• Nie Znaleziono Wyników

Some Strongly Almost Summable Sequence Spaces

N/A
N/A
Protected

Academic year: 2021

Share "Some Strongly Almost Summable Sequence Spaces"

Copied!
13
0
0

Pełen tekst

(1)

Mathematics

and Applications

JMA No 40, pp 171-183 (2017)

COPYRIGHT c by Publishing House of Rzesz´ow University of Technology P.O. Box 85, 35-959 Rzesz´ow, Poland

Some Strongly Almost Summable Sequence Spaces

Sunil K. Sharma and Ayhan Esi

Abstract: In the present paper we introduce some strongly almost summable sequence spaces using ideal convergence and Musielak-Orlicz function M = (Mk) in n-normed spaces. We examine some topological properties of the resulting sequence spaces.

AMS Subject Classification: 40A05, 46A45, 46B70.

Keywords and Phrases: Paranorm space; I-convergence; Λ-convergent; Orlicz func- tion; Musielak-Orlicz function; n-normed spaces.

1. Introduction and preliminaries

Mursaleen and Noman [18] introduced the notion of λ-convergent and λ-bounded sequences as follows:

Let λ = (λk)k=1 be a strictly increasing sequence of positive real numbers tending to infinity i.e.

0 < λ0< λ1< · · · and λk→ ∞ as k → ∞

and said that a sequence x = (xk) ∈ w is λ-convergent to the number L, called the λ-limit of x if Λm(x) −→ L as m → ∞, where

λm(x) = 1 λm

m

X

k=1

k− λk−1)xk.

The sequence x = (xk) ∈ w is λ-bounded if supmm(x)| < ∞. It is well known [18]

that if limmxm= a in the ordinary sense of convergence, then lim

m

 1 λm

 m X

k=1

k− λk−1)|xk− a|



= 0.

This implies that

limmm(x) − a| = lim

m | 1 λm

m

X

k=1

k− λk−1)(xk− a)| = 0,

(2)

which yields that limmΛm(x) = a and hence x = (xk) ∈ w is λ-convergent to a.

The concept of 2-normed spaces was initially developed by G¨ahler [6] in the mid of 1960’s, while that of n-normed spaces one can see in Misiak [15]. Since then, many others have studied this concept and obtained various results, see Gunawan ([8, 9]) and Gunawan and Mashadi [10] and references therein. Let n ∈ N and X be a linear space over the field K, where K is the field of real or complex numbers of dimension d, where d ≥ n ≥ 2. A real valued function ||·, · · · , ·|| on Xn satisfying the following four conditions:

1. ||x1, x2, · · · , xn|| = 0 if and only if x1, x2, · · · , xn are linearly dependent in X;

2. ||x1, x2, · · · , xn|| is invariant under permutation;

3. ||αx1, x2, · · · , xn|| = |α| ||x1, x2, · · · , xn|| for any α ∈ K, and 4. ||x + x0, x2, · · · , xn|| ≤ ||x, x2, · · · , xn|| + ||x0, x2, · · · , xn||

is called a n-norm on X, and the pair (X, ||·, · · · , ·||) is called a n-normed space over the field K.

For example, we may take X = Rn being equipped with the Euclidean n-norm

||x1, x2, · · · , xn||E = the volume of the n-dimensional parallelopiped spanned by the vectors x1, x2, · · · , xn which may be given explicitly by the formula

||x1, x2, · · · , xn||E= | det(xij)|,

where xi = (xi1, xi2, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n. Let (X, ||·, · · · , ·||) be a n-normed space of dimension d ≥ n ≥ 2 and {a1, a2, · · · , an} be linearly independent set in X. Then the following function ||·, · · · , ·||on Xn−1defined by

||x1, x2, · · · , xn−1||= max{||x1, x2, · · · , xn−1, ai|| : i = 1, 2, · · · , n}

defines an (n − 1)-norm on X with respect to {a1, a2, · · · , an}.

