• Nie Znaleziono Wyników

On problem o f density o f C ~(i2) in generalized Orlicz-Sobolev space W k M{Q) for every open set Q <= R n

N/A
N/A
Protected

Academic year: 2021

Share "On problem o f density o f C ~(i2) in generalized Orlicz-Sobolev space W k M{Q) for every open set Q <= R n"

Copied!
14
0
0

Pełen tekst

(1)

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X X (1977) ROCZNIKI POLSKIEGO TOW ARZYSTW A MATEMATYCZNEGO

Séria I: PRACE MATEMATYCZNE X X (1977)

H. H tjdzik (Poznan)

On problem o f density o f C ~(i2) in generalized Orlicz-Sobolev space W k M{Q) for every open set Q <= R n

Let Û be an open set in R n, ц = Lebesgue measure in R n, R + = ( 0, oo), W + — the set of all non-negative rational numbers and let Ж be a real­

valued function defined in Q x R + and satisfying the following conditions :

1 ° M ( u , v ) is an Ж-function(J) of the variable v for almost every

U e û ,

2° 'M(u, v) is a continuous function of the variable и for each v e R +) 3° there is a constant c > 0 such that M(u, 1) > c for almost every

U e Q .

We denote by F ± the set of all complex-valued functions / defined and Lebesgue measurable in Q. F 0 will denote the set of functions feF^

such that f(x) — 0 almost everywhere and F will be defined as F — F x jF0.

According to the assumptions, the function M {x , |/(ж)|) is Lebesgue meas­

urable for each f e F 1 and M[x, \/г(х)\) = M(x, ]/ 2 (ж)|) almost every­

where, if f x- f ^ F Q.

Given a non-negative integer h, we denote

TtrkM(Q) = { f e F : V 3D°feL*M(Q)},

|a|<&

where a = (ax, ..., an), a{ are non-negative integers, |a| = ax + ... + a n, D a = d|a|/d#ai ... dx^n is the generalized derivative operator (i.e., deri­

vative in the sense of the theory of distributions) of order |a| and L*M{Q) is the generalized Orlicz space (see [ 8 ]). Let

N ( îi , v ) = sup{ a v ~ M ( u , o')} = sup {av — M (u, a)}, ue Q,

cr>0 OeW

i.e., N(u, v) is the Ж-function of the variable v complementary to Ж-func-

(Ь See [6], p. 12-75.

5 Roczniki PTM — Prace Matematyczne X X

(2)

tion Ж (u, v) in the sense of Young with respect to the variable v. Further, let us denote

Q(f) = j M (x , \f(x)\)dx, feL*M(Q), о

Qa(f) = f M( x , \Baf(x)\)dx , W k M{Q), \a\ < Tc,

a

e ( f ) = 2<>ЛЛ,

\a\^k

W f h ^ = Ы |« > 0: г ( Ц < 1 j , feZ*M(D), Ш1м(о) = sup \\jf(oo)g(x)dx\\, ftL*M(Q) {2),

11 / 11 ^ , = in ff > 0: < i } , A W ir(fi), П i2e = {#€,£?: inf |[ж — 2/11 > « } , where ||& || = ( V a^)1/2,

V*r(Q) * ' é l •

and Г { й ) is the boundary of Ü.

The Holder’s inequality (see [ 6 ], p. 98)

(1) J j f{®)y{x)dx I ^ \\Л\ьм(о) Н^/Иь^дя)» f €IjM(Q),geLN(Q)1 a

and the inequality (see [ 6 ], p. 97)

(2) И/Иьд^Я) ^ Wf\\lLM{Q) ^ 2 ||/|1х,м(Д), f e L M(Q) hold.

First, we shall, prove some lemmas.

L

e m m a

1 . Let Q <= R n , Qx c= 6e open sets and let f ( x , y) be a com­

plex-valued function defined and Lebesgue measurable in Q x Qx and /(•, y) eL*M(Q) for almost every y^Qx. Then the following inequality(3) holds:

(3) II / / ( • . y ) fy 111 (B| < / ! ! / ( • , y n lu f^ d y.

