• Nie Znaleziono Wyników

On the Strong Law of Large Numbers for Random Variables Bounded by Sequences of Numbers

N/A
N/A
Protected

Academic year: 2021

Share "On the Strong Law of Large Numbers for Random Variables Bounded by Sequences of Numbers"

Copied!
6
0
0

Pełen tekst

(1)

UNIVERSITATIS MAEIAE C U RI E - S K Ł O U O WS K A LUBLIN -POLONIA

VOL. XVI, 10 SECTIO A 1062

Z Zakładu Statystyki Matematycznej Wydziału Rolnego Wyższej Szkoły Rolniczej w Lublinie

Kierownik: doc. dr Wiktor Oktaba

DOMINIK SZYNAL

On the Strong Law of Large Numbers for Random Variables Bounded by Sequences of Numbers

O mocnym prawie wielkich liczb dla zmiennych losowych ograniczonych przez ciągi liczbowe

Об усиленном законе больших чисел для случайных величин ограниченных через числовые последовательности

1. Introduction

Let {Xk} (k = 1,2,...) be a sequence of random variables and let Sn = i xk.

fc-1

Definition 1. The strong law of large numbers (SLLN) is said to hold for the sequence {Afc} if there exists a sequence of constants {c,,}

such that

(1) p[um^-c№j = o] = l.

Definition 2. The sequence of random variables {Sn/n} is said to contain the characteristic subsequence {S„Jnk} (k = l,2,...) if

(2)

1» lim = 1, nk < nk+,,

fc_>oo 'W'A-

8nk~E(Snk) 2° P lim —

Lfc->oo М'к

= oj = 1,

where E(Snic) is the expectation of 8nic-

A well known though unsolved problem in the theory of probability is to find a set of necessary and sufficient conditions for the validity of the strong law of large numbers. The results of heretofore investigations

(2)

124 Dominik Szynal

may be found in the papers of Chung [1], of Loeve [5], and of Pro­

horov [6].

In papers devoted to the necessary and sufficient conditions for SLLN some authors give such conditions for certain classes of random variables, expressing them in terms of moments, in terms of probabilities of sums of some segments of the considered sequence [6], or in terms of characteristic subsequences [3], while other authors indicate instead certain classes of random variables for which necessary and sufficient conditions, expressed e. g. in terms of moments, do not exist [2].

For uniformly limited variables E. Franckx [3] shows that the existence of characteristic subsequence is a necessary and sufficient condition for SLLN.

In this paper it is remarked that the existence of characteristic sub­

sequence is the necessary condition for any sequence of random variables, and it is proved that this condition is also sufficient for such a class of random variables for which there exists such a sequence of numbers

{Ln} that

OQ

(3) ^P[\Xn\^Ln]<oc.

n=l

Furthermore it is shown that the existence of characteristic subsequence is not always sufficient for random variables which do not obey (3). It is also shown that the assumption (3) may be replaced by some other assumptions.

2. Theorem.

Let {Xk} be a sequence of random variables such that (3) holds. The existence of characteristic subsequence is the necessary and sufficient con­

dition for SLLN.

Proof.

A. The condition is necessary.

The proof of E. Franckx for the class of random variables that are uniformly limited is based on the convergence almost surely (a. s.) of {S„ln} and may be transfered to the class of random variables in the above theorem, and even, to any sequence {Aa.}, since a convergence almost surely of a sequence {$m/n} implies a convergence almost surely of sub­

sequence {Snjn/c} (fc -> oo).

B. The condition is sufficient.

Without loss of generality we may assume that the median y(Xk | Xk, X2, ..., A*_,) = 0, since if a theorem holds for the sequence of random

(3)

variables centered at the conditional medians, it follows that it holds also for original sequence of random variables [4]. Let

U/c = Xk, Vk = 0 for |X*| <

Uk = 0, Vk = Xk for

& = X

vk.

k-\

With the assumption that 8'niJnk -> 0 a. s. for k -> oo, we have

Putting

„ Snk ^nk_x _ 8nk

‘-k — —————--- -

nk nk

nk_x S’„

Zk = max

nk nk-1

nk

-> 0 a. s.

and using extended P. Levy’s inequality [4] we obtain, for every e > 0, P[Zfc > c] < 2P[|T*| > £], and hence XP[Zk > e] < 2 ZP[| Yt| > e] < oo so that Zk -> 0 a. s. Therefore, for wfc_, < n < nk

8n | 8nk l | 8nk_1 S'ank_ !

n n n n n nk-l

^—zk+nk n

8'”t-i -> 0 a. s.