A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to converge to some L ∈ X if

k→∞lim ||xk− L, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1∈ X.

A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to be Cauchy if lim

p→∞k→∞

||xk− xp, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

An Orlicz function M : [0, ∞) → [0, ∞) is a continuous, non-decreasing and convex function such that M (0) = 0, M (x) > 0 for x > 0 and M (x) −→ ∞ as x −→ ∞.

(3)

Lindenstrauss and Tzafriri [13] used the idea of Orlicz function to define the following sequence space,

`M =n x ∈ w :

X

k=1

M|xk| ρ

< ∞o ,

which is called as an Orlicz sequence space. Also `M is a Banach space with the norm

||x|| = infn ρ > 0 :

X

k=1

M|xk| ρ

≤ 1o .

Also, it was shown in [13] that every Orlicz sequence space `M contains a subspace isomorphic to `p(p ≥ 1). The ∆2- condition is equivalent to M (Lx) ≤ LM (x), for all L with 0 < L < 1. An Orlicz function M can always be represented in the following integral form

M (x) = Z x

0

η(t)dt,

where η is known as the kernel of M , is right differentiable for t ≥ 0, η(0) = 0, η(t) > 0, η is non-decreasing and η(t) → ∞ as t → ∞.

A sequence M = (Mk) of Orlicz function is called a Musielak-Orlicz function see ([14, 23]). A sequence N = (Nk) defined by

Nk(v) = sup{|v|u − Mk(u) : u ≥ 0}, k = 1, 2, . . .

is called the complementary function of the Musielak-Orlicz function M. For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space tMand its subspace hM are defined as follows

tM=n

x ∈ w : IM(cx) < ∞ for some c > 0o ,

hM=n

x ∈ w : IM(cx) < ∞ for all c > 0o , where IM is a convex modular defined by

IM(x) =

X

k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x|| = infn

k > 0 : IMx k

≤ 1o

or equipped with the Orlicz norm

||x||0= infn1 k



1 + IM(kx)

: k > 0o .

Let X be a linear metric space. A function p : X → R is called paranorm, if

(4)

1. p(x) ≥ 0 for all x ∈ X, 2. p(−x) = p(x) for all x ∈ X,

3. p(x + y) ≤ p(x) + p(y) for all x, y ∈ X,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence of vectors with p(xn− x) → 0 as n → ∞, then p(λnxn− λx) → 0 as n → ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [30], Theorem 10.4.2, p.

183). For more details about sequence spaces (see [16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 29]) and reference therein.

A sequence space E is said to be solid (or normal) if (xk) ∈ E implies (αkxk) ∈ E for all sequences of scalars (αk) with |αk| ≤ 1 and for all k ∈ N.

The notion of ideal convergence was introduced first by P. Kostyrko [11] as a general- ization of statistical convergence which was further studied in topological spaces (see [2]). More applications of ideals can be seen in [2, 3].

A linear functional L on `is said to be a Banach limit see [1] if it has the properties:

1. L(x) ≥ 0 if x ≥ 0 (i.e. xn≥ 0 for all n), 2. L(e) = 1, where e = (1, 1, . . .),

3. L(Dx) = L(x),

where the shift operator D is defined by (Dxn) = (xn+1).

Let B be the set of all Banach limits on `. A sequence x is said to be almost convergent to a number L if L(x) = L for all L ∈ B. Lorentz [12] has shown that x is almost convergent to L if and only if

tkm= tkm(x) = xm+ xm+1+ · · · + xm+k

k + 1 → L as k → ∞, uniformly in m.

Recently a lot of activities have started to study sumability, sequence spaces and re- lated topics in these non linear spaces see [4, 28]. In particular Sahiner [28] combined these two concepts and investigated ideal sumability in these spaces and introduced certain sequence spaces using 2-norm.

