• Nie Znaleziono Wyników

Divisor problems of 4 and 3 dimensions by

N/A
N/A
Protected

Academic year: 2021

Share "Divisor problems of 4 and 3 dimensions by"

Copied!
21
0
0

Pełen tekst

(1)

LXXIII.3 (1995)

Divisor problems of 4 and 3 dimensions

by

Hong-Quan Liu (Harbin)

Introduction. For a positive integer n, let the divisor functions d(4, 5, 6, 7; n), d(1, 1, 2, 2; n) and d(1, 1, 2; n) be defined as in [3], [4]. In this paper we will sharpen our former arguments by proving the following new results regarding the errors of distribution of these divisor functions. We have (ε and x are as usual):

Theorem 1.

X

n≤x

d(4, 5, 6, 7; n) = main terms + O(x

87/869+ε

).

Theorem 2.

X

n≤x

d(1, 1, 2, 2; n) = main terms + O(x

7/19+ε

).

Theorem 3.

X

n≤x

d(1, 1, 2; n) = main terms + O(x

29/80+ε

).

Let Q

4

(x) be the number of 4-full numbers not exceeding x, let τ (G) be the number of direct factors of a finite Abelian group G, and t(G) be the number of unitary factors of G, and T (x) = P

τ (G), T

(x) = P t(G), where the summations are over all G of order not exceeding x. Then, as in [3], [4], we have

Corollary 1. Q

4

(x) = main terms + O(x

87/869+2ε

).

Corollary 2. T (x) = main terms + O(x

7/19+2ε

).

Corollary 3. T

(x) = main terms + O(x

29/80+2ε

).

Note that 87/869 = 0.1001150 . . . , which improves the corresponding exponent 6/59 = 0.10169 . . . established in Theorem 2 of [3], and 7/19 = 0.3684 . . . , 29/80 = 0.3625 improve respectively the exponents 0.4 and 77/208 = 0.3701 . . . given by Theorems 2 and 1 of [4].

[249]

(2)

In demonstrating these theorems, Theorem 3 of [1] will again play an important role. We will also need to combine other tools existing in papers [2] to [5] of the author. Needless to say, many tedious and elementary cal- culations will emerge in our treatment, which is inherent in such divisor problems. We will do our best to avoid redundancy.

1. Proof of Theorem 1. We recall a useful lemma (Theorem 3 of [1]).

Lemma 1.1. Let H ≥ 1, X ≥ 1, Y ≥ 1000; let α, β and γ be real numbers with αγ(γ − 1)(β − 1) 6= 0, and let A > C(α, β, γ) > 0 and f (h, x, y) = Ah

α

x

β

y

γ

. Define

S(H, X, Y ) = X

(h,x,y)∈D

C

1

(h, x)C

2

(y)e(f (h, x, y)),

where D is a region contained in the rectangle {(h, x, y) | h ∼ H, x ∼ X, y ∼ Y } such that for any fixed pair (h

0

, x

0

), the intersection D∩{(h

0

, x

0

, y) | y ∼ Y } has at most O(1) segments. Also, suppose that |C

1

(h, x)| ≤ 1, |C

2

(y)|

≤ 1 and F = AH

α

X

β

Y

γ

 Y . Then, for L = ln((A + 1)HXY + 2) and M = max(1, F Y

−2

),

L

−3

S(H, X, Y ) 

22

(HX)

19

Y

13

F

3

+ HXY

5/8

(1 + Y

7

F

−4

)

1/16

+

32

(HX)

29

Y

28

F

−2

M

5

+

4

(HX)

3

Y

4

M .

We stress that the condition F  Y is needed in the proof of this lemma.

We adopt the notations introduced in [3]. In particular, from (7) of [3], we have the following estimate:

Φ(H; N )  H

−1

(N

32

H

−1

G

−1

)

1/2

X

h∼H

X

5

g

1

(n

1

)g

2

(n

2

)g

3

(u)e(g) (1.1)

+ N

1

(HG)

1/2

ln x + x

13/132

.