This proves SLLN for Uk, since for {X*}, satisfying (3),

\/i(8„\ 8lf 8..., —E(Sn\S1, >S'2, ..., *Sn_i)|/M -* 0, for n -*■ oo [4]. Now, we have on the basis of (3)

£P[Ffc 0] = ZP[|J*| > ifc] < oo so that SLLN holds for {Zfc}.

3. Remurks.

Remark 1. The existence of characteristic subsequence is not always sufficient for SLLN if {Xk} does not obey (3).

For example, let be a sequence of independent random variables such that P{Xk = -k1'2} = P{Xk = k1'2} = 1 /loglogn, and P{Xk = 0} =

= 1 —2/loglogn. It is easy to verify that E(Xk) = 0, or’fJC*) = 2fc/loglog&.

(4)

126 Dominik Szynal

The sequence {Xk} obeys weak law of large numbers (WLLN), be­

cause

а2(Хк)/пг = [ \2k/loglogA’)/n* < 2l^niogiogn -> 0, for n oo.

k=3 k=i

So there exists a subsequence {S„klnk} which converges to zero a. s. But SLLN is not satisfied, which will be shown directly. Because |A\.| =

= o(/v/loglog/c) the necessary and sufficient condition for the validity for SLLN is convergence of the series

oo Jr+*

r=l k>2r

for any £ > 0 [6]. By elementary computation we obtain exp( — e/Hr) > У exp(—elog(r+l)log2) = oo,

Г-=1 Г-1

which shows that SLLN does not hold for {Zfc} in spite of the existence of characteristic subsequence.

Remark 2. The assumption (3) may be replaced by some other as­

sumption concerning the sequence {-X*}, for example, by assumption

K{ = -> 0 a. s.

n{

or, by assumption

Bi = sup — —- -> 0 a. s. [5].

к к ni

REFERENCES

[1] Chung, K.L ., The strong law of large numbers, Proc. Second Berkeley Symp.

on Stat. and Prob., (1951), p. 341-352.

[2] Fiez, M., On necessary and sufficient conditions for the validity of the strong law of large numbers expressed in terms of moments, Bull. Acad. Polon. Sci., Sér. sci.

math., astr. et phys. 7 (1959), p. 221-225.

[3] Franckx, E., La loiforte des grands nombres des variables uniformément bornées, Trab. Estad. 9 (1958), p. 111-115.

[4] Loève, M., Probability Theory, New York, 1955.

[5] Loève, M., On almost sure convergence, Proc. Second Berkeley Symp. on Stat.

and Prob., (1951), p. 279-303.

[6] Прохоров, Ю. В., Об усиленном законе больших чисел, Иав. АН СССР, сер.

матем., 14, (1950), р. 523-530.

(5)

Streszczenie

W pracy tej podano warunki konieczne i dostateczne dla spełnienia mocnego prawa wielkich liczb dla ciągu zmiennych losowych ograniczo­

nych przez ciągi liczbowe oraz wykazano, że dla ciągów pewnych zmien­

nych losowych nieograniczonych nie istnieją warunki konieczne i dosta­

teczne wyrażone przez podciągi charakterystyczne.

Резюме

В этой работе, поданы необходимые и достаточные условия при­

ложимости усиленного закона больших чисел (у. з. б. ч.) к последо­

вательности случайных величин ограниченных через числовые после­

довательности, а также доказано, что к последовательности неко­

торых неограниченных случайных величин не существуют необхо­

димые и достаточные условия приложимости у. з. б. ч. выраженные через характерные подпоследовательности.

(6)

Cytaty

Powiązane dokumenty

Weak Law of Large Numbers for uncorrelated random variables... Strong Law of Large Numbers for the

The limit behaviour of functions of sums with random indices when {Xn, те &gt; 1} and {Nn, те &gt; 1} are not assumed to be independent, is given by the following theorem. Theorem

The following theorem states that the theorem of Hsu and Robbins on complete convergence is true for quadruplewise independent random variables..

Lehto and Virtanen have proved in [8] that the locally uniform convergence of a sequence {wn} of planar A&#34;-quasiregular mappings to a mapping w implies the weak convergence of

(1983), Complete convergence and convergence rates for randomly indexed partial sums with an application to some first passage times, Acta Math. (1985), Corrections to

He considered equidistributed random variables with continuous distribution function and pointed out that the Glivenko-Cantelli lemma remained open in the discrete case.. It is

Eranckx in [1] considers a sequence of uniformly bounded random variables {Xn} and formulates his qualitative criterion: a necessary and sufficient condition for the strong law