We continue in this direction and by using Musielak-Orlicz function, generalized se- quences and also ideals we introduce I-convergence of generalized sequences with respect to Musielak-Orlicz function in n-normed spaces.

Let (X, ||.||) be a normed space. Recall that a sequence (xn)n∈N of elements of X is called statistically convergent to x ∈ X if the set A() =n

n ∈ N : ||xn− x|| ≥ o has natural density zero for each  > 0.

A family I ⊂ 2Y of subsets of a non empty set Y is said to be an ideal in Y if

(5)

1. φ ∈ I;

2. A, B ∈ I imply A ∪ B ∈ I;

3. A ∈ I, B ⊂ A imply B ∈ I, while an admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y (see [6]).

Given I ⊂ 2Nbe a non trivial ideal in N. A sequence (xn)n∈N in X is said to be I-convergent to x ∈ X, if for each  > 0 the set A() = n

n ∈ N : ||xn − x|| ≥ o belongs to I (see [11]).

Let I be an admissible ideal of N, M = (Mk) be a Musielak-Orlicz function and (X, ||·, · · · , ·||) be a n-normed space. Let p = (pk) be a bounded sequence of positive real numbers and u = (uk) be any sequence of strictly positive real numbers. By S(n − X) we denote the space of all sequences defined over (X, ||·, · · · , ·||). We define the following sequence spaces in this paper:

ˆ

wI(M, Λ, p, ||·, · · · , ·||) = n

x = (xk) ∈ S(n − X) : ∀  > 0, n n ∈ N : 1

n

n

X

k=1

h Mk

||tkmk(x) − L)

ρ , z1, · · · , zn−1||ipk

≥ o

∈ I

for some ρ > 0, L ∈ X and z1, · · · , zn−1∈ Xo , ˆ

w0I(M, Λ, p, ||·, · · · , ·||) = n

x = (xk) ∈ S(n − X) : ∀  > 0, n n ∈ N : 1

n

n

X

k=1

h Mk

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

≥ o

∈ I

for some ρ > 0, and z1, · · · , zn−1∈ Xo , ˆ

w(M, Λ, p, ||·, · · · , ·||) =

nx = (xk) ∈ S(n − X) : ∃ K > 0 such that

sup

n∈N

1 n

n

X

k=1

h Mk

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

≤ K

for some ρ > 0, and z1, · · · , zn−1∈ Xo , ˆ

wI (M, Λ, p, ||·, · · · , ·||) = n

x = (xk) ∈ S(n − X) : ∃ K > 0 such that

(6)

n

n ∈ N : 1 n

n

X

k=1

h Mk

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

≥ Ko

∈ I

for some ρ > 0, and z1, · · · , zn−1∈ Xo .

The following inequality will be used throughout the paper. If 0 ≤ pk ≤ sup pk = H, D = max(1, 2H−1) then

|ak+ bk|pk≤ D{|ak|pk+ |bk|pk} for all k and ak, bk∈ C. Also |a|pk≤ max(1, |a|H) for all a ∈ C.

The main aim of this paper is to study some topological properties and inclusion relations between the above defined sequence spaces.

2. Main results

Theorem 2.1. Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded sequence of positive real numbers and I be an admissible ideal of N. Then ˆwI(M, Λ, p, ||·, · · · , ·||), ˆwI0(M, Λ, p, ||·, · · · , ·||), ˆw(M, Λ, p, ||·, · · · , ·||) and

ˆ

wI (M, Λ, p, ||·, · · · , ·||) are linear spaces.

Proof. Let x, y ∈ ˆwI(M, Λ, p, ||·, · · · , ·||) and α, β ∈ C. So

nn

n ∈ N : 1 n

n

X

k=1

h Mk

||tkmk(x) − L) ρ1

, z1, · · · , zn−1||ipk

≥ o

∈ I for some ρ1> 0,

L ∈ X and z1, · · · , zn−1∈ Xo and

nn

n ∈ N : 1 n

n

X

k=1

h Mk

||tkmk(y) − L)

ρ2 , z1, · · · , zn−1||ipk

≥ o

∈ I for some ρ2> 0,

L ∈ X and z1, · · · , zn−1∈ Xo .