From (23) to (31) of [3], and the estimates on p. 175 there (η = ε/8), x

−η

S(a, b, c, d; N ) 

33

x

3

N

112

N

22

+

888

x

73

N

1377

N

2162

(1.2)

+

76

x

6

N

134

N

219

+

289

x

24

N

1121

N

251

+ x

0.1

. We need two more estimates for S(a, b, c, d; N ). First we employ Lemma 1.1 to the triple summation over n

1

, n

2

and u in (1.1), with the choice (h, x, y)

= (n

1

, n

2

, u). Note that U ∼ = HG/N

3

; this yields x

−η

Φ(H; N ) 

22

(HG)

5

N

119

N

219

N

39

+

8

HG(N

1

N

2

)

8

N

33

+

16

(HG)

5

(N

1

N

2

)

16

N

3−1

+

32

(HG)

10

(N

1

N

2

)

29

N

34

+

32

(HG)

5

(N

1

N

2

)

29

N

314

+

4

(HG)

2

N

13

N

23

+

4

HG(N

1

N

2

)

3

N

32

+ x

0.1

.

(3)

We put the above estimate in (1) of [3] and choose the parameter K opti- mally via a well-known lemma (cf. Lemma 3 of [3]) to get

x

−2η

S(a, b, c, d; N ) 

27

G

5

(N

1

N

2

)

24

N

314

+

9

G(N

1

N

2

)

9

N

34

(1.3)

+

21

G

5

(N

1

N

2

)

21

N

34

+

42

G

10

(N

1

N

2

)

39

N

314

+

37

G

5

(N

1

N

2

)

34

N

319

+

5

GN

14

N

24

N

33

+

6

G

2

N

15

N

25

N

32

+ x

0.1



108

x

5

N

161

N

266

N

331

+

36

xN

129

N

230

N

311

(1.4)

+

84

x

5

N

143

N

248

N

33

+

148

x

5

N

1101

N

2106

N

351

+

12

xN

13

N

24

N

3−1

+

20

xN

19

N

210

N

37

+ x

0.1

. To pass from (1.3) to (1.4) we have invoked (18) of [3]. By (21) of [3], (1.5) x

−η

S(a, b, c, d; N ) 

8

xN

1−3

N

2−2

N

3−1

+ x

0.1

. From (1.4) and (1.5) we infer that

(1.6) x

−2η

S(a, b, c, d; N )  X

1≤i≤6

P

i

+ x

0.1

,

where

P

1

= min(

108

x

5

N

161

N

266

N

331

,

8

xN

1−3

N

2−2

N

3−1

) 

89

x

9

N

1−8

N

2

, (1.7)

P

2

= min(

36

xN

129

N

230

N

311

,

8

xN

1−3

N

2−2

N

3−1

) 

31

x

3

N

1−1

N

22

, (1.8)

P

3

= min(

84

x

5

N

143

N

248

N

33

,

8

xN

1−3

N

2−2

N

3−1

) ≤

54

x

4

N

117

N

221

, (1.9)

P

4

= min(

148

x

5

N

1101

N

2106

N

351

,

8

xN

1−3

N

2−2

N

3−1

) (1.10)

139

x

14

N

1−13

N

2

, P

5

= min(

12

xN

13

N

23

,

8

xN

1−3

N

2−3

)  x

0.1

, (1.11)

P

6

= min(

20

xN

19

N

210

N

37

,

8

xN

1−3

N

2−2

N

3−1

) 

19

x

2

N

1−3

N

2−1

. (1.12)

Next, we again apply Lemma 1.1 to the triple summation over n

1

, n

2

and u in (1.1), but with the choice (h, x, y) = (n

1

, u, n

2

). This gives

x

−η

Φ(H; N ) 

22

(HG)

11

N

119

N

213

N

33

+ (HG)

1/2

N

1

N

25/8

+ (HG)

1/4

N

1

N

217/16

+

32

(HG)

11

N

129

N

228

N

33

+

32

(HG)

16

N

129

N

218

N

33

+

4

HGN

13

N

24

N

3

+

4

(HG)

2

N

13

N

22

N

3

+ x

0.1

.