Six Qx

P r o o f. Let J(x) = J f ( x , y ) d y , g €L*N(Q) and |lsr||ijv(0) < 1, where N {u, v) is the complementary function to the Y -f unction M (u, v) in the sense of Young with respect to the variable v. Then

J (x)g(x)dx I ^ I ( / l/(®» y)\dy}dx

n ox

^ / ll/(* ? y)\\LM(Q)\\9\\LN(Q)dy < J ll/(* , y)\\LM(Q)dy .

Q Q

(2) See [6], p. 98.

(3) This irtequality is a generalization of Minkowski inequality (see [2], p. 148).

(3)

Density in generalised Orlics-Sobolev space 67

Hence and by definition of we obtain (3).

L emma 2. Let f t W kM(Q). I f for every compact set 8 in R n,

' (4)0 (ek)i as e~> 0 ,

then the function

(5) Ф{х) =

[ 0 ,

X€Ü, X4Ü belongs to W k M{Rn).

P r o o f. It is known (see [1], p. 55-66) that there exist generalized derivatives D a<P for \a\ < h and

D a 0 {x) D af ( x) , x e Q ,

0 , x i Q . Hence, Lemma 2 follows immediately.

L emma 3. Letfe W\I (Q). I f there exists a sequence of functions q>se Cf(Q) such that

lim||/—<pe|| k = 0,

S—►oo

УУМ ( }

then Фе Wk M(Rn).

P r o o f. It can be assumed that cpse C f {Rn) for s = 1, 2, 3 , . . . Thus, w r , i e W k M(Rn), and

< \\<p,-nwki(0) + l l / - ? ,‘ llIF «jf (OX 0 > a s s >

Thus, the sequence {ys}fLi is a Cauchy sequence with respect to the norm

||*|| k . But the space Wk M(Rn) is complete (see [3]), so there exists

w M ( R n )

a function F e Wk M{Rn) such that

lim\\F—<pt\\ k = 0.

s-+oo

^ M \ '

Hence, in particular, it follows that

( 6 ) lim ||_F — <р 8\\ьм(цп) = 0 .

s->oo

Since (ps{x) = 0 for xeR n\ Q , so from the last condition it follows that

= o. Thus, F{x) = 0 for almost every x e R n\Q. From ( 6 ) it follows that

P 1 - ÎW

l m

(Q) ^ llJ^ ~ ? )s llijM(Rn) + I I /— aS S - + 0 0 .

Hence F(x) = f{x) for almost every xeQ, and so F (x) = Ф(х) for almost

every x e R n and Фе Wk M{Rn). Thus, the proof of Lemma 3 is complete.

(4)

Now, we denote:

f s{x) = e

h [

Л '

x - y

f (y)dy, feL{oc№)

/;<*) = 8 - f y> ( ~ - \ f ( y ) d y , f e Z ^ O ) (4),

a ' '

where ipeC°°(Rn), supply = А (0 ,1 ) = {xeRn: ||a?||<l}, tp(y) = y(a?) for IM 1 = ||y||, y { x ) ^ 0, J y > { x ) d x = 1 . Obviously, f e, fle C ^ R 71). If £ is

R n

bounded, then f eeC™(Q), f eeC™{Rn). Further, let us introduce the following condition:

4° there is a constant к > 2 such that inequality

{Af) M(u, 2v) < xM{u, v)

is satisfied for almost every u e û and each vc R+ .