Since ||·, · · · , ·|| is a n-norm, M = (Mk) be a Musielak-Orlicz function and so by using inequality (1.1), we have

(7)

1 n

n

X

k=1

h Mk

||tkmk(αx + βy) − L)

|α|ρ1+ |β|ρ2 , z1, · · · , zn−1||ipk

≤ D1 n

n

X

k=1

h |α|

(|α|ρ1+ |β|ρ2)Mk

||tkmk(x) − L) ρ1

, z1, · · · , zn−1||ipk

+ D1 n

n

X

k=1

h |β|

(|α|ρ1+ |β|ρ2)Mk

||tkmk(y) − L) ρ2

, z1, · · · , zn−1||ipk

≤ DF1 n

n

X

k=1

h Mk

||tkmk(x) − L) ρ1

, z1, · · · , zn−1||ipk

+ DF1 n

n

X

k=1

h Mk

||tkmk(y) − L) ρ2

, z1, · · · , zn−1||ipk

,

where F = maxh

1, |α|

(|α|ρ1+|β|ρ2)

H

, |β|

(|α|ρ1+|β|ρ2)

Hi

. From the above inequality, we get

n

n ∈ N : 1 n

n

X

k=1

h Mk

||tkmk(αx + βy) − L)

|α|ρ1+ |β|ρ2 , z1, · · · , zn−1||ipk

≥ o

⊆ n

n ∈ N : DF1 n

n

X

k=1

h Mk

||tkmk(x) − L)

ρ1 , z1, · · · , zn−1||ipk

≥  2 o

∪ n

n ∈ N : DF1 n

n

X

k=1

h Mk

||tkmk(y) − L)

ρ2 , z1, · · · , zn−1||ipk

≥  2 o

. Two sets on the right hand side belong to I and this completes the proof.

Similarly, we can prove that ˆwI0(M, Λ, p, ||·, · · · , ·||), ˆw(M, Λ, p, ||·, · · · , ·||) and ˆ

wI (M, Λ, p, ||·, · · · , ·||) are linear spaces.

Theorem 2.2. Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded sequence of positive real numbers. For any fixed n ∈ N, ˆw(M, Λ, p, ||·, · · · , ·||) is a paranormed space with the paranorm defined by

g(x) = infn

ρpnH : ρ > 0 is such that sup

k

1 n

n

X

k=1

h Mk

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

≤ 1, ∀z1, · · · , zn−1∈ Xo .

Proof. It is clear that g(x) = g(−x). Since Mk(0) = 0, we get inf{ρpnH} = 0 for x = 0 therefore, g(0) = 0. Let us take x, y ∈ ˆw(M, Λ, p, ||·, · · · , ·||) . Let

B(x) =n

ρpnH : ρ > 0, sup

k

1 n

n

X

k=1

hMk

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

≤ 1,

(8)

∀z1, · · · , zn−1∈ Xo ,

B(y) =n

ρpnH : ρ > 0, : sup

k

1 n

n

X

k=1

hMk

||tkmk(y))

ρ , z1, · · · , zn−1||ipk

≤ 1,

∀z1, · · · , zn−1∈ Xo . Let ρ1∈ B(x) and ρ2∈ B(y). If ρ = ρ1+ ρ2, then we have sup

k

1 n

n

X

k=1

h Mk

||tkmk(x + y))

ρ , z1, · · · , zn−1||i

≤ ρ1

ρ1+ ρ2sup

k

1 n

n

X

k=1

h Mk

||tkmk(x))

ρ1 , z1, · · · , zn−1||i

+ ρ2

ρ1+ ρ2

sup

k

1 n

n

X

k=1

hMk

||tkmk(y)) ρ2

, z1, · · · , zn−1||i .