We put the above estimate in (1) of [3] and choose K optimally to get

(4)

x

−2η

S(a, b, c, d; N ) 

33

G

11

N

130

N

224

N

314

+

12

G

4

N

112

N

29

N

34

(1.13)

+

20

G

4

N

120

N

221

N

34

+

43

G

11

N

140

N

239

N

314

+

48

G

16

N

145

N

234

N

319

+

5

GN

14

N

25

N

32

+

6

G

2

N

15

N

24

N

33

+ x

0.1



132

x

11

N

143

N

230

N

3

+

12

xN

15

N

22

+

20

xN

113

N

214

+

172

x

11

N

183

N

290

N

3

+

48

x

4

N

117

N

29

+

20

xN

19

N

214

N

33

+

12

xN

13

N

22

N

3

+ x

0.1

. From (1.5) and (1.13) we get

x

−2η

S(a, b, c, d; N )  x

0.1

+ X

1≤i≤4

Q

i

+

12

xN

15

N

22

(1.14)

+

20

xN

113

N

214

+

48

x

4

N

117

N

29

, where

Q

1

= min(

132

x

11

N

143

N

230

N

3

,

8

xN

1−3

N

2−2

N

3−1

) (1.15)

35

x

3

N

110

N

27

, Q

2

= min(

172

x

11

N

183

N

290

N

3

,

8

xN

1−3

N

2−2

N

3−1

) (1.16)

45

x

3

N

120

N

222

, Q

3

= min(

20

xN

19

N

214

N

33

,

8

xN

1−3

N

2−2

N

3−1

) ≤

11

xN

22

, (1.17)

Q

4

= min(

12

xN

13

N

22

N

3

,

8

xN

1−3

N

2−2

N

3−1

) ≤ x

0.1

. (1.18)

From (31) of [3] we have

(1.19) x

−η

S(a, b, c, d; N ) 

28

(x(N

1

N

2

)

−1

)

3

+ x

0.1

. By (1.2) and (1.19) we have

(1.20) x

−η

S(a, b, c, d; N )  X

1≤i≤4

R

i

+ x

0.1

,

where

R

1

= min(

33

x

3

N

112

N

22

,

28

(x(N

1

N

2

)

−1

)

3

) ≤

31

x

3

N

16

, (1.21)

R

2

= min(

888

x

73

N

1377

N

2162

,

28

(x(N

1

N

2

)

−1

)

3

) ≤

480

x

47

N

143

, (1.22)

R

3

= min(

76

x

6

N

134

N

219

,

28

(x(N

1

N

2

)

−1

)

3

) ≤

152

x

15

N

19

, (1.23)

R

4

= min(

289

x

24

N

1121

N

251

,

28

(x(N

1

N

2

)

−1

)

3

) ≤

153

x

15

N

114

.

(1.24)

(5)

From (1.20) to (1.24), we find that the required estimate follows if N

1

x

15/869

. We assume hereafter that N

1

> x

15/869

. From (1.19) and (1.6) to (1.12) we have

(1.25) x

−2η

S(a, b, c, d; N ) 

19

x

2

N

1−3

N

2−1

+ X

1≤i≤4

S

i

+ x

0.1

, where

S

1

= min(

89

x

9

N

1−8

N

2

,

28

(x(N

1

N

2

)

−1

)

3

) (1.26)

295

x

30

N

1−27

< x

87/869

, S

2

= min(

31

x

3

N

1−1

N

22

,

28

(x(N

1

N

2

)

−1

)

3

) (1.27)

149

x

15

N

1−9

≤ x

0.1

, S

3

= min(

54

x

4

N

117

N

221

,

28

(x(N

1

N

2

)

−1

)

3

) (1.28)

250

x

25

N

1−4

≤ x

0.1

, S

4

= min(

139

x

14

N

1−13

N

2

,

28

(x(N

1

N

2

)