Let p(u) be a continuous function in R n satisfying the following conditions : there exist positive constants сг, c2 such that p (u) > c1 for almost t every ueR*1, p ( u ^ Au^ff) < c2p(u^)p(u^) for ||w(1)|| <

Let us put

M ( u , v ) = p(w)Jf 1 (v),

where М г{и) is a real-valued A -f unction satisfying condition (zl2) for every 0 (see [7], p. 35)(6). As well known(7), such a function M(u, v) satis­

fies the following condition

5° /Ж (# , \fe(x)\)dx < C JM [x, \f(x)\)dx, 0 < е < 1 , A c Q, is a

л A

measurable set, where C is an absolute constant. For such M(u, v) we shall prove the following

T

h e o r e m

1 . I f f e Wk M{Q) and the condition (7) ll/lln^nv^) — 0 ( ek) holds, as s->0, then there exists a sequence of functions (pse Cf (Q) such that

(8) II/— 0>eIL* as s->oo.

(4) If feL % [(Q ), then feL\oc(Q) (see [3], Lemma 1).

(5) See [4], Examples (22), (23), (24).

(6) In the case ц (Q) < oo it suffices to assume that condition (A2) is satisfied for large v.

(7) See [4], Example 1.

(5)

Density in generalized Orlicz-Sobolev space 69

P r o o f. We shall consider two cases.

1 ° Ü is an open and bounded set in R n. Then f ecC™(Q) for s > 0 . We show that the functions f B satisfy condition ( 8 ), as e->0. From (7) and the inequality II/II z ^ a ) < C \\f\\LM^0) (see [3]? Lemma 1 ) it follows- that Фе Wk M{Rn) (see Lemma 2 ). Furthermore, f e{x) — f'e(x) for xe Q3t,

_ / x — y\

Indeed, if х е й Ъ е and y e Q \ Q 2e, then \\x — y|| > e. Hence ^1---1 = 0

îot y e Q\Q2e, X€ÛZeând

f e{x) = £'

/ * ( ■ x - y

f(V)dy =/,(®).

Thus

||Ф—Фе| | k — ||Ф—Фе|| к п 9 J &S £~^0 ( 8) ,

11 elV^f(Rn) ellPF^f(Rn) ’ п

and

ll/-/e llTFy 0 3e) = aS £^ ° *

Next, we can write

II/ / e l l ^ (13) < II/ f^w^Oto) + + ^^w k M(a\n3t) * We have ||/|| k ->0 as e->0, by virtue of Lebesgue bounded convergence theorem, and by condition 4°. Now, we prove that

ll/ell к ->0 as e-^ 0 . Since the function M ( u , v ) satisfies condition 4°

and the following inequality holds

(9) m ax\\Daf\\LM(Q) < ll/l! fc ... < cn}km^\\Daf\\L {Q) (9),

|a|<fc

W M ^ U )

|a|<fc

where спЛ = ^ 1 , it suffices to show that f M (x , \Daf s(x)\)dx-^0,

|a]<A; я\дз в

as £-> 0 , for |a| ^ ~fc* Since D Jg — 0 for cc € i Q ^ j oc | ^ so W 6 liâ)V 6 f M(xj \Daf s(x)\)dx = j M ( x , \Daf e(x)\)dx for |a|<fc, e > 0 .

Clearly, we have

Л°Л(*) = -péüT J ^<pi~\f(x^z)dz.

x —s*Qo, 1*1 <«

(8) See [4], Theorem 5 for Q = JRn.

(9) See [3], Proposition 2.

(6)

Now, let us put

ca = f \DaW{z)\dz for |a|</c(10).

i * k i

Then e~n j \Da4/{zle)\dz = ca. Applying the integral Jensen’ s inequality, we obtain

M (x , \D°f.(x)\) < M x ’ 4 г f |ДТ (г/е)1 • c „ l / ( œ - * ) l < i * ' e и «. 6 c-

„ r jB « r ( 7 e)| Jr( cx \f(x-z)\\

^ J ?c. МГ —F —

1*1 <« “

dz.