Thus sup

k

1 n

n

X

k=1

h Mk

||tkmk(x + y)) ρ1+ ρ2

, z1, · · · , zn−1||pk

≤ 1 and

g(x + y) ≤ infn

1+ ρ2)pnH : ρ1∈ B(x), ρ2∈ B(y)o

≤ infn

ρ1pnH : ρ1∈ B(x)o + infn

ρ2pnH : ρ2∈ B(y)o

= g(x) + g(y).

Let σm→ σ where σ, σm∈ C and let g(xm− x) → 0 as m → ∞. We have to show that g(σmxm− σx) → 0 as m → ∞. Let

B(xm) =n ρ

pn

mH : ρm> 0, sup

k

1 n

n

X

k=1

h Mk

||tkmk(xm)) ρm

, z1, · · · , zn−1||ipk

≤ 1,

∀z1, · · · , zn−1∈ Xo ,

B(xm−x) =n ρ0

pn

mH : ρ0m> 0, sup

k

1 n

n

X

k=1

h Mk

||tkmk(xm− x))

ρ0m , z1, · · · , zn−1||ipk

≤ 1,

∀z1, · · · , zn−1∈ Xo . If ρm∈ B(xm) and ρ0m∈ B(xm− x) then we observe that

(9)

1 n

n

X

k=1

h

Mk||tkmmΛk(xm) − σΛk(x))

ρmm− σ| + ρ0m|σ| , z1, · · · , zn−1||

≤ 1

n

n

X

k=1

h Mk

||tkmmΛk(xm) − σΛk(xm))

ρmm− σ| + ρ0m|σ| , z1, · · · , zn−1||

+ ||tkm(σΛk(xm) − σΛk(x))

ρmm− σ| + ρ0m|σ| , z1, · · · , zn−1||i

≤ |σm− σ|ρm

ρmm− σ| + ρ0m|σ|

1 n

n

X

k=1

h Mk

||tkmk(xm)) ρm

, z1, · · · , zn−1||i

+ |σ|ρ0m

ρmm− σ| + ρ0m|σ|

1 n

n

X

k=1

h Mk

||tkmk(xm) − Λk(x))

ρ0m , z1, · · · , zn−1||i .

From the above inequality, it follows that 1

n

n

X

k=1

h Mk

||tkmmΛk(xm) − σΛk(x))

ρmm− σ| + ρ0m|σ| , z1, · · · , zn−1||ipk

≤ 1

and consequently,

g(σmxm− σx) ≤ infn

ρmm− σ| + ρ0m|σ|pnH

: ρm∈ B(xm), ρ0m∈ B(xm− x)o

≤ (|σm− σ|)pnH infn

ρpnH : ρm∈ B(xm)o + (|σ|)pnH infn

0m)pnH : ρ0m∈ B(xm− x)o

−→ 0 as m −→ ∞.

This completes the proof.

Theorem 2.3. Let M, M0, M00 are Musielak-Orlicz functions. Then we have (i) ˆw0I(M0, Λ, p, ||·, · · · , ·||) ⊆ ˆw0I(M ◦ M0, Λ, p, ||·, · · · , ·||) provided (pk) is such that

H0= inf pk > 0.

(ii) ˆwI0(M0, Λ, p, ||·, · · · , ·||)∩ ˆwI0(M00, Λ, p, ||·, · · · , ·||) ⊆ ˆw0I(M0+M00, Λ, p, ||·, · · · , ·||).

Proof. (i) For given  > 0, first choose 0> 0 such that max{H0 , H00} < . Since (Mk) is continuous, choose 0 < δ < 1 such that 0 < t < δ, this implies that Mk(t) < 0. Let x ∈ ˆwI0(M, Λ, p, ||·, · · · , ·||). Now from the definition

B(δ) =n

n ∈ N : 1 n

n

X

k=1

h Mk0

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

≥ δHo

∈ I.

Thus if n 6∈ B(δ) then 1 n

n

X

k=1

hMk0

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

< δH

(10)

=⇒

n

X

k=1

h Mk0

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

< nδH

=⇒h Mk0

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

< δH for all k, m = 1, 2, 3, . . .

=⇒h Mk0

||tkmk(x))

ρ , z1, · · · , zn−1||i

< δ for all k, m = 1, 2, 3, . . . . Hence from above and using the continuity of M = (Mk), we have

h Mk

 Mk0

||tkmk(x))

ρ , z1, · · · , zn−1||i

< 0∀ k, m = 1, 2, 3, . . . , which consequently implies that

n

X

k=1

hMk Mk0

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

< max{H0, H00} < .

Thus 1 n

n

X

k=1

h Mk

Mk0

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

< .

This shows that n

n ∈ N : 1 n

n

X

k=1

h Mk

 Mk0

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

≥ o

⊂ B(δ)

and so belongs to I. This proves the result.

(ii) Let (xk) ∈ ˆwI0(M0, Λ, p, ||·, · · · , ·||) ∩ ˆw0I(M00, Λ, p, ||·, · · · , ·||). Then the fact 1

n h

(Mk0 + Mk00)

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

D1 n

hMk0

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

+ D1 n

hMk00

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

gives the result.

Theorem 2.4. The sequence spaces ˆwI0(M, Λ, p, ||·, · · · , ·||) and ˆwI (M0, Λ, p, ||·, · · · , ·||) are solid.

Proof. Let x ∈ ˆw0I(M, Λ, p, ||·, · · · , ·||), let (αk) be a sequence of scalars such that

k| ≤ 1 for all k ∈ N. Then we have nn ∈ N : 1

n

n

X

k=1

hMk

||tkmkkx))

ρ , z1, · · · , zn−1||ipko

(11)

n

n ∈ N : C n

n

X

k=1

h Mk

||tkmk(x))

ρ , z1, · · · , zn−1||ipk

≥ o

∈ I,

where C = max{1, |αk|H}. Hence (αkx) ∈ ˆwI0(M, Λ, p, ||·, · · · , ·||) for all sequences of scalars αk with |αk| ≤ 1 for all k ∈ N whenever (xk) ∈ ˆw0I(M, Λ, p, ||·, · · · , ·||).

Similarly, we can prove that ˆwI(M0, Λ, p, ||·, · · · , ·||) is also solid.

References

[1] S. Banach, Theorie Operations Linearies, Chelsea Publishing Co., New York 1955.

[2] P. Das, P. Kostyrko, W. Wilczynski and P. Malik, I and I* convergence of double sequences, Math. Slovaca 58 (2008) 605-620.

[3] P. Das, P. Malik, On the statistical and I-variation of double sequences, Real Anal. Exchange 33 (2007-2008) 351-364.

[4] A. Esi, Some new sequence spaces defined by a sequence of moduli, Turk. J. Math.

21 (1997) 61-68.

[5] A. Esi, Strongly [V2, λ2, M, p]-summable double sequence spaces defined by Orlicz function, Int. J. Nonlinear Anal. Appl. 2 (2011) 110-115.

[6] S. G¨ahler, Linear 2-normietre Rume, Math. Nachr. 28 (1965), 1-43.

[7] M. Gurdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bull. Math. 33 (2009) 257-264.

[8] H. Gunawan, On n-inner product, n-norms, and the Cauchy-Schwartz inequality, Sci. Math. Jpn. 5 (2001) 47-54.

[9] H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull.

Aust. Math. Soc. 64 (2001) 137-147.

[10] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (2001) 631-639.

[11] P. Kostyrko, T. Salat and W. Wilczy´nski, I-convergence, Real Anal. Exchange 26 (2000) 669-686.

[12] G.G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80 (1948) 167-190.

[13] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971) 345-355.

[14] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Mathematics 5, De- partamento de Matem´atica, Universidade Estadmal de Campinas, Campinas SP Brasil 1989.

(12)

[15] A. Misiak, n-inner product spaces, Math. Nachr. 140 (1989) 299-319.

[16] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J.

Math. Oxford 34 (1983) 77-86.

[17] M. Mursaleen, A. Alotaibi, On I-convergence in radom 2-normed spaces, Math.

Slovaca 61 (2011) 933-940.

[18] M. Mursaleen, A.K. Noman, On some new sequence spaces of non absolute type related to the spaces lp and l I, Filomat 25 (2011) 33-51.

[19] M. Mursaleen, A.K. Noman, On some new sequence spaces of non absolute type related to the spaces lp and l II, Math. Commun. 16 (2011) 383-398.

[20] M. Mursaleen, S.A. Mohiuddine and O.H.H. Edely, On ideal convergence of dou- ble sequences in intuitioistic fuzzy normed spaces, Comput. Math. Appl. 59 (2010) 603-611.

[21] M. Mursaleen, S.A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports 64 (2010) 359-371.

[22] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62 (2012) 49-62.

[23] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034, Springer-Verlag Berlin Heidelberg 1983.

[24] K. Raj, S.K. Sharma, Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz function, Acta Univ. Sapientiae Math. 3 (2011) 97-109.

[25] K. Raj, S.K. Sharma, Some generalized difference double sequence spaces defined by a sequence of Orlicz-function, CUBO A Mathematical Journal 14 (2012) 167- 190.

[26] K. Raj, S.K. Sharma, Some multiplier sequence spaces defined by a Musielak- Orlicz function in n-normed spaces, New Zealand J. Math. 42 (2012) 45-56.

[27] W. Raymond, Y. Freese and J. Cho, Geometry of Linear 2-Normed Spaces, N.

Y. Nova Science Publishers, Huntington 2001.

[28] A. Sahiner, M. Gurdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11 (2007) 1477-1484.

[29] B.C. Tripathy, B. Hazarika, Some I-convergent sequence spaces defined by Orlicz functions, Acta Mathematicae Applicatae Sinica 27 (2011) 149-154.

[30] A. Wilansky, Summability Through Functional Analysis, North-Holland Math.

Stud. 85, Elsevier Science Publishers B.V. 1984.

(13)

DOI: 10.7862/rf.2017.12 Sunil K. Sharma

email: sunilksharma42@yahoo.co.in Department of Mathematics

Model Institute of Engineering & Technology Kot Bhalwal, Jammu-181122, J&K

INDIA Ayhan Esi

email: aesi23@hotmail.com Department of Mathematics Adiyaman University 02040, Adiyaman TURKEY

Received 14.03.2017 Accepted 26.07.2017

Cytaty

Powiązane dokumenty

The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh [20] and subsequently several au- thors have discussed various aspects of the theory and

Abstract: In the present paper we introduced some seminormed difference sequence spaces combining lacunary sequences and Musielak- Orlicz function M = (M k ) over n-normed spaces

Meskine, Existence of solutions for elliptic equations having natural growth terms in orlicz spaces, Abstr.. Meskine, Strongly nonlinear parabolic equations with natural growth terms

Key words and phrases: normal pregenfunction, Musielak-Orlicz sequence space, completeness, separability.. In what follows α, γ, δ, ε denote positive numbers, and j, k, m, n -

Complex extreme point, complex strict convexity and complex uniform convexity of complex Banach space are natural generalizations of extreme point, strict

Definition 1.3 below) we extend to the case o f more generally Musielak-Orlicz spaces consisting of functions with values in linear-topological spaces.. After the

ANNALES SOCIETAT1S MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVII (1987) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

ROCZNIKI PQLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMATYCZNE XXIV (1984)M. Hence in this case p is