−1

)

3

) (1.29)

445

x

45

N

1−42

≤ x

0.1

. From (1.25) to (1.29) we have

(1.30) x

−2η

S(a, b, c, d; N ) 

19

x

2

N

1−3

N

2−1

+ x

87/869

. By (1.30) and (1.14) to (1.18) we have

(1.31) x

−2η

S(a, b, c, d; N )  X

1≤i≤6

T

i

+ x

87/869

, where

T

1

= min(

19

x

2

N

1−3

N

2−1

,

35

x

3

N

110

N

27

) (1.32)

≤ (x

17

N

1−11

)

1/168

≤ x

0.10007

, T

2

= min(

19

x

2

N

1−3

N

2−1

,

45

x

3

N

120

N

222

) (1.33)

≤ (x

47

N

1−46

)

1/463

≤ x

0.1

, T

3

= min(

19

x

2

N

1−3

N

2−1

,

11

xN

22

) ≤ (x

5

N

1−6

)

1/49

≤ x

0.1

, (1.34)

T

4

= min(

19

x

2

N

1−3

N

2−1

,

12

xN

15

N

22

) ≤ (x

5

N

1−1

)

1/50

≤ x

0.1

, (1.35)

T

5

= min(

19

x

2

N

1−3

N

2−1

,

20

xN

113

N

214

) (1.36)

≤ (x

29

N

1−29

)

1/286

≤ x

0.1

, T

6

= min(

19

x

2

N

1−3

N

2−1

,

48

x

4

N

117

N

29

) (1.37)

≤ (x

22

N

1−10

)

1/219

≤ x

0.1

.

By (1.30) to (1.37), we have completed the proof.

(6)

2. Proof of Theorem 2. Let (a, b, c, d) be any permutation of (1, 1, 2, 2).

It suffices to obtain

(2.1) S(a, b, c, d; N )  x

7/19+4η

,

where η = ε/8, N = (N

1

, N

2

, N

3

), N

1

, N

2

and N

3

are positive integers with (2.2) N

1

 N

2

 N

3

, N

1a

N

2b

N

3c+d

 x, N

1

N

2

N

3

> x

1/3

,

and the sum S(a, b, c, d; N ) is defined on p. 199 of [4]. We will retain many familiar notations used in both [3] and [4].

The case of (a, b, c, d) = (1, 1, 2, 2) can be dealt with immediately. In fact, from (2.2) we have N

1

N

2

 x

1/3

, thus (GN

1

N

2

N

3

)

1/2

 (xN

1

N

2

)

1/4

 x

1/3

, and the required estimate follows from Lemma 6 of [4].

For (a, b, c, d) = (1, 2, 1, 2), by (2.2) we have N

13

N

33

 N

1

N

22

N

33

 x, thus again (GN

1

N

2

N

3

)

1/2

 x

1/3

, and the required estimate follows.

We now show

(2.3) S(2, 1, 1, 2; N )  x

4/11+ε

.

To this end, we first proceed similarly to pp. 167–170 of [3]. This yields, similarly to (7) of [3],

Φ(H; N )  H

−1

(N

32

H

−1

G

−1

)

1/2

X

h∼H

X

1

F (n

1

)R(n

2

)S(u)e(g) (2.4)

+ N

1

(HG)

1/2

ln x + x

13/36

(for an explanation of the error term x

13/36

, cf. p. 199 of [4]), where P means summation over n

1

, n

2

and u with

1

1 < n

1

< n

2

, N

v

≤ n

v

< 2N

v

(v = 1, 2), U

1

< u < U

2

,

and G, U

1

, U

2

and the function g are defined on p. 169 of [3]. In particular, g = C

2

(xn

−21

n

−12

h

2

u)

1/3

. Moreover, F (·), R(·), S(·) are suitable monomials with absolute values ∼ = 1. We can apply Lemma 1 of [3] one more time, to the variable n

2

of (2.4). We have

Φ(H; N )  N

2

N

3

(H

2

G)