Hence, by virtue of Tonelli theorem, we have

( 10 )

J M (x , \Daf e{x)\)dx^ j j J

Лб\ЯЗв °е\й3б N<e

/ { J

а з \ а 3 е

'l * l < «

\Baf ( x - z ) \

--- П--- М \х ’ Вс„ \ в

W M >/(— M J

е"о„ М\х,

,!«1 dz)dx

1*1 <«

where na is a natural number such that ca < 2n°, the constant к is defined by condition 4°. Let us assume

Ji(s) S£\ û3 e J M (x, ' l/(® -* )l \

e,a| ) dx for |#| < e < 1 ,

and let us estimate «^(г). Let м = x — z; then \du\ = \dz\. If \\z{\ < e, then

( £ в\ £ ?3е) — 2 c= Q \Q U. Hence for ||«||<e<-l, we have (11) Jx{z)

where p( 1 ) = sup p(z).

11 * 11= 1

( 10) I t c a n b e a s s u m e d t h a t

ca f o r |a | < k.

(7)

Density in generalised Orlics-Sobolev space 71

By (10) and (11), for 0 < s < £, we have

f

f м 1 х , Щ ^ \ с 1 х

ü e \ Q 3 e . й \ " 4 е ' 8

as e->0, |a| < Jc. Thus, the proof in case 1 ° is complete.

2° Q is an arbitrary open set in R n. Let gs{x) — f e{x)xAx )i where XÀX) = *(«»), %eC°°{Rn) and %{x) = 1 for \\x\\ < 1, /(a?) = 0 for ||æ|| > 2, 0 < %(x) < 1 . Obviously, ge€C™(Q) and supp ge cz J}en { x e R n: ||a?|| < 2/e}.

We shall prove that the sequence ge satisfies condition ( 8 ), as s->0.

We have

( 1 2 ) ITg,{x) = B “/ . (*)*.(*) + £ \a\^k.

Д+У=а

УФ0

Similarly as in case 1 °, we have

II/

9 е \ \ ш к

^ II

f 9 e \ \ v fr k l n

. ~Ь ll/ILfc , о ч n > ~f" ll^elLfc , о ч 0 . •

W M W WmS °

3

s

) ^ ( “ 4 “ Зе)

It is known that ||ye| | k -^ 0 , as e - > 0 (see case 1°). In order to prove t^M( 0\Q3s)

that ||grj| k -^ 0 , as e - > 0 it suffices to show that each component

W M (a \ a 3e)

of the sum ( 1 2 ) tends to zero with respect to ^ ж(о\.о 3 £)_convergence.

We^shall apply also case 1°. Let |a| < h. Since for every xeQ, mAx)Xs(x)\<\I>afe(x)\,

so by case 1 °, ||.Da/ e*e|| * .-*<>, as e^O. Now, let p + y = а, у Ф 0 , then D v[xÀx )] = sMx(sx).

Denoting

{ 1 21

1 /eP2/s = I xeRn: — < Ця?Ц < — J,

we have D v[Xe(x )] = ® for &€Pn\ 1 /eP 2/E. Moreover, if the following inequality holds:

(13) |D7.(*)-Dv[z.M ]l « v 1' 1 |-07.(®)1х1/Л,.(* ),

where cy = sup \D 7%{x)\.

(8)

Hence, by virtue of the proof of case 1° and condition 4°, for У Ф /5 + у — a, we have

/ M {x , \Dpf s(x)Dv[xe( ^ ) l \ ) ^ ^ 0, as e -» 0 .

°\ Q3e Thus

\\I>pf eI)vXs\\LM(ü\a3e)-^0, as £ ^ 0 for \0 + y\ = |a| ^ lc , у ф 0 . Now, we prove that

(14)

\ \ f — 9 e \ \ w k

(û .“ ^ 0 , as £ ^ 0 . wМ^а з«)

Since f'e(x) = f e(x) for x e Q ie, so

\\f—ge\\ k =\\ф~ф х \ \ . < ||Ф — ф'ув|| k , ,

lJ yeV y o 3£) вЛ eAB"wk M(Rn)’

where Ф is defined by (5). It is known, that Фе W k M{Rn) and (16) ЦФ— ^ellTFfc^(RW)-^0) as £-> 0 .

By virtue of (9) it suffices to show that

\\Da0 — D a{ 0 e Ze)llz,M(RW)_>0, as £->0, Jot I < h.

Further, we have

(16) j M ( æ , \ 0 ( x ) — 0'e(x)xe{oo)\)dx= j M (x , \Ф (x) — Ф'е(х)\) dx +

Rtl IMKl/e

+ j M ( x , \ 0 { x ) - 0 'e(x)xe{%)\)dx+ J M (x , \ 0 {x)\)dx.

1 /е<||ж|К 21 И 1 > 2 /е By (16),

J M {x , \ 0 {x) — 0 'e(x)\)dx ^ J M {x , \ 0 (x) — 0 's(x)\)dx->O, as £-> 0 .

1 !ж||< 1 /е Rn

We have also

(17) J M (x , \ 0 (x)\)dx->Q, as £-^ 0 .

M > 2

l e

Indeed, by virtue of condition 4°, the function M(x, \0(x)\) belongs to L ^ R 71). Furthermore, 0{x)%Rns^((i)2js){x), where K(0,2je) = {xeRn: ||a?||<

< 2/fi}, is convergent to zero for almost every x e R n, as £->0. By contin­

uity of the function M (u , v) with respect to v, M(x, \Ф(х)хцп\щ0>21е){х)\) -^0, as £— >0 for almost every x t R n. Moreover, M(x, |Ф(ж)хйп\щ 012 /е)(ж)|}

< M (x , \0{x)\) for every x e R n. Thus, by virtue of the Lebesgue bounded-convergence theorem we obtain (17). Now, we consider the integral

/17/) J M ( x , I 0 ( x ) - 0 'e(x)xs(x)l)dx, as £ ^ 0 .

' l/e<l!a;!l< 2 /e

(9)

Density in generalized Orlics-Sobolev space

We have, |Ф(гс) — Ф'(ж)^е(ж)| < |Ф(а?)| + |Ф'(ж)|, for x c R n. Hence, by convexity of M (u, v) with respect to the variable v and by condition 5°r for 0 < s < 1 , we have 4

j М(х,\\Ф{х) — Ф'е{х)%е{х)\)йх^ J M ( x , \ 0 (x)\ + \0 's{x)\)dx

l/e<||£C|K2/e ||£C||>l/e

J M { x , \ < P ( x ) \ ) d x + \ J M { x , |Ф' ( x ) \ ) d x

ll*!l> l/e !!язЦ>1/в

< -| (l+ C ) j M { x , \Ф(х)\)с1х->0, as s-^0.

ii * ii > i/«

Thus, integral (17') tends to zero, as e->0. By (12) for |a| < Tc, we have

=\\ в ° ф - 1>° ф : х, - £ - , )

Р+У=а УФО

< w ф - о ° ф : 2 ^ г \\(П11Ф ',-^ Ф )П -'хЛ ьм1нп)+

P+Y=a уф о

+ Gpy\\DP&DVXe\\LM(Rn)-

Р+У=>а уф О

Similarly as (17'), we have also ||Н“ Ф — ^ “ Ф^Н-Ьд^в»)- *® as s->0. Let /9 + у = а, у ф 0 . Then, by virtue of (13) and (15), we obtain

IK-Z/ Ф — ТФФ’,)V>x.\\L a m < e'” 1 CyIIBOФ - (Df Ф)'.\\С м т ^ 0, as e->0. Moreover, by (13), we obtain

т ^ Ф ^ х Л ь ^ < CyS»' w ®lliM(l(<P 2 , ^ 0 , as e-M),

l^ + yl = N Ф 9.

Hence

||Ha{Ф —g e) 0 , as £ - > 0 and for every \a\^7c.

Thus, by virtue of (9), it follows that \\f— gB\\wk - > 0 as e-> 0 , and the proof of case 2 ° is complete. ^ 38

Now, let us assume that M(u, v) = M(v), where M{v) is an W-func- tion satisfying condition (zl2) for every v > 0 . Thus, there exists (n ) a real­

valued and convex function К defined on R + such that: K(u) = 0 if and only if и = 0, К (1) = 1, К is an increasing, continuous function for и > 0 and

(Zl2) M ( u ‘ v) < K{u)M(v) for every u , v ^ 0.

(n ) К (и) = sup

« > 0

M (u -v )

--- for every и > 0, see [7], p. 57-58.

M (v)

(10)

Then conditions l°-5 ° hold. Let K ~ l denote the inverse function to K.

For such function M(v) we shall prove that if for f e Wk M{Q) there exists a sequence of functions cpseC™(Q) such that condition ( 8 ) holds, then condition (7) is satisfied. First, we shall prove some lemmas.

г dt

L

e m m a

3 . I f the function M is such that J - —— < oo, f e C (Q),

о )

.8 c= Ü <= Вп, у (8) > 0 , Ü is bounded and starlike with respect to 8, then the following inequality holds

<18)

fx{Q)N~l

[x{8)N ~l

\\fl\lMm + 0 (n, M)d^

i = l

àf_

дщ

|i I LM(Q)

■where d — sup \\x' — x"\\,JY complementary to the N -function M in the

x ' , x " e ! i

sense of Young.

P r o o f. Since the set Ü is starlike with respect to 8, so for X€8,y e Q , t €<^0, 1>, we have x Jr t{y — x ) e û . First, we shall prove that

<19) Щ х + Ч У - Щ \ ь м(й),у < { ^ " 1 ( n } “ 1 ll/lliw(û).

Let us put x-\-t{y — x) = z. Then j M [ \ f ( x + t(y

Si

-ж))|] d y = t ~ n j M

Q

Thus, we have

\f(x + t{y-x))\ \ m i

!l / ll LM(£i) dz.

•Consequently, inequality (19) holds. From (19) it follows that

i

/ dX; df_ (x + t{y — x)) dt <

% ( fi)

dt K ~ l {tn)

df

дх 4 LMiQ)

It is known that the following equality holds for fe C 1 (Q) (see [ 1 ], p. 52):

f(y) = / ( ® ) + J -— -(x + t i y - x ^ i y i - x j d t .

Hence

n 1

\f(y)\< № ) I+ Æ^ M-^ - ( я + % - я ) )

i = 1 Ô * %

dt for Xe8, y e Q ,

(11)

Density in generalised Orlics-Sobolev space 75

and thus applying inequalities (2) and (3), we obtain П 1 II df

m i MW,y < \\sm'bM{a),y+ d v / M - ( œ + « ( y - ® ) ) i=l 0

dt

II/ (ж) \\LM(a),y + 2 d IJ*

L]tf{p),y

1

— . \ y l j ^ 4. K -'it*1) Z j WdXi

'0 4 ' ' i = l 11 1

From [ 6 ], equality (9.11), we have

\\f(X )WlL M {0),V

=

where N ~l is the inverse function to N (v), N (v) is the complementary function to the Y -f unction M(v) in the sense of Young. Thus,

H

г = 1

Taking the norm || • ? we have

[ ^ ] < [ ^ ] M W

П

II

d f

II1

+ C { n , M ) d V U - p{S)N-

é l 1 II dœ* ' L o » ) ] ’ i.e., we obtain inequality (18).

By inequality (2), we get

'B(û)-jrlRWl * ii df

< 2 0 ) l l / l l i M (a ) < 2 --- 1 1 / 1 1 + 2 a in, M)d У - L

L emma 4. I f f e C k{Q) and Ü is as in Lemma 3, then the followin inequality holds:

L M (Q)

<21) 11/11 LMm < C3 {(1 + d)*-1 C ( Q , S , M ) II/II b ^ V s , + d* у ll-D°/lltjl(0)} ,

|a|

— k

where the constant C3 depends o n n , Je, M only, and

[//(D ) C( Q, S, M) =

2p ( Q ) N - ' \ - ^ \

p(S)N-

[м$)]

(12)

P r o o f. From (20) it follows that for к = 1 inequality ