allowed.

SCORES was written in the FORTRAN IV language and

checked out and run on the Control Data 6600 Computer using the

SCOPE operating system (version 3.1.6). The program is

un-classified.

The method of analysis used in SCORES is outlined below

in Section II. All the equations of motion and loadings are

given. In Section III, the organization of the SCORES program

is discussed briefly. An explanation of input data card

prepara-tion is given in Secprepara-tion IV, and of program output in Section V.

An example problem is shown. Error messages which can appear

during program execution are described in Section VI.

The Appendices include a description of the FORTRAN

program organization, flowcharts for each subprogram and a

com-plete cross-referenced (to the flowcharts) listing of the source

language.

METHOD OF ANALYSIS

The analysis used in SCORES was developed and investigated

to some extent in work supported by the Ship Structure Comrnittee.*

The exposition to be given here will serve as a convenient listing

of the equations, but for the full derivation and explanation of

the analysis method, the references listed should be consulted. *Kaplan, Paul, "Development of Mathematical Models for Describing

Ship Structural Response in Waves," Ship Structure

Committee Report SSC-l93, January 1969 (AD 682591)

Kaplan, P., Sargent, T.P. and Raff,A.I., "An Investigation of the

Utility of Computer Simulation to Predict Ship

Structural Response in Waves," Ship Structure

Committee Report SSC-l97, June 1969 (AD 690229)

Kaplan, P., and Raff, A.I., "Evaluation and Verification of Computer

Calculations of Wave-Induced Ship Structural Response."

(8)

The relationship between the water wave system and the

ship coordinate axes system is shown in Figure 1. The wave

propa-gation, at speed c, is considered fixed ìn space. The ship then

travels, at speed V, at some angle, with respect to the wave

direction. The wave velocity potential, for simple deep-water

waves, is then defined by:

_aceZ'cos

k (x' + Ct)

w (1)

where a = wave amplitude

c = wave speed

2iî

k = wave number =

-A

X = wave length

z' = vertical coordinate, from undisturbed water surface

positive downwards

= axis fixed in space

t = time

The x-y axes, with origin at G, the center of gravity of the ship,

translate with the ship. The x' coordinate of a point in the x-y

plane can be defined by:

x' = -(x+Vt) cos +y sin (2)

Then, the surface wave elevation n (positive upwards) can be

ex-pressed as follows:

li WI

n = = a sin k (x' + ct)

IZ '=0

since

C2 =

where g = acceleration of gravity

In x-y coordinates we have:

n = a sin k [-x cos + y sin +(c-V cas )t] (4)

Dn B

=

= -v -) n (x,t)

= akc cas k [-x cos +y sin 3 + (c-V cos )tJ (5)

n

(9)

direction of ship travel at speed, V

wave direction of

propagation at speed, C

Fig. 1.

Wave and Ship Axes Convention

and..

D

rl = = -akg sin k [-x cos +y sin -f(c-V cas )t]

The results of the equations of motion, etc., will be referenced to the wave elevation n at the origin of the x-y axes,

that is: n = a sin k'(c-Vcos ) t or r = a sin w t e where 2iï w e (c-V cas )

and we is known as the circular frequency of encounter.

A. Vertical Plane Equations

The coupled equations of motion for heave, z (positive

downwards), and pitch, O (positive bow-up), are given as:

a w u w a dZ - dx + Z dx w (6) (9) Xb mz = s

(10)

and

I,= mass moment of inertia of ship about y axis

local sectional vertical hydromechanic force on

ship

X , xb= coordinates of stern and bow ends of shIp,

S respectively

Z, M

= wave excitation force and moment on ship

The general hydromechanic force is taken to be:

dZ

(-x+V8)

T_NI (_x+V8)_pgB*(z_x8)

dxDt _33

j z

where

p = density of water

A3- local sectional vertical added mass

N' = local sectional vertical damping force Z

coefficient

B* = local waterline beam

dx

N'

pg2Aw3

(12)

z

with

A = ratio of generated wave to heave amplitude for

vertical motion-induced wave

Expanding the derivative, we obtain:

I y where 8 -xb dZ - x dx + M dx w s m = mass of ship (10)

(11)

The coefficients on the left hand sides are defined by: a' = m+

b=

e=

g'= pg

A= I +

y N' dx -V B * dx x dx N'xdx -2V z B*xdx -Vb

A3 x2dx

d (A3)

A3dx-V

dZ - A3 (z-xO+2V0) - pgB*(z_xO) N'-V z dA' (-xÔ+VO) (13) dx

The equations of motion, (9)

the familiar form as follows:

and (10) are then transformed into

a'z + b + c'z - de - e - g'e = zw (14) AO + Bé +Ce - Dz - E - G'z

=M

w (15) xd (A3) (16) c'= pg

d= D =

(12)

z w M w

3=

C = pg

3=

Nx2dx -2v s r Xb dZ xs

The local sectional vertical wave force acting on the

ship section is represented as:

w_

dZ [pgE*n + (N'_V

dA3

dx B*x2dx_VE

Nxdx-V

A3xdx v

xd (A3) x2d (A')

where all the indicated integrations are over the length of the ship.

The wave excitation, the right hand sides of Eqs. (14)

and (15), is given by:

dx (17) x dx -kh e (18) (19) G'= pg B*xdx

(13)

sin sin 8 rB*

sin 8

The value of is approximated by:

= HC

s

where H = local section draft

C = local section area coefficient

s

The steady state solution of the equations of motion are

obtained by conventional methods for second order ordinary

differential equations, using complex notation. The solutions are

expressed as:

z = z sin (w t+)

o e

e = e sin (w

t+)

o e

where the zero subscripted quantities are the amplitudes and are the phase angle differences, i.e. leads with respect to the

wave elevation in Eq. (7).

The local vertical loading is given by:

df

dx - m (z-xe) +

Z

...dz +dZw

(23) (22)

where I = mean section draft. Substituting the expressions for n,

and from Eq. (4), (5) and (6), with y=O and applying the

approximate factor for short wave lengths we obtain:

dz

w -kh

= - ae

f dA'

(pgB*=A3 kg)sin(-kx cos 8) +

dx kc (N'-v cos(-kx cos dA' 8) cos w t + e (pgB*_A3kg)

J

z dx

cos(-kx cos 8)-kc N'-V sin(-kx cos 8) sin w

e

z dx

(20)

(14)

where 5m = local mass, per unit length.

Eq. (23) is simply the summation of inertial, hydrodynamic,

hydro-static and wave excitation forces. The latter terms are given in

Eqs. (l3)and (20). The vertical bending moment at location x0 is

then given by:

BN (x ) =

z o

s

where I = mass moment of inertia of ship about z axis

= mass moment of inertia of ship about x axis = mass product of inertia of ship in x-z plane

'X o

or

s o

and is expressed in a form similar to the motions, i.e.

BM = BM sin (w t+a) (25)

z zo e

B. Lateral Plane Equations

Xb

df z

(x-x ) dx (24)

o cix

The coupled equations

starboard), yaw, i (positive

starboard-down) , are given

of motion for sway, y (positive to

bow-starboard), and roll, (positive

as: Xb my = dx+Y dx w (26) X s I ; -i z xz = 'X b s dY - x dx+N dx w (27) Xb

'ï-'

q; X XZ = dx-mg ? 4+K (28)

(15)

ay

= local sectional lateral hydrodynamic force on ship

= local sectional hydrodynamic rolling moment on ship

Y , N , K = wave excitation

force and moments on ship

w w w

= initial metacentric height of ship (hydrostatic).

The hydrodynamic force and moment are taken to be:

dY

= -

D E L M5 -N5

(+x-V) + N

rs dK D dx Dt

_r

I

-Msc

(+x-V) j -N

r NS4

(+x-V)

- (M )

-

N

-t S4 s dx

where 0G = distance of ship C.G. from waterline, positive up

M = sectional lateral added mass

s

N = sectional lateral damping force coefficient

= sectional added mass moment of inertia due to lateral motiön

sectional damping moment coefficient due to lateral motion

sectional added mass moment of inertia sectional damping moment coefficient

sectional lateral added mass due to roll motion sectional lateral damping force coefficient due to

roll motion

(29)

(30)

and the sectional added mass moments and damping moment coefficients

are taken with respect to an axis at the waterline.

N =

'r =

Nr =

Frs = Nrs =

(16)

The additional roll damping moment to account for viscous

and bilge keel effects is taken as a particular fraction of the

critical roll damping, as follows:

=

C/L-N(w)

(31)

where = sectional damping moment coefficient due to viscous

and bilge keel effects

= fraction of critical roll damping (empirical data)

critical roll damping

L = ship length (LXb_Xs)

= natural roll (resonant) frequency

N (w ) = value of Nr at frequency

w.

r

The critical roll damping is expressed in terms of the natural

roll frequency by:

C

=2mgoi1

C

with mg GM

+ 1r »dX)

2

where the integral is over the ship length. The calculation of

the natural roll frequency, w , as indicated above is carried

out by means of successive aproximation.