−1

(2.5)

× X

h∼H

X

n1∼N1

X

U1<u<U2

X

V1<v<V2

T (u)Q(v)e(g

1

) + N

1

(HG)

1/2

ln x + x

13/36

,

where V

i

= V

i

(h, n

1

, u) (i = 1, 2), |T (u)| ≤ 1, |Q(v)| ≤ 1, and g

1

= C

3

(h

2

xuvn

−21

)

1/4

. We can relax the condition U

1

< u < U

2

to u ∼ = U :=

HGN

3−1

and the condition V

1

< v < V

2

to v ∼ = V := HGN

2−1

consecutively

by means of Lemma 5 of [3] (note that we can assume that x is quadratic

irrational, cf. p. 168 of [3]); we thus deduce from (2.5) that

(7)

x

−η

Φ(H; N )  N

2

N

3

(H

2

G)

−1

(2.6)

× X

h∼H

X

n1∼N1

X

u∼=U

X

v∼=V

T

1

(u)Q

1

(v)e(g

1

) + N

1

(HG)

1/2

+ x

13/36

,

where |T

1

(u)|, |Q

1

(v)| ≤ 1. From (2.6) it is evident that x

−2η

Φ(H; N )  N

2

N

3

(H

2

G)

−1

(2.7)

× X

h∼H

X

n1∼N1

X

w∼=W

K(w)e(C

3

(h

2

xwn

−21

)

1/4

) + N

1

(HG)

1/2

+ x

13/36

,

where W = U V = (HG)

2

N

2−1

N

3−1

and |K(w)| ≤ 1.

If HG  N

2

N

3

, we apply Lemma 1.1 to the triple exponential sum in (2.7), with (h, x, y) = (h, n

1

, w), to get

x

−3η

Φ(H; N ) 

22

H

4

G

7

N

119

(N

2

N

3

)

9

+ (HG)

1/4

N

1

(N

2

N

3

)

3/8

(2.8)

+ (HG)

7/8

N

1

(N

2

N

3

)

−1/16

+

32

H

19

G

22

N

129

(N

2

N

3

)

4

+

32

H

4

G

4

N

129

(N

2

N

3

)

14

+

4

H

3

G

4

N

13

+

4

GN

13

(N

2

N

3

)

2

+ x

13/36



22

G

3

N

119

(N

2

N

3

)

13

+ N

1

(N

2

N

3

)

5/8

+

32

G

3

N

129

(N

2

N

3

)

18

+

4

GN

13

(N

2

N

3

)

2

+ N

1

(HG)

13/16

+

32

H

19

G

22

N

129

(N

2

N

3

)

4

+

4

H

3

G

4

N

13

+ x

13/36

.

If N

1

≥ x

1/22

, we have (GN

1

N

2

N

3

)

1/2

= (xN

2

N

3

)

1/4

 (x

3

N

1−2

)

1/8

 x

4/11

, and (2.3) follows from Lemma 6 of [4]. We now assume that N

1

<

x

1/22

. Then we easily see that the total contribution of the first four terms in (2.8) is  x

0.34

. In fact, since N

1

N

2

N

3

 x

1/2

,

22

G

3

N

119

(N

2

N

3

)

13



44

x

3

N

132

(N

2

N

3

)

23



88

x

29

N

118

 x

0.34

, N

1

(N

2

N

3

)

5/8



16

x

5

N

16

 x

0.33

,

32

G

3

N

129

(N

2

N

3

)

18



64

x

3

N

152

(N

2

N

3

)

33



128

x

39

N

138

 x

0.32

,

4

GN

13

(N

2

N

3

)

2



8

xN

14

(N

2

N

3

)

3



16

x

5

N

12

 x

0.32

. Thus from (2.8) we get

x

−3η

Φ(H; N )  N

1

(HG)

13/16

+

32

H

19

G

22

N

129

(N

2

N

3

)

4

(2.9)

+

4

H

3

G

4

N

13

+ x

13/36

.

(8)

If HG  N

2

N

3

, we go back to the original definition for Φ(H; N ), and we produce a new integral variable q from n

2

and n

3

such that q = n

2

n

3

. Since HG  N

2

N

3

, Lemma 1.1 is applicable with (h, x, y) = (h, n

1

, q), and we get

x

−η

Φ(H; N ) 

22

G

3

N

119

(N

2

N

3

)

13

+ N

1

(N

2

N

3

)

5/8

+ N

1

(HG)

13/16

+

32

H

19

G

22

N

129

(N

2

N

3

)

4

+

32

G

3

N

129

(N

2

N

3

)

18

+

4

H

3

G

4

N

13

+

4

GN

13

(N

2

N

3

)

2

+ x

13/36

 N

1

(HG)

13/16

+

32

H

19

G

22

N

129

(N

2

N

3

)

4

+

4

H

3

G

4

N

13

+ x

13/36

.

Thus we see that (2.9) always holds. We put the estimate (2.9) in (1) of [3]

and choose the parameter K optimally via Lemma 3 of [3] to get x

−4η

S(2, 1, 1, 2; N ) 

29

G

13

N

129

(N

2

N

3

)

13

+

51

G

22

N

148

(N

2

N

3

)

23

+

7

G

4

N

16

(N

2

N

3

)

3

+ x

13/36



58

x

13

N

132

(N

2

N

3

)

13

+

51

x

11

N

126

(N

2

N

3

)

12

+

7

x

2

N

12

N

2

N

3

+ x

13/36



116

x

39

N

138

+

51

x

17

N

114

+

14

x

5

N

12

+ x

13/36

 x

4/11

, which proves (2.3).

We proceed to estimate S(2, 2, 1, 1; N ); the remaining two cases with (a, b, c, d) = (2, 1, 2, 1) and (1, 2, 2, 1) can be treated similarly. As in (7) of [3], we get

Φ(H; N )  H

−1

(N

32

H

−1

G

−1

)

1/2

(2.10)

× X

h∼H

X

2

g

1

(n

1

)g

2

(n

2

)g

3

(u)e

 C

 xhu n

21

n

22



1/2



+ N

1

N

2

ln x + (Hx(N

1

N

2

N

3

)

−1

)

1/2

+ x

13/36

, where P

2

means summation over lattice points (n

1

, n

2

, u) such that 1 ≤ n

1

< n

2

, n

1

∼ N

1

, n

2

∼ N

2

,

hx(n

1

n

2

M

2

)

−2

< u < hx(n

1

n

2

M

1

)

−2

,

and where M

1

= max(N

3

, n

2

), M

2

= min((xn

−21

n

−22

)

1/2

, 2N

3

), g

i

(·) are

monomials with |g

i

(·)| ∼ = 1. By an appeal to Lemma 5 of [3], we can relax

the summation range to u ∼ = U = HGN

3−1

. Then we can produce a double

sum in (2.10) by setting hu = r and n

1

n

2

= s. This yields

Cytaty

Powiązane dokumenty

Second, the output of the cerebellum is sent to the premotor and motor systems of the cerebral cortex and brain stem, systems that control spinal interneurons and motor..

[r]

The parameter σ α has appeared in many papers on exponential sums but we are not aware of an upper bound of the type (1.13) ever appearing before, even for the case of

The deduction of Theorem 2 is now completed by means of the following result, used in conjunction with Theorem 6..

The study of divisor functions of matrices arose le- gitimately in the context of arithmetic of matrices, and the question of the number of (possibly weighted)

As mentioned in Section 5, the plan is to apply Theorem 3.1 to equations of the form (3.2) defined by certain minimal forms L ∈ L(T ).. Since we must apply transformations to the

Weighted Sobolev spaces play an important role in the study of elliptic boundary value problems in non-smooth domains (see e.g.. This is the model case for domains with

In this sec on, we prove that M is an ordered abelian semigroup, the order rela on being the set inclusion between summability fields of type ℓ ((M , λ )), and the binary opera on