Expanding the derivatives, we obtain

/dN

-M (y+x-2V) +

'V

-- -N

(î+x-V)

dx s dx sj (33) dF +

(F+

M + [Nrs+ N -( dx + ) ] dK dx (32) I + 0G r

M +F

s rs

+0GM

- 'dl dM

+ v+ö

s dx dx

(17)

a16 = -Va12

= I + 1M x2dx

a24

j s

The equations of motion, (26), (27) and (28) are then transformed

into this familiar form:

= Yw

=

The coefficients on the left-hand sides are defined by:

+ IM dx a1 = N dx-V jd(M ) a11 = m j a14 = IM xdx , a15 =

fNxdx

-2V fM5dx -V

f

xd(M5) s = - dx - ö 1M dx , a17

jrs

js

a18

= -

1N dx + V Jd(M5)_5 fN5dx + V 1d(F J rs rs a = 1M xdx = TN xdx -V Ixd(M 21

Js

,a22

Js

j s a25 = JN5x2dx_2V fMxdx_V fx2d(M5

a26 = -Va22 , a27 = - JFrs xdx -

JMxdx

a = - IN

xdx+V

Ixd(M ) - IN xdx+V Ixd(F 28 j rs j s j s j rs

J

(36) 37) - 0G

-N

r + N + N \rs _N* r 0G N5-V S4

+N

dM ) + sj M + sq

s+

5v

\ M s dF dM rs

-(34) s (/+xV-2V)

+oG-ux

dx

(r+x-Vip)

dx dx = N (35)

(18)

a31 =

-f

Mdx -

fMdx

a32 =

_fNdx

JNdx

+v

Jd(M)

+V íd(Ms) a34 =

_fMsxdx

-O

JMXdX

a35 =

-JNSXdX

f

xdx +V fxd(M )+V Jxd(M)_2Va3i a36 =

-Va32

a =1 +

II

dx + IN dx +5 IF dx

+ö2

IM dx x j r j s j rs j s a38 = J(N+N*) dx

+ ö

f

Ndx

JNdX

JNdx

- L'

f d(M)+

Jd(Frs)+2

f

d(M)

a39 = mg

where all the indicated integrations are over the ship length.

The wave excitation, the right-hand sides of Eqs. (35) is

given by:

Xb

ay

w y =

-w

dx

X s xl- -j-.

ay

w s xl-L) dK w s dx dx (38) dx (39) x dx (40) dx (41) N = w K = w

(19)

The local sectional lateral force and rotational morflent

due to the waves acting on the ship are represented as:

w s dY Dv dN - ( Dv dM =

(pS+M ) - Vv - +N

V +k -M dx V s Dt

wdx

sw

s ITB* sin sin 8 dK w dx = - (M y )+p IB*3 _\ Sz N V s w Dt s w /

and then we have:

Dt TB* sln8 y =

-w ay -kFi y = - akc e

sinsink

w 71B* sin -y---ITB* sin 8 (42)

-x cose + y sin+ (c-V cos)t1 (44)

Dv

-w -kh

- akg e sin cos k [_x cos + y sin + (c-V cos )tj (45)

dY

dx (43)

where y = lateral orbital wave velocity

w

S = local section area

= local sectional center of buoyancy, from

waterline

The lateral wave orbital velocity is obtained as follows:

w

-J

(20)

After substituting these expressions and expanding terms, we obtain dY T.?

sinwt

(46) e 2 e

---T1coswt+T

with T1 = T3 gT4 cos T6 + c T5 sin T61

T2 = T3 _gT4 sin T6 + c T5 cos TJ sin

-

7rB* sin T3

= -

ake sine 71B* sine T4 = pS+M5-kM5 dM dM T5 = N5-V

!

k V T6 = -kx cos dK and e (47)

with T7 = T3 g T9 cos T + C T1 sin T61

T8 = T3 [-g T9 sin T6 + c T10 cos T6 B*3 -T9 = p Sz -M5 -0G T4 dM

T1 =N

+V O s dx

The steady-state solution of the equations of motion are expressed as:

y=y sin

(w

t+

K)

o e

1) = 1) sin (w t + )

(21)

x

and again they are expressed in this form:

BM =BM

sin (wt+T)

y yo e TM TM sin (w t + ) X XO e q, = q, sin (w t + y) o e

where the zero-subscripted quantities are the amplitudes and K1 c

and are phase angle leads with respect to the wave elevation.

The local lateral and rotational loadings are given by:

df dY dY -

m (+x-) +

+ dx drn ¡3*3

_\

+ ôm(+xß)+ pg

Sz _SOG) -g6mq, dK + + dx dx

where = local center of gravity (relative to ship C.G.)

positive down

= local mass gyradius in roll

and the hydrodynamic and wave excitation terms are given in Eqs.

(33), (34), (46), and (47).

The lateral bending and torsional moments at location

(50) xo df

BM(x)=

yo

or s o (x-x ) dx (53) o dx o b L. dm TM (x ) = X O or L o_ X dx (54) dx

(22)

The requirement on the local vertical mass center is: Xb

6m. çdx = 0 (56)

xs

Similarly, the requirement on the local roll gyradius is:

Xb

6nîy2dx = IX (57)

s

The product of inertia in the x-z plane is defined by: -Xb

I =

Xz

s

C. Wave Spectra Equations

The wave spectrum for calculations in irregular seas is

considered to be a separable function of wave frequency and

direction as follows:

ämxdx

(58) S (w,p) = S1(j) S2(p) for

O<w<

71 71 and - - p (59)

where S (w,p) = directional spectrum of the seaway (short

crested sea spectrum)

w = circular wave frequency

p = wave direction relative to predominent direction

S1(w) = frequency spectrum (long crested sea spectrum)

S2 (p) = spreading function

The SCORES program includes various spectra that can be

chosen as desired. However, in all cases, the following

relationship between the spectrum, or spectral density, and the wave elevations, or amplitudes, is used:

(23)

where a = root-mean-squared wave amplitude rms

a = average (statistical)wave amplitude

avg - oe Tr 2 S (w, dwdi (60) o 2

where a2 = mean squared wave amplitude.

Since we impose: rT 2 S2(ij) di = 1.0 (61) 'T 2 we then have: a2 = S1 (w)dw (62) O

Additional statistical properties are formulated from the mean

squared amplitude: a rms (63) a =1.25 a avg rms a1,,,3 = 2.0 a rms a1/10 = 2.55 a rms

(24)

a1,,3 = significant (average of 1/3 highest)

/ wave amplitude

a1/10= average of 1/10 highest wave amplitude.

Neumann Spectrum (1953)

This frequency spectrum (as used) is given by:

S1(w) = 0.000827 (67)

where U = wind speed

The constant is one half that originally specified by

Neumann so that this spectrum satisfies Eq. (62). Thus, originally

the Neumann spectrum required only a factor of /2 in Eq. (65),

instead of 2.0.

Pierson-Moskowitz (1964) This is given by:

S1(w) = 0.0081 (68)

and was derived on the basis of fully arisen seas.

Two Parameter (1967)

S1(w) = ABwe-

(69) where = 0.25 H1,,,32 2 B = (0.817 --r-) T

H1/3 = significant wave height (=2.0a1/3)

T = mean wave period

This spectrum is usually used in conjunction with "observed"

wave height and period, which are then taken to be the significant

height and mean period. This spectrum is similar to that adopted

by the I.S.S.C. (1967) as T1nominal", except that it is expressed

in circular wave frequency instead of frequency in cycles per

(25)

Uni-Directional Spreading (Long Crested Seas) This is obviously: S2(p) = 6(p) (delta function) Cosine-Squared Spreading 2 S2(p) = - coszp Responses

All of the motions and moments calculated are considered to be linear and the principle of wave superposition is assumed.

Thus for each response a spectrum is calculated by:

S(,p)

= LTi(w,P)12

S (,p) (72)

where

T.(w,p)

= response amplitude operator (amplitude of response

per unit wave amplitude) We then have, similar to the wave amplitude:

O 7I

2

lT

dui dp

Eqs. (63) - (66) then apply to each response.

D. Non-dimensional Forms

w2

Frequency parameter: -

-f-- H

S2 (p) T1(w,p) S1(t) dw dp (73) 71 O 2

where a2 = mean squared response amplitude. a. 2

(26)

Non-dimensional moment:

Non-dimensional shear:

III. PROGRAN ORGANIZATION

A. General

Non-dimensional linear motion (heave, sway)

BM (orBM or TM z y X

pg BL2a

Shear Force

pg BLa

motion amplitude a

In general, the SCORES computer program has been arranged and organized to both keep a) the coding simple and flexible (for possible future modification) and b) the running times low (for

obvious reasons). Thus, precision of computation has not been of

major priority in program development. This approach is considered

reasonable at the present time because precise correlation (to less than about 5%) with independent data (model or full-scale ex-periments) is not envisioned, and the theoretical analysis itself

is an approximation.

Aside from the actual coding and data structure in the program, which will not be discussed here (see Appendices A, B

and c of this report), this approach manifests itself primarily

in two aspects. The first is the precision with which the local, or

two-dimensional, sectional added mass and damping characteristics

or properties, are calculated. For vertical oscillation, the method

of Grim* is used. For the two-dimensional properties in lateral

and roll oscillations, the method of Tasai** has been programmed. In general, these methods can be carried out to increasing degrees

of numerical accuracy. For practical purposes of keeping running

time reasonable, these calculations have been limited. For example

in the lateral and roll computations, the infinite series of terms representing the velocity potential is truncated to nine terms and only 15 points along the Lewis form contour are used for least

square approximation purposes. While the full range of section

properties and frequencies has not been explored in detail, results on the order of 1% accuracy or better are obtained for average sections over a wide frequency range.

* Grim, O., "Die Schwingungen von schwimmeden, zweidimensionalen Korpern," HSVA Report No. 1171, September 1959.

Grim, O.., and Kirsch, M., private communication, September 1967.

**Tasai, F., "Hydrodynamic Force and Moment Produced by Swaying and Rollinç Oscillation of Cylinders on the Free Surface," Reports of Research Institute for Applied Mechanics, Kyushu University Japan, Vol. IX, No. 35, 1961

Non-dimensional angular motion motion amplitude

(pitch, yaw, roll):

(27)

The second aspect of program organization is related to the

above. While the computations of the two-dimensional properties

are limited as described, they still are relatively lengthy. That

is at a particular condition of ship speed, wave angle and wave

length, the bulk of the computation time would be devoted to these

calculations rather than the formation of the coefficients,

wave excitation, solution of ship motions and the resulting

calculation of applied moments. Therefore, it was decided that

rather than calculate for each frequency at each cross-section the above mentioned dimensional properties, instead the two-dimensional properties are calculated first at 25 values of frequency over a wide range and then interpolated (or

extra-polated) for each subsequent frequency. The results of the initial

calculation over the frequency range are saved in the computer

memory for the calculations at hand, and can also be saved on a

permanent disc file (or magnetic tape storage), for later usage. In this way, a large range of ship speeds and headings can be run, each over the appropriate frequency range, without excessively

high running times. The interpolation procedure used is a

six-point continued fraction method which gives results that are generally well within 1%.

In other respects, the SCORES program is organized in a

fairly straightforward manner. The input consists of:

basic data which specify the hull form and weight

distribution and

conditional data which specify the speeds and wave

parameters.

Repeated sets of conditional data can be run with the same basic

data, that is, for the same defined ship. A fair amount of input

data verification is incorporated into the program.

The core storage requirement is about 25,000 cells as

compiled on the CDC 6600. This includes the program instructions,

data storage and system routines to handle input-output system

control and provide mathematical functions. It would be possible

to decrease this core requirement via program overlay and

linkage techniques, should the need arise. However, it probably

would be relatively difficult to fit the program within a 12K

core restraint.

B. Restrictions

the following

The main restrictions in the program concern items:

Maximum no. of ship cross-sections

(stations 0 to 20)

21

Maximum no. of wave angles (in one run) 25

Maximum no. of wave lengths (in one run) . .51

(28)

*Two.dimensional properties

The word length on the CDC 6600 is 60 bits. No loss in

overall computational accuracy would be expected if this were

reduced, as in other digital computers, to 36 bits.

A special system subroutine called DATE is used which

provides the current date. This is used only in the heading on

the output.

C. Running Time

The following approximate times are for running under the

SCOPE operating system on the CDC 6600 computer.

Program compilation (RUN compiler) 10.0 secs.

Program loading into core 1.0 secs.

Calculation of TDP* Array (21 sections,

both vertical and lateral modes) 25 secs.

Calculate motions, moments at one condition,

(21 sections, both vertical and lateral

modes) 0.14 secs.

Calculate spectral response, for each

spectrum, for each condition 0.006 secs.

Thus, for a run with two ship speeds, 7 headings (at 30° increments from head to following seas), 21 wave frequencies (to adequately cover the spectral energy bands) and 5 sea states, the incremental time once the program was compiled, loaded and the TDP Array was

calculated, would be estimated as follows:

(2) (7) (21) [0.l4+(5) (0.006)] = 50 secs.

IV. DATA INPUT

This section of the manual describes the details of data

card input to the SCORES program.

A. Units

For calculations in regular waves, there are no inherent

units assigned to any of the variables in the program. Thus, the

user is free to choose any desired set as long as they are

consistent for all input parameters. The units are established

by the input values of water density and gravity acceleration.

(29)

Wave direction angles are always specified in degrees,

rather than radians.

However, for spectral calculations in irregular waves, using either the Neumann or Pierson-Moskowitz spectra, the SCORES

pro-gram assumes ft.-sec. units, full scale. The input wind speeds

used to specify spectral intensities, or sea states, are then

assumed to be in knots.

The following input data description indicates typical

consistent units for all parameters. Other systems of units

could be used, as noted above.

B. Data Card Preparation

Every data card defines several parameters which are

required by the program; each of. these parameters must be input

according to a specific format. "I" format (integer) means that

the value is to be input without a decimal point and packed to

the right of the specified field. "F'T format (floating point)

requires that the data be input with a decimal point; the number

can appear anywhere in the field indicated. "A" format

(alphanumeric) indicates that certain alphabetic characters or

title information must be entered in the appropriate card columns.

If the field is left blank for either "I" or "F" format,

a value of zero (0) is assigned to the parameter. Thus, parameters

not required by the program for a particular problem need not be

specified.

The card order of the data deck must follow the order in

which they are described below. Cards which must be present in

every run, regardless of options, are marked with an asterisk (*) The first eight types of cards are considered the basic data set, while subsequent cards are the conditional data set(s).

1) Title Card (*)

Columns Format Entry

l-80 A Any alphanumeric title

information, used to label job output

Water Density lbs./cu. ft. tons/cu. ft. metric ton/cu.

meter

Gravity Accel. ft./sec.2 ft./sec.2 meter/sec.2

Resultant Unit System

ft.-lbs.-sec. ft.-tons-sec. meter-metric

(30)

The first 30 columns are used as a label for the TDP array file. Thus, subsequent runs using the file must duplicate these first

30 columns which are then checked against the file label before

using the data. This avoids inadvertent use of an incorrect

TDP file.

Each option control tag is given a value of 0, 1, 2 or 3

where the meaning of each is given in the table below. The last

entry of the card, the number of ship segments, corresponds to the even number of equal length segments, or strips, into which the ship hull is divided lengthwise for purposes of calculation.

OPTION CONTROL TAG INTERPRETATION

Letter Tag

Code Descriptor Options Available

0: Simple summation 1: Trapezoidal rule

0: Caic. motions only, use summary mass properties

Caic. motions only, use

mass dist.

Calc. moments, use mass

dist. 0: Input masses 1: Input weights 0: Regular waves Neumann spectra Pierson-Moskowitz spectra Two parameter spectra

(continued on next page)

2) Option Control Card (*)

Columns Format Entry

i-2 I Integration option control tag

3-4 I Moment option control tag

5-6 I Mass dist. option control tag

7-8 I Wave spectra option control tag

9-10 I Degrees of freedom option control tag

il-12 I Directionality option control tag

13-14 I TDP file option control tag

15-16 I Moment closure option control tag

17-18 I Output form option control tag

19-20 I Torsion axis option control tag

21-22 I Number of ship segments

A Integration

B Moment

C Mass dist.

(31)

OPTION CONTROL TAG INTERPRETATION, Continued Tag Des criptor Letter Code H I J F Direction-ality G TDP file Moment closure Output form Torsion axis Options Available

0: Vertical plane only

Vertical and lateral plane

Lateral plane only 0: Uni-directional waves 1: Cos-sq. wave spreading 0: Generate TDP file, write

on file (Tape 10)

Read TDP file, (Tape lu), print out TDP data

Read TDP file,(Tape 10), no

print-out

0: Suppress closure calcs.

1: Calc. and print out

closure results 0: Dimensional 1: Non-dimensional 0: Center of gravity 1: Waterline Length Card (*)

Columns Format Entry

11-20 F Ship length (ft.)

21-30 F Water density (tons/cu.ft.)

31-40 F Acceleration of gravity (ft./sec.2)

41-50 F Ship displacement (tons)

The entries on this card are self descriptive and determine the units to be used for all other parameters, except as noted

earlier.

Hull Form Cards (*)

Columns Format Entry

l-10 F Section waterline breadth (ft.)

11-20 F Section area coefficient (-)

21-30 F Section draft (ft.)

31-40 F Section centroid (ft.)

E Degrees of

(32)

One card is used for each section to be specified, in order

along the ship length starting at the bow. For example, if the

number of segments is 10, and the integration option tag is 0, then 10 hull form cards are required which correspond to the hull

at stations 1/2, 1 1/2, 2 1/2, ..., 8 1/2, 9 1/2. If the

integration tag is 1, then 11 hull form cards are required at

stations 0, 1, 2, 3 9, 10.

The entries for sectional waterline breadth, area

coef-ficient and draft are straightforward. The fourth entry, the

section centroid, is measured downwards from the waterline If

no entries are given and the centroids are needed for lateral plane motions calculations, approximate controids are then

calculated based on the area coefficient and draft (using a two-dimensional version of the Moorish Approximation).

Lateral Plane Card

Columns Format Entry

1-10 F Ship vertical center of gravity (ft.)

11-20 F Radius of gyration in roll (ft.)

This card is used only if the degrees of freedom option

tag is i or 2, indicating lateral plane calculations. The ship

vertical c.g. is measured from the waterline, positive upwards. Summary Mass Properties Card

Columns Format Entry

l-10 F Radius of gyration, longitudinal

(ft.)

11-20 F Longitudinal center of gravity

(ft.)

This card is used only if the moment option tag is 0. The longitudinal center of gravity is measured from amidships,

positive forwards.

Sectional Mass Properties Cards

Column Format Entry

l-10 F Segment weight, or mass (tons,

or tons-sec2/ft.)

il-20 F Segment vert. c.g. (ft.)

21-30 F Segment roll gyradius (ft.)

These cards are used only if the moment option tag is

i or 2, in lieu of the summary mass properties card above. One

card is used for each section to be specified, in a similar

manner as the hull form cards described earlier.

The first entry on each card is the segment weight, or mass, depending on whether the mass dist. option tag is 1, or 0,

(33)

respectively. The second entry, the segment vertical center of gravity, necessary only for lateral bending moment calculations,

is measured, positive downwards, with respect to the ship's over-all vertical center, as specified on the lateral plane data card

above. Since it is required that the vertical mass moment

integral satisfy the specified overall v.c.g., the input segment

v.c.g. 's are shifted by an equal amount, up or down as necessary

to exactly balance the vertical moment for the hull. This

minimizes the effort required to obtain precise balance in input

data preparation. The third card entry, the segment roll gyradius,

is needed only for torsional moment calculations. If no entries

are given the overall ship value is used at each segment. Moment Station Card (*)

Column Format Entry

l-10 I First station for moment calculations

11-20 I Last station for moment calculations

21-30 I Increment between stations

The parameters on this card determine where along the ship

hull the moment calculations are to be performed. Station numbers

are defined as zero at the forward end of the first segment. increasing to N, the number of segments, at the after end of the

last segment. If the calculations are required only at one station,

then the first two entries on the card should be equal to that

station number.

The moment results at only one station are stored for

subsequent irregular seas spectral calculations. In the calculations

over a range of stations at which moments are calculated (and printed), then only the results at midships are stored for the

subsequent spectral calculations.

The first entry, the run control tag, determines program

continuity:

9) Run Control Card (*)

Columns Format Entry

l-10 F Run control tag and. wave

amplitude (ft.)

11-20 F Initial wave length, or

frequency (ft. or rad./sec.)

21-30 F Final wave length, or frequency

(ft. or rad./sec.)

31-40 F Increment in wave length, or

frequency (ft. or rad./sec.)

4-50

F Initial ship speed (ft./sec.)

51-60 F Final ship speed (ft./sec.)

(34)

Thus, if the run control tag is not greater than 0.0, then

the remaining parameters on the card are irrelevant. A blank

card, for example, is used to stop calculations and proceed to read a complete new set of data starting with the title card

1) above. This parameter is also used as the wave amplitude, and

is usually set to 1.0.

The next three entries determine the wave lengths to be

used in the calculations. If the wave spectra option control tag

is 0, indicating regular waves, then these entries are the initial,

final and increment in wave length. If the wave spectra option

control tag is greater than 0, indicating irregular wave calculations, then these entries are the initial, final and increment in wave

frequency. The increments should always be positive, so that wave

length, or frequency, increases from initial to final value.

The last three entries are similar parameters for ship speed. If calculations are required at only one value, then the initial and final values should both be set equal to it.

Roll Damping Card

Column Format Entry

1-10 F Fraction of critical roll damping

(empirical data)

This card is used only if the degrees of freedom option control tag is 1 or 2 indicating lateral plane motions calculations

are included. The calculated wave damping in roll, at the natural

roll frequency, is increased so that the total damping is the

specified fraction of critical damping. The additional roll

damping thus determined initially is then used for all subsequent

calculations.

Wave Angle Card (*)

Column Format Entry

1-10 F Initial wave angle, degrees

11-20 F Final wave angle, degrees

21-30 F Increment in wave angle, degrees

These entries specify the wave direction angles to be used

in the calculations and are always given in degrees. For

calculations with uni-directional waves, the meaning of the

parameters is as indicated. If the directionality option control

Run Control Tag Action

Greater than 0.0 Continue calculations, using this as

wave amplitude

0.0 (or blank) Stop calculations; read new basic

data set

(35)

tag is greater than 0, indicating calculations for a directional

wave spectrum, then only two choices exist. If the initial wave

angle is 180.0 the calculations proceed for head seas only,

including the wave directionality. If the initial wave angle is

not 180.0 the calculations proceed for all angles from following

seas to head seas, in steps according to the wave angle increment

specified.

In both cases the integrations with respect to wave angle

use the same increment, as specified.

12) Wave Spectra Card(s)

Columns Format Entry

1-10 I No. of sea states (wave spectra)

11-15 F First spectra parameter

16-20 F Second spectra parameter

21-25 F Third spectra parameter

(5 col.

fields) F

56-60 F Tenth spectra parameter

This card is used only for calculations in irregular seas

(wave spectra option control tag is greater than 0). The first

entry specifies the number of sea states (spectra) to be used

(maximum 10). For both the Neumann and Pierson-Moskowitz spectra

(wave spectra option control tag equals 1 or 2), the parameters

to be specified are the wind speed, in knots, for each sea

state. For the two parameter spectrum (option tag equals 3),

the parameters on this card are the significant wave heights

for each sea state. A second card is then used which contains

the mean periods for each corresponding sea state, as the

spectral parameter entries specified above.

C. Sample Input Deck

A sample input card deck listing is given on the next

page. The units are meters, metric tons and seconds.

V. PROGRAM OUTPUT

A. Description

The printed output from the SCORES program depends on the

option control tags set as input. Each output section will be

described, though in any given run not all sections will be

printed. Each section starts a new page and is labeled with the

title information and date.

The first part of the output is a listing of the basic

input data as processed. This defines the hull form and weight

distribution. Then the conditional data cards are printed out.

For irregular seas cases, the wave spectra will then be printed,

together with internally generated wave statistics. If the TDP

array is calculated diagnostic messages concerning these

(36)

The next output will be the listing of the two-dimensional

properties (TDP array) for each station and each frequency. If

the data is being read from file, this output can be suppressed.

For lateral plane calculations, the natural roll frequency and

roll damping information will then be printed.

Then, the vertical and/or lateral plane responses will be

printed out with all frequencies, or wave lengths, for a given

ship speed and wave angle, on the same page. For irregular seas

calculations, this will be followed by a print-out of the

response spectra and statistics (long crested seas) . These pages

will be repeated for each wave angle at the initial ship speed.

Then directional seas calculations results will be output, if

specified. The output is, of course, then repeated for

additionally specified ship speeds.

B. Sample Output

A sample output listing, in abbreviated form, is given

following the sample input listing.

Sample Input Card Deck Listing

0.-" rLL)C0 Tir))) OPT. '3. OO S) OCEAF.JICS PRr.gECT oo. 1053

240.5 481.3 1203.2 2406 3 3850.1 4090.1 4331.4 4331.4 3388 R 1584.4 1684 4 1443.5 2195.5 3b335 3466 I 3146.3 1955.1 721.9 120.3

---Ó_...-w---Y -

1.0 0.3151 1.3079 0.0451

---8.5257 6.5251 1.0 --.----10.0- 115.0 20.0 10.0 SL8IES 6 kULL 35M, 1 2 1 3 1 () 1 1 1 1U 153.0 )fl?0 9.80655 4M1?5. 00.00 .0 00.00 14.3Q .R2 11.0.3 22.85 .R4 11.03 28.55 .29 11.03 21.54 .90 I 1.(3 27.57 .Q1 11.03 27.57 .Q4 11.03 27.57 054 )1.03 27.57 .9s4 11.13 21.57 994 11.33 27.57 .994 T1.3 27.57 .994 jl.03 27.57 .993 11.03 27.57 959 11.03 27.57 .OoR 11.03 21.24 .921 11.03 25.94 .551 11.03 23.46 76R 11.03 19.63 .527 11.03 13.57 415 11.03 4.41 .53 1.1) -3.0955 5.95025

(37)

OPTION CONIMOL

Sample Input Listing

SEMIES 60 MULL FORM. 0.80 44LUCK CINQ RPI. MO. loo 5) OCEANICS PROJECT NO. 1093 SEP 24' 1910

TAGS - A B C I) E F G N I J

1 7 1 - 1 i i

OISPL. 44126.40 ORAVITY 9.806650

STATION BEAM AREA COE. ORAFI Z-BAR .EIGNT ZETA

OEQIvtD RESULTS

(.UNS. C.B. 4.(16 CFtTOFPWMIPST

LONC.. =

4.875 CFMO. OB MIDSHIPS)

SEHIES '0 HULL FORM. 0.80 MLUCM (TAlO HBf. NO. loo S) OCEAF'ICS PoIJECT NO. 1093 SEP 74. 1970

CONDITIONAL INVIIT1ThTACABD PRINT OUT

1.0000 .3157 1.3079 .0451 ¿.257 6.5257 1.0100 .1000

10.0000 170.0000 20.0000

1 8.4 -0.0 -0.0 0.0 -0.0 -0.0 -0.0 _0.0 -0.0 -0.0

Ío.øÇ-0.05.o-.5 -0.0 -0.0 .0.0 -0.0 -0.0

SERIES 60 NULL FORM. 0.80 HLOCB (TAlO RPT NO. 100 Sl OCEAAIICS PROJECT NO. 1093 SEP 74. 1970 WAVE SPECTRAL UENSITV, IWO PARAMETER. ZSSC 1967 SPECTRA

I5PL.(WTS.L 48126.50

tVOt 1 4Bfl77 53

-LrAlG. GYPADIUS = 46.159 GM 1.378 CALCULATE MOMENTS AT STATION 10

ST8TTONS 00 --GYP. P OLL .00 0.0000 0.0000 0.0000 0.O00 240.6005 0.0000 8.9402 1.00 14.3900 .8720 11.0300 5.0444 481.3000 0.0000 8.9602 ?.o0 22.88011 - .8940 11.0300 S.125i 1203.2000 0.0000 8.9602 3.00 26.5800 .0290 11.0300 5.204r, 2406.3000 0.0000 8.9602 4.00 27.0400 5.00 27.5700 .0T0Q1Í.ojU.0910 11.0300 3.a04,5.481m 3BSQTIVUu 4090.7000 0.00000.0000 8.960Z8.9602 6.0U 27.5100 .9940 11.0300 5.492o 4331.4000 0.0000 8.9602 7.00 27.5700 .0940 11.0301 5.492, 4331.4000 0.0000 8.9602 8.00 27.5700 .0940 [1.0300 5.49?, 3368.8000 0.0000 8.0602 9.00 27.5700 .9940 11.0300 5.492o 1684.4000 0.0000 8.9602 T0W0

2100

11.00 27.5700 .09409941T.o30011.0300 5.492,92., I6B4.0001443.8000 0.00000.0000 0.96028.9402 U.0027.07on .930 11.0300 5.489. 2195.8000 0.0000 8.9602 13.00 27.5700 .9890 11.0300 5.474 3290.7000 0.0000 8. 96 02 14OO27.57on 10.00 27.2400 .0210.068011.030011.0300 5.397,5.224 3633.IO03465.1000 --0.00000.0000 8.96028.9602 14.00 25.9400 .ABi 11.0300 4.9672 3146.3000 - -- 0.0000 - 0.06 02 17.00 23.4,00 .1580 11.0300 4.625o 1965.1000 0.0010 8.0602 r8.00 19.,30fl .6270 11.0300 4.j43, 721.9000 0.0000 8.9602 19.00 13.8100 .4190 11.0300 3.378, 481.3000 0.0000 8. 9602 20.00 - 4.4100 .5305 1.1000 .3777 120.3000 0.0000 8.9602 RTuSRaLr-. 8.960 SIG.HT. 8.400 SPECTRA Alo. WAVE FREO. .314 .360 .361

-

3.328 .406 5.610 .451 12.254 -496 12.954 541 11. 743 .586 9.B24 .631 7 886 67f, 72? 6.2064 846 1 1 73 .533 .767 3 782 t218

-

443 -.812 7.941 1.263 371.1:3 .857 2.331 .902 .047 1.847i .475

ooso-

A 99? 3.186 R.M.S. 2073 1.037 .961 AvO. .S34 1.082 .784 500.8V1/t0 4.146 1.127 p644 0.277 BASIE!i'íøijI raTS - LENGTf4 - 193.00 - I)EoSIrY 1.025000

(38)

Sample Output Listing, Continued

SIRIFS I0 HULL FOP. 0.$0 HLUCIt

tONO tIPI. NO. 100 5)

OCFANICS

PROJECT

NO.

1093

5P '4' 1970

TIlO-t)TMFSIONAL SLCTI()N PNOP1HtIFS

F HL f) PNA1. 4-pH1MF(i) ACIIAKISO. Il-SUN(S) NSUfttS) M(S.PHI) N(S.PH1) I-SURIR) MSUS(R) F-SUIO(R.S) STA 00 0,0000 INFTNTTV 0 0. 0. 0. 0. 0 0. 0. .0100 u. (1. 0. 0. 0. 0. 0, 0, 0. .0300 0.

0

0. 0. 0. 0. 0. 0. 0. u. , --. - o-.- ---o. 0, .1000 u. (t. 0. 0. 0. 0. 0, 0. 1500 0. 0. 0, 0. 0. 0. 0. 0. .100 U. 0. 0. 0. 0. 0. O 0. 2R00 0. 0. 0. 0. 0. 0. 0, 0. .3M0 0. 0. 0. 0. 0. 0. 0. 0. 0. .450Ó U. 0. 0. 0. 0, 0. .r,0o u. 0. 0. 0. ü. 0. o, 0. t;700 U, 0. 0. 0. 0, 0. O 0, .871(0 U. 0. 0. 0. 0. 0. 0, 0. 1.0100 u. 0. 0. 0. 0. 0. 0. 0. 150fl (J. 9. 0. 0. 0. 0. 0. 0, )550Q u. 0. 0. -0, 0, O. 0 0. 1,9500 U. 0. 0, 0. n. n. o. 0. 2.4500 0. 0, 0. 0. 0. 0. 0. 0. 3.0500 0. o. 0. 0. 0, 0. ø. o. 3.8000 0. 0.

0,.--0. 0. o. o o. --o, 4.7000 U, 0, O 0. 0. 0. 0, o, S.8oQo U. . 0. 0. 0. O. 0. o. 7.1900 0. 0. 0. 0. 0. o. 0. 0. 0. 11.7000 U, -0 0,

0. - o.-o. o. 10.7000 ii, 0. 0. ø. o. o. o, o. SIA 1.0 0.0000 INFINITY 0. 2.19861.01 0. 6.84851.01 0. 2.25631.02 0. - T6134rrU2,2216E,01 9U(J9104b.9340tE.Or3.1 1381-03Z.281 1E,0Z97815k.O3 .0300 2,141140+01 1.3423E-03 2.29141.00 .1.5649E-02 7.12281.01 4.90801-02 2.33780.02 1.53991-01 .0600 1.t,541E.n1 4.8738E-03 2.39620*01 9.06251-02 7.'317E.OI 2.8326E-01 2.42ç50.02 8,86351.01 .1000 1.31361.01 1.21191-02 2,54451.01 3.36011-01 7.86741.01 1.04551.00 2.55040.02 3.25950.00 .1SOO oA9oE.o1 2.4115E-02 2.72821,01 9.62261-01 8.40071.01 2.97731.00 2.71450,02 9.23801*00 .2100 9374E.flO 4.1333E-02 2.91371.01 2.30210.00 8.92541.01 7.07471*00 2,86391.02 2.1824E.01 2AOW76792E.8O63506E-D2 3.02510,01 4.72781.009.20821.F 1.441510I 2,93491.02t4l58E'Ol .3600 b.8104E.00 8.96T1-02 2.96)51.01 8.31971.00 8.91831.01 2.51410*01 2.82060.02 7.63791.01 4500 6.25011.00 1.18011-01 2.62341.01 1.24240.01 7.86351.01 3.71640*01 2,4923E.02 - 3.11831+02 5500 5.9141E.00 1.40'501-01 2.10021*01 1.b8451+Ø1 6,26761.01 4.68691.01 1.99990*02 ¡.3949E.02 .6700 5.81150.flO1.T5091.01 1.51881*01 1.19030.01 4.48901,01 5.22471+01 1.46300.02 1.53391+02 .8200 5.81681.00 2.01101-01 9.9189E.00 1.b3321.00 2.92971.01 5.26061'Ol 1.00300.02 1.51730.02

O100b. 1z1yr.wz1v83ru1 b.0943E00

v.74J8E.ox1-.8289F.Or4.8978E'o1 6,8 4080 1j18011402 1.2500 b.53861.nO 2,25061-01 3.78681.00 1.57760*01 1.15E.01 4.31191.01 5.18760,01 1.17831.02 1.5500 7.o401E.b02.13011-01 2.65391,00 1.37971,01 9.12541,00 3.64391+01 4.55090.01 9.5675.01 1.9500 (.59931.00 1.82781-01 2.3021E.00 1.16191.01 8.60711,00 2.92960*01 4.59o8(.O1 7.27961+01 2.4500 8.10791.00 1.41421-Il 2.49371,00 9.52251+009.5750E.00 2.26311.01 5.OsiSE,01 5.24101+01 3,0500 h5jS3E.flQ 1.00181_01 2,97650,00 7.65740,00 3.12231.01 1.69180,01 5,65n80.01 3,60081.01 3.B000 8.03iU,o0 6.45010? J.6135E4O0952E'00 1.31311.01 1.2046E.0T6270.012l159E*01 4.7000 9,07221,00 3.893o1-02 4.2775E,0O 4.62760.00 1.4921!.01 8.25281*00 6.81,5E,O1 1.41921*01 5.8000 9.24501.00 2.2481E02 4.91491,00 -3.52621*00-1.64851.01 5.3919E'0O 7.25670*01 8.25391.00 7,1000 9.37851.00 1.3106E-02 5,47161,00 2,69390,00 1.71131.01 3.41761*00 7.58521.01 4,68381.00 0.7000 9.4760E.0 7.9342E-03 5.95721.00 -2.05661,00r.86881,01 2.10031.00 7.83480.01 2.56741*00 10.7000 9.55490.00 5.2372E-03 6.3716E.00 1.57791.00 1.9467E.01 1.29700400 8.02560.01 1.36940400 --0.0000 INFINITY 0. 2.34761.01 0. 2.35831.01 0. 8,8941E401 0. .0100 1.05601.01 4.00331-04 2385O0.O1 1e4770-03-2.39661'OI 1.37820.03 8.93341.01 1.15181-03 .0300 b.o561E.ol 3.26121-03 2.48171.01 2.59291-02 2.48011,01 2.20011-02 9.0179E.0I 1.86670.02 .OAOO 3.8666E.51----F.16121-02 2.60231.01 1.49101-01 2.61771.01 1.2924E-01 9.151160,01 1.11991-01 .1000 3,07621.01 2.83141-02 2.78551.0) 5.4371-01 2.81081.01 4.85491.01 9.36111*01 4.3214E-01 0. 0. 0. 0. 0, -o. 0. 0, 0. 0. 0, 0. o. 0. 0. 0. 0. 6,84830.01 b.93490.U1 7,12591+01 7.4392E.O12i1342E'01 7,88081.01 5.42171,01 0.95541.01

- 9.2479E+01-X1444E401 8.96681.01 7 .9 19 11.0 1-317273E. 6.32771.01 4,55441.01 --5,2400(.0t--- 3.0041E.01 _1 91851+0*i90SIf0T 1.30730.01 I .05701.O1-3.63200ò0r 1.04801*01 I .19591.0l-2.23l6E50r 1.41640.01 T6614E*1 1,90691.01 2.121?1.Ol----5134181400- 2.29700.01

3,49451.00

2.44200e012i23771.00 2.5594E.03 2,35031.01 2 1959t.0t-1j3flbEä03 2.47960.01

2.2000E-02

2.6173t.O11-it922070I - 2.81120.01

(39)

514 3.0 0.0000 INFINITy 0. 2.54000,01 0. -.0100 9.36350.0T5.3571!-04 2.5840E.O1 2.1594E-03 0300 6.68130.01 4.32090-03 2.68440,01 3.39910-02 005 51o7rr1152i4o-o2 2.54410.01 1.95!40.01

CONTINUED FOR M.L SECTIONS....

Sample Output Listing, Continued

9.61?91,01 1.CBi1t+00 3.04050.01 9.85000.01 3.13590,00 3.24160.01 9,97950.01 6.42050.00 3.29040.01 9.84710,01 1.10120.01 3.09950.01 9.43420.01 1.59700.01 2.64940.01 8.85500.01 2.01800.01 2.0811E.01 .20,R0.612.3326E0I1 .4930E.0F 7.57450.01 2.52450.01 9.64830.00 7.01.50,01 2.59440.01 5.44160.00 6.56750*01 2.55060.01 2.42570.00 6.22930.01 2.40210*01 4.96040-01 5.99060.01 2.13960*01 -5.7060E-01 5.87os.WI1.79250.0F.8.26890-01 5.85230.01 1.4135E'01 -5.03140-01 5.90690+01 1.03360.01 2.00200-01 6.00170*01 1.08700.00 1.07180.00 6.10.00.01 4.54660.00 1.9786E.00 6.20480.01 .7963E.00 2.7982E.00 6.35740,01 9.24540-01 4,12500.00 1.03170*01 0. 2,48541,02 0. 1.03170.01

104730.01 -1.5145E-024866E.02 1.0849E.o5r0457E.01r.53obE-04- 1.0804E.01 -j.37S1E-03

2,48.50,02 b.8115Eo5 1.07840.01 -1,4055E-03 I .14950.01 S9735E0 2.49820r-l.99330-o5 1.15910.01 .1000 4.07020.01 3.67380-02 3.06200+01 7.1333E-01 1.23680*01 4.2262E-02 2.49,10.02 2.5176E-03 1.23780.01 .1500 3.37920.01 Y11110-02 3.28940+01 9746E0U1.3813E,0j P.50100-01 2.5Q79E,020.1748E-02T,824E.0T2.5038043 .2100 ¿.90190.11 1.181.90-01 3.43010,01 4.42290,00 1.55890.01 9.00570-01 2.51520,02 1.83870-01 1.56050.01 .2500 ,58390.1 1.77220-01 3.36400.01 8.1507E100T7091E.0j23495E.0O 2.S2930,026.79520-01 1TI16E.01 1.78830.00 1,74540.01 59450.00 1.8E77E'07.50S3E+00 5.90640.00 1,36740.01 8.64980.00 1.03940.0I1.28130,01 3600 ¿.311580.01 2.42900-01 2.96070,01 1,24240+01 1.74230.01 4.70450.00 2,54240,02 .4500 1.600(0.01 1.6143001f.5687E41)0 2.54,00.02 3, .5500 ¿.24510.01 3.723-30-01 1.77050.01 1.81630.01 1.36390,01 1.03320+01 25458E,02 .6708 .26690.01 4.27830-01 1.22850,01 1.8984Ei01 1.03630.01 1.27800,01 2,53330,02 2.51110,02 1.16820.01 6.76410.00 2,40030.02 1.47290401 3.1813E4001i6067r40T-2,44301,02 1.73710.01 .3,44330.02 2,40480.02 .91006.01 -2.85720.00 2.36,80,02 1.94530.01 -4.66540.00 33i5E.02 1.8067E*015.82240.001.3169E40t 2.32120*02 1.53270.01 .6,20540.00 231590.02 1.1792E'0156.0183Es00 2,31910.02 8.33660.00 .5.47900.00 ¿.32,70.04346E.0u ...,78020400 2,3301E,02 3.36430.00 4,08680.00 2.3432E.02I,'769E.0O3j45090.00-tj9686E.00- 2.34980.02 1.11720.00 .2.90380.00 8200 ¿.34200.01 4.68570-01 8.00070,00 1.86760,01 b,7375E.00 1.47260.01 T0108 2.46490+01 4.83710-01 5.00980.00 1.75350401 3.16110.00 1.60170.01 1.2500 2,61980.01 4,6323E-01 3.20360.00 1.58680,01 -4.7056E-02 1.65400.01 1.5500 2.7002.OTTiI678E-01 3)3E.o5T)929L.01 -2.66140.00 1.62410+01 1.9500 2,95040.01 3.1852E-01 2.14100*00 1.17590.01 -4.65980,00 1.50470.01 2.4501F 3.0593E.fl12.2l49E-01 2.4472E.009.b3b1E.00 -5.80680.00 1.311 10.01 3,0500 3.19460.01 1.38130-01 3.02490,00 7,73730+00 6.18070,00 1,08000.01 3.8000 3 .27c1E.017.4'00E-02 3.74210.006.04910+00 -5,98,50.00 8.3448E400 4.7000 .3.33340.01 3.43400-02 4.41030.00 4,67260.00 -5.4443E.00 6.12390.00 5.8000 .3.37108rTT23o9L-o2 sr56gE40o 3.01380.00 -',74830900 8.26(06+00 7.1000 3.40550.01 2.8468003 5.74890.00 ¿.75240.00 -4.06300,00 2,88230.00 8.7000 34338E976226E-05 b.2604E.O021307E.0034379E.001,8754E+00 10.1000 4.45370.01 6,25810-04 6.69310.00 1.67045+00 -2.90280.00 1.17420.00 S7A 40 - --0.0000 INFINITy 0. 2.7810E.01 0. 2.93490.01 0. .0100 [Ö094140Z 0,731,0-os 8333E90iT.5S97E032.9r080.ul 6.39520.04 .0300 7.21360.01 4,60050-03 2,94990,01 4.04130.02 3.06440.01 1,17420-02

O6055.531 30+51 16098E-02 3.13950,012,3344E+0T- 3.21790,01

8i678E-02 .1000 4.43850+81 3.8573E-02 3.3'027E'Ol 8.5687E-01 3.45190.01 3.6515E-01 Th007050Eo8T7,39510-02- 3.65560.01 2,3837E,00--3.76o50.0r 1.23260.00 2100 .3.21380.01 1.2185E-01 3.80050.01 5,34210.00 4.07230.01 3.31290.00 .2800 ¿.89770.01 t.1940E1rr3.6S500,01 9.7o.00t.00 4.22270.01 .15210'00 3600 2.71600.01 2.41400-01 3.15240.01 1,46150.01 4.04750.01 1.24430+01 .5500 2,63200.3T 30041E-01 2.4422E,Q1T8.oYt+01 3.5525E.01ri7910E'o1 5500 2,62670.01 3.52570-01 1.75060.01 2 4.82,4E.02 0. 2,93490.01 4,63760+ 2159510.042i91530'01 4,84040.02 3.40810.03 3.06510.01 4,05390e02 2.8594r-023.2200E.01t4699E-02 4.87540.02 1.55940-01 3,45090.01 4,90720.02 6.39630-01 3,76720,0V 1.23470.00 4,94750.02 2.06440.00 4.08210,01 48470.02 5,27040.00*.235?0r01 .998A0.02 1.06670.01 4.06270.01 497p 0E. 021i Ysiez. O 13i568500ttiT479EoO2 0402E.Oi 2,90170.01 2.23830.02 4.92740.02 2.47690.01 2.91740.01 .1600 ¿.52990+01 5.54110-02 2.98+90*01 1.1.2151.00 i.0394F.01 1.39111.00 .2100 ¿.14 E.nj 9.3511E-02 3.14,OE.o1 3.47120.00 3.23970.01 3.29820*00 .21000 1.881010,01 1.41630-nI 3.13750.01 6.60b71.00 3.?9S4.Ú1 10.50940'OO .3600 1.71390*11 1.9711001 2.87730.01 1.05130.01 3.09570*01 1.07510*01 .4500 1.61130.01 2.559+0-01 2.39810.01 1.41450.01 2.64510,01 1.50151.01 .5500 1.66?9E'nl 3.13500.01 l.84590,0I 1.66131.01 2.07640,01 1.82070.01 .61001.55740*n1 3.6 -51 h3t62E*o1 1.T980.01T48020.Ó1 2.0345E,0[ .8200 1.59330+11 4.110170-01 8.78190.00 1.77881+01 9.60010.00 2.1154E+0l 1.0100 1.610790.11 4.46760-015.6428E,00 1.68600.01 b.3'016E.00 2.08710.02 1.2600 1.77300.01 4.410640-01 3.69860,00 1.531.00+01 2.37150.00 1.97400.01 1.5500 1.89290.01 4.1723E-01 2.71010.00 1.35400.01 4.34270-01 1.79850.01 1. '0 So o ¿.01970.01 3.52tE-o1 2.40360.00 1.14900+01 -6.44990-01 1.56300.01 ¿t3IT4ì.i11

.6dE-0T2.6052E.00 9484E.00 -.r93ot-or1.29RoE.o1

3.0500 ¿.21910.01 1.894.0-01 3.09070.00 1.64030+00 -6.17580..01 1.03470.01 -3.8000 ¿.28770*01 1.211+0-01 3.72950.006.00850.00 b.8613002 7.82630+00 4.7000 ¿.33810*01 7.1904E-02 4.39490.00 4.65921.'OO 0.99830-01 5.6793E'OO -0.8000 ¿.37670.81 3.9093E-02 5.0335E.00.5693E+00 1.7729E.00 3.94110.00 7. 1000 ¿.40350.01 ¿.0667E-02 5.59140,00 2,74460.00 2.55800*00 2.66140.00 -5.7000 ¿.42600,OF J.24ST00 1.73570.00 10.7000 ¿.44210.01 4.60310-03 6.49380.00 1.63936.00 3.8210.0o 1.0958E.00

(40)

Sample Output Listing, Continued

SPEED

6.5251

WAVE ANGLE

10.00 DE..

VERTICAL PLANE RESPONSES (NON-DIMENSTONAL)

VERTICAL REND.MT. AMPLITUDE

PHASE wivE LENGTH Il PHASE WAVEENCoUNTtH F R E Q u E N r I r S fl/SflIP u t A Vt LENGTH MPL. PHASE P 1 T C AMPL, .31570 .25039 618.232 3.2033 8611 179.3 .8729 -85.8 4.075E-03 11.2 2.4525 TT6 178.8 .8089 -84.2 6.543E-03 14.5 36080 .215' 473.334 .40590 29793 373.992 1.9378 6657 178.0 .7262 -82.4 9.6030.03 17.9 .45100 .3117 302.934 [.5696 5308 176.16252 -On.1 1.300E-02 21.7 .49610 33481 250.358 1.2977 .3791 174.0 5091 -77.4 1.631E-02 25.7 .54120 6 210.371 [.0900 2263 16T4 .3A41 74.2 1.895E-02 30.0 .58630 .36103 179.251 .9288 0961 142,6 .2591 -70.2 2.026E-02 34.6 39,8 63140 .37014 154.558 .8008 0749 59.5 .1449 -64.! 1.9680.02 .61650 31659 134.637 .6916 1254 31.0 .0523 -53.4 1.696E-02 45.8 .T2160 3037 T10.33i .W[)[1381 238 .01 83.3 1.237E-02 53.5 .76670 38148 104.821 .5431 1077 20,0 .0456 115.1 6.793E03 66.4 .81180 .37993 93.6OL .4K4. 0513 124 .0487 124.9 2.164E-03 116.8 .85690 .37571 #3.915 .4348 0140 98.7 0331 135.3 3.321E-03 -150,1 .36882 70.. 133 .3924044y -139 .0117 160.4 4.363E03 -131.4 .90200 .94710 .35927 68.692 .30.59 .0451 -143.2 .0086 -76.8 3.069E-03 -120.7 34706 62.590 .3243 --0211 -143,3.... 0133 -40.5 5,262E04 -90,3

-.020

1.03730 .33211 57.2*.5 .2967 0084 31.1 .0086 -32.4 1.670E.03 60.2 .3140.3 52.593 .2725 0210 30.3 0026 57.7 1.938E-03 73.5 1.0G40 1.12750 .29441 48.469 .2511 0103 14.5 .0059 119.2 7.459E04 132.6 .003q 122.5 3 .930E-03 -144.6 1.17260 .27153 44.813 .2322

r241329-1.21710 24599 41.555 .2153 0221 -157.8 .0019 -28.8 2.316E03 -163.6 2T7i738.639 -.2002 0165 149.0 .0052 -49.4 1.008E_03 170,7 l.24280 1.30790 .18690 36.021 .1866 0250 12.7 .0035 -85.3 1.8210.03 69.7 518 20,0 0.0000 .0100 0300 0600 .1000 .1500 .2100 2800

INFINITY .373RE*00 1.6719F+oo 1.?HlIE*0U l.0357E.00 ,2)ÁE-0I 1.5915E-01 b7964E-01

1.5164E-01 1.4460E-03 1.0.327E-01 1.145E-O2 1.0.687E-01 4.00510-02 1.62180-01 9.72810-02 1.6 191E-Dl i .91-01171b9E-01 3.3080E-01 1.7062E-01 5.11FE-01 1.639RE0l

0. 4.100.3E-05 6.190L-04 3.3197E-03 1.0910E-02 2.6235E-02 4.9848E-02 7.8405E-02

-.8796V-01 -2.9162E-01 -?.0958F-01 -3.1172E-01 -3.24940-01 -3.339lE-Ol -3.3268E-01 3.1871E-01

-9.0894E-05 -1. 370.7E-03 -7.4049E-03 -?.4482E02 -5.9314E-02 -I 1373E-01 -1 .80R2E-01 66338E-01 6.7142E-01 6.8935E-01 7.1637E-01 7.4630E-01 7.6718E-01 7. 652.E- 01 7,34noE01

2,0124E-04 3.05610-03 0.6530002 5. 4985E-02 1.3415E-81 2. 59 170-0 1 4,1519E-01 -2.8796E-01 -?.91690-01 -2.9997E-01 -3. 123 10-01 -3.2585E-01 -3.3510E-01 -3.34010-01 -3 1999E-01

.3600 .4500 .5500

6.7300E-01 b.$249E-01 5,5394E-01 b32S6E. .01 b.17°E-oL .0R97f-01 5.06810-01 5.9Q4E-f1 5. 3H

ifE-ñ1

5,39910-01 5.s7530-o1 5.HjRhEOl 5.94E-fll h.06750..01 6.1266V-01 b.1986E01

I .50.10630-01

7.590.10-01 1.05200.00 1 .3986E,00

1.5311E-01 1.40600-01 1.2865E-01

1.060E-01 -2.9490E-01 -2.4827E-01 1.2912E-01 -2.67030-01 -3. 060 lE-0 1 1.4526E-01 -2.4008E-01 -3.5008E-01 [.5580E-0TT492E-0TB345E -01 1.6104E-01 -1.9276E-01 -4.0735E-01 1.6126E-01 -1.1497E-01 -4.2294E-01 1.5716E-01 -1.6252E-01 -4.3199E-01 1.4977E-01 -1.50.77E-01 -4.3672E-01 1.3945E-01 -1.5'50E-01 -4.3575E-01 lainE-or -T.5ff210-01 -4.2764E-01 1.1584E-01 -I.64620-01 -4.0865E-01 1.0385E-01 -1.71660-01 -3.7829E-01 9.253E-02 -1.7803F-01 -3.40.14E-01 8.1933E-02 -1.8444E-01 -3.1302E-01 1.2513E-02 -1.90390-01 -2.79250-01 6,40760-02 -1.95740-01 .2.4862E-01 5.6098E-02 -2.0115E-01 -2.19'6E-01

793 4e-0 1

6.1403E-01

lE-01

* Bio 3E-01 4.3143E-01 3.8396E-01 3.481 3E-01 3,2550E-01 3 1599E-01 3. 10v, 7E-0 1 3.3147E-01 345qAE-0 1 3.5978E-01 3. 7471E-01 3,8930E-01 4,0287E-01 4.1714E-01 5.7410E-01 7.11910-01 8.1809E-01 8,9828E-01 9.5333E-01 9.8324E-01 9.8938E-01 9. 7473E-01 9.40230-0 1 8.90490-01 8.3156E-01 7.6443E-01 6. 94 580-0 1 6.2335E-01 5.5596E-01 4.9244E-01 4.2975E-01

-2.95900-01 -2.6752E-01 -2.3987E-01 2. I 369E-ß1 -1.90010-01 -1.69940-01 -1. 54 120-01 -1.4255E-Il -1.3430E-01 -1.2945E-01 -1.27210-01 -1.26710-01 -1.2739E-01 -I .2881E-01 -1.3055E-01 -1,3258E-01 -1.3506E-01

6700 .8200 1;01ö 1.2500 1.9500 2. 4-5 3.0500 38000 4.7000 5.8000 7.1000 8.7000 10.7000 18T6E,O0 1,1 ?50T ?.380lE.00 1.0776E-01 3.1119E,00 9.9705E-02 4.03220*00 9.3615E-02 5.18440,00 8.9413E-02 6.(5660.00 8.6679E-02 -8.176aE008.53270-n2 1 1318E.01 8.4952E-02 I .41070.01 8,5198E-02 1,5681F_.01 8,5816E-02 1 .564.0o 1 8,6632E02 1 556 lE 01 8.7497E-02 1 .545E.0l 8.8413E-02 1.5360E *01 8.9443E-02

NATIPAI HOLL FREOUFNCY *

.3745

ÄLCuLATEWÀV

I7AMPINW1Ñ

flLL

3 .469E * 02

AOOITIO6AL vISCOIIS 1880110G 110 POLL *

3.50,20*04

SERIES 60 HULL FORM, 0.80 RLOCK ITNO RPT. 100.

100 5)

OCEANICS PROJECT 100.

1093

SEP ?4

(41)

Sample Output Listing, Continued SERIES 'fl Hul t FORM, .R0 HLUCE (160 RPT. 80. lOO S)

OCEANICS PROJECT NO. 1093

SEP 74' 1970

SPEED

6.557

WAVE ANGLE

10.00 DE,.

LATERAL PLANE PFSPONSES

(NON-DIMENSTONAL) y Y A'PL. A w R O L I. LATERAL REND.MT. PHASE AMPL, PHASE AMPLITUDE PHASE

TORSIONAL MOMENT AMPLITUDE

WAVE F RL QUE ENCO(JNTER WAVE WAVE/SHIP S W A NC I E S LFNIOTH LENGTH MPL. PHASE 31570 .25o19 518.23? 3.2033 .1696 90.6 .1807 -.4 .2474 -9c,3 2.182E-04 97.0 2.362E-OS .36080 .40590 270,49 473334 2.4520, 15229O8 .29793 373.99? 1.9378 1285 91.1 .1110

.L9O .2609

-97.2 3.938E-04 .5 .2675 .100.2 6.777E-04 96.1 95.1 3.730E-95 5,440E-05 .45100 .31771 302.934 1.5696 0990 91.1 1567 1.1 .2593 _104.8 1.087E.03 94.4 7.2960-05 .49610 .33881 260.368 1.297? 0651 91.0 .1367 1.8 .2235 -11i. 1.623E-03 94.0 8,766E-05 54120 ,3492t. 210.371 1.0900 0299 88.4 .1108 2.7 .1483 -119.1 2.235E-03 94.0 8,903E-05 .58630 .36103 179.251 .9288 0045 -36.4 .0822 3.6 .0398 ..117. 2.823E-03 94.2 6.846E-05 63140 .51014 1S4 .8b00u28R -76.4 .0539 4.4 .0058 2n.8 3.219E-03 94.9 3.369E-05 .67680 37689 134.637 .6976 0431 -71.8 .0761 3.9 .1773 19.0 3.311E-03 96.0 5.905E-05 7216o .38037 118.333 .6131 0439 -77.5 .0046 -11.6 .2224 16.2 2.994E-03 97.6 1.158E-04 76610 38148 104,821 643) 0320 -77.7 .O10 -168.4 .2166 17. 2.298E-03 100.0 1.611E-04 8l1Ho .37993 93.4911 .4844 0121 -85.2 0161 -160.6 .1651 20.3 1.381E-03 103.4 1.795E-04 85690 .37571 3.15 4348 0100 130.1 .0147 -158.9 .0814 20.9 4.924E-04 108.6 1.602E-04 .9O200 6827s.733 .3924 0241 121.6 .0086 -156.4 0094 -17o.1 1.287E-04 -71.3 1.047E-04 .94110 35071 f8.69? .3559 0260 122.0 .0010 -163.3 .0685 -131.7 3.433E-04 -58.5 3.800E-05 .99?20 .34706 62.590 .3243 0152 120.3 .0051 35.8 .0779 -119.9 1.995E-04 -34.8 2.6880-05 1.03730 .33211 N(765 .2967 0047 -9.8 .00/5 41.8 .0501 -11n.0 2.077E-04 99.5 4.028E-05 1.08240 .11463 i2.S93 .2(25 0209 -35.2 .0056 46.9 .0161 -loq.7 5.314E-04 126.5 3.338E-05 1.12750 .29441 48.469 .2511 0248 -36.3 .0007 28.8 .0064 118.3 6.654E-04 j38.4 1.879E-OS LT726 77j3 44.811 .2322 0103 -53.6 .0047 -111.9 .0116 104.0 5.206E-04 145.5 1.815E-05 1.I770 .24599 41.555 .2163 0213 173.5 .0069 -111.7 .0080 108.2 1.163E-04 138.3 2.649E-05 1.2628ñ ?1777 38.639 .2002 0423 166.4 .0037 -113.8 .0029 108.3 1.880E-04 3.7 2.678E-05 1.30790 .18690 36.021 .1865 0235 167.0 .0044 87.2 .0009 _.9 2.812E-04 -.7 1.997E-05 5ERIES Ffl HUIJ FORM, (1.80 HL,JCO (760 (IPI. O. 100 S) OCEANICS PROJECT NO. 1093 SEP 24' 1970 SPEED 6.5257 WAVE ANGLE -10.00 flE,.

SHEAR AND MOMENT CLOSURE RESULTS

WAVE -ENcAOUNEER 46VE P E Quo NC! F S LFN1,TH WAVE/SHIP LENOTH VERTICALBENDING SHEAR MOMENT LATERAL BENDINO SHEAR MOMENT TORSIONAI_ MOMENT .31570 .251139 618.232 3.2033 1.031E-16 8.752E-14 2.301E-17 .916E-13 6.415E-14 . 3OWö Th89 473.334 2.555 I .4030-I5T.B25E-I48.1035Ej7 5.938E13 9.406E14 .40590 29793 373.992 1.9378 .118E-lb 8.797E-14 5.652E-17 2. 119E.. 13 6.568E-14 .45100 .11771 352.936 1.5696 .317E-15 1.745E-14 4.2930-17 7 .944E-i 4 5.475E14 .49610 .33481 250.358 1.2972 c.9900-16 9.131E-14 7.023E-17 2.688E_13 6,542E-14 .54120 .38975 210.371 1.0900 ç.204E-16 7.048E-14 5.040E-17 7.668E-14 4.618E-14 .58530 .&3Í40 .361n3 .37W04 119.251 .9288 80118 .144E-11 i.227E-1T 3.022E-14 2.594E-14 3.719E-17 3.814E-17 2. 00 1.639E-06 4.568E-14 3.98 1E-14 r5458 .61650 .37859 134.631 .6916 .1790-16 1.490E-14 5.627E-17 1.9520-14 7.864E-14 .12160 .381137 118.333 .6131 ,.2650-1b 1.991E-14 2.169E-17 1.392E-14 8.095E-14 .16670 .38148 104.82) -.5431 .551E-16 4.6900-04 1.3620-17 2. 178E14 3.905E-14 .81180 .37993 93,498 .444 i.435E-17 6.3550-F4 3.189E-18 4 4a6E- 1 3.2960-14 .85590 .37571 83.915 .4348 ,.9090-17 2.704E-18 7.272E-18 1.365E-13 2.190E-14 .90200 .36s2 7573Y .3924 o65?ETT 4.749E-1 2.879E-11 3.2380..I 3 3.786E-15 .94110 .35927 68.692 -3558 .974E-17 1.739E-14 0.626E-11 6.087E-14 .99220 .34706 62.590 .3243 4.510E-17 2.122E-13 9.272E-18 1.748E_13 1.939E-13 1.03710 .33217 57.265 .2967 .338E-(7 1.660E-11 1.114E-17 2. 047E_13 1,104E-13 1.08240 .31463 S.593 .2726 4.646E-17 1.302E-13 2.656E-17 1.9320-13 3.218E-18 1.12(50 .29441 48,469 .2511 a.43(E-11 9.369E-14 2.042E-07 4.012F-14 1.227E-13 I.I765 44.813 .2322 ,,6300.17 1.461E-13 6.4180-18 1.3330-13 3. 06 1.21170 .24599 41.555 .2153 1.256E-17 1.538E-13 8.624F-18 3.6090.13 2.199E-14 1.26286 21777 38.639 .2u02 8.653E-17 2.410E-13 2.495E-11 0. 9.469E-18: 1.30(90 .18690 36.021 .1866 ,.503E-17 1.491E-13 1.176F-17 6. 33 3E - 1 7.501E_18:

(42)

Sample Output Listing, Continued

SENTES 60 HULL F0880 O ,80 SLUCK flNO HP).

NO. WAVE ANGLE s 10.00 DEr,,. LOO Si OCEANICS PROJEÇrNO. 1093 HT. 8.40. MEAN PERIOD SEP . 1970 SPEEL) 6.5257 SIS, WAVE 10.00

RESPONSE CAMPLITUDE) SPECTRA

WAVE ENCOUNTER WAVE TWU0U L NUE S LEÑGTi4 HEAVE PITCH S W A Y Y 6 W UD L i VERT.W.MLATiWMT TORSNtiMi .31570 25839 618.23 2.660E-01 9.290E-02 1.035E-0 2 3,980EO3

7.6203

685EO8 2203E-10 .36080 .21549 4J,33 2.007E.00 1.2600+00 1.711E-0 2 6.165E-02 1.311E-01 .833E-06 6.641E-09 5.960E-11 .80590 .2973 3t3.99 1.815E'OO 4.20 fOO 1.42t-01 2.33E0I5 '07E-01 1.U22E05 5.088E-08 .45100 .31171 302.93 3.4530.00 6.7640.00 1.202E-0 I 4.248E-01 1.1630+00 2.666E-05 1,864E-07 .4961 LO .33401 250.3 T8680.00 b.942E+00 b.49E -O? 4.970E-01 133RE00 4.435E-05 4.391E-O, .54 120 .3?6 .36103 210.31 11V.7S 6.012E-01 9.0640-02 5.0730.00 1.047E-G 2 4.220E-01 2.860001.9°6E-E43STBL-01 7,5690-01 8.28 iE02 5.426E-OS 7.549E-01 .-58 30 5-.188E-0ST.0Q8E-06 5.9?5E-10 .63140 .37014 154.56 4.41E-02 8.979E-01 6,6620.0 3 1.202E-01 3.152E-01 3.930E-05 1.052E-06 1.-095E'00 2.297EG58756E'07 .67650 31659 I34.64 9.75F-o2 1.14E-01 1.152E-G 2 3.021 002 .72168 38fl37 118.33 9.245E-02 1.140E-02 9.3500.0 3 9.685E-04 2,2190.00 9.540E-06 5.591E-07 .16670 .381 48 15.R24.383F-329.259E02 3.880E 034.620E-0i 2092E'00 2.2460-06-2.5710-07 T284E-09 811A0 37993 93.50 7.804E-03 1.043E-01 4.340E-O 4 1.137E-02 1.196E'OO 1.784E-07 1.272E-08 $560 3T51 5 690E-o 2 343014 9335E-3 2..84 E-OT 3.3070-07T.2730-09 .90200 .36882 (5.73 3.bbVE-o3 5.681E-03 1.074E-o 3 3.070E-03 3.705E-83 4.526E-07 3.940E-10 94710 359p1 68.69 3084E-o3 2963003 13E-04 3.122E05T90tOF 1.7B8Eo72.?36E09 .99220 347n6 62.59 5.2650-04 6.976E-03 4 1.025E-03. 2.378E-01 2.740E-0______ 4.226E09 6.070E-10 1.03730 33PiT 57.7 6.7SÓE-052.7&SE-O3 2.122EO IS .10E-039 ,526OU .449E-08 5.334E-[02i0Obt-11 1.08240 .3143 52.59 3.441E-04 2.399E-04 3.408E-04 1.137E-03 9.480003 3.790E-0e 2.849E-09 1.T7So .20441 4847 b.ß07E-S 1.240E-03 .52EO4 1.8b7EO5 [.446003 463 0E01 1.669E-09Z26E.12 1.17260 27153 44.81 8.2180-05 5.33J0-04 5.669E-05 7.412E-04 4.604E-03 2.555E-08 1,8550.09 1.21110 .24599 41.65 2.T06104 1.23'E-04 2.0O3EO4 1.593E-03 2.152E-03 3.060E-08 1.7730.10 1.26280 .21771 38.64 1.0130-04 d.8i(E-04 6.648E-04 4.384E-04 2.670E-04 4.849E-09 1.688E-10 1,30(90 186 90 36.02 1.9E-Ï43925E-04 1.7290-04 o.002E04 2.582EO5 [334E-0e 3.181EIW1.605E-12 MN5R 5.530E-01 T204E300 2.013E-02 9.451E-02 5.445E01 &.193EO5 2.382E-o, P.#.S. 7.431E-01 1.1290.00 1.419E-81 3.074E-01 7,379E-01 3.4540-03 4,8810-04 AVG. 9.106E-01 1.382E,00 1.137E-01 3.764E-01 -01 9.039E 4.2300-03 5.976E-04 SIG. 1.487E,00 2.2570.00 2.831E-81 6.148E-01 1.4760.00 6.909E-03 9.761E-04 1.97 60h00 8.792E031.242EOi 681/10 1.893E.002.873E+00 3.811E-01 7.024E01

Cytaty

Powiązane dokumenty

Odwiedziliśmy: Blists Hill Victorian Town, które jak nazwa wskazuje, opo- wiada o czasach, kiedy panowała w Wielkiej Brytanii królowa Wiktoria; Coalbrookdale Museum of Iron,

Podobne korelacje istotne statystycznie zaobserwowano również pomiędzy pozytywną relacją z Bogiem i poczuciem związku z grupą (r=0.562; p=0.010) oraz pomiędzy negatywnymi

Pomiaru zaangażowania w pracę i rodzinę dokonano za pomocą opracowanej przez Lachowską polskiej wersji skali The Utrecht Work Engagement Scale (UWES), której autorami są

Among the three sintering sequences, the module sintered by S(a) under 30 MPa pressure shows the lowest von Mises stress of 63 MPa on the

Voor sommige activiteiten zijn verschillende bronnen be- schikbaar (praten, handelen), andere activiteiten maken gebruik van dezelfde mentale bron (praten, lezen of naar een

LA_SurveyPurposeType: the LA_ SurveyPurposeType code list includes all the various survey purpose types, such as: land consolidation, control measurements or division of a

3 to 26 the experimental values of hydrodynamic mass, damping and cross coupling coef- ficients are given for pitch, heave, yaw and sway as. a function of the frequency of

spalania, stąd duże zainteresowanie możliwością optymalizacji pracy poprzez lepsze poznanie wpływu procesu mieszania na inne parametry technologiczno-eksploatacyjne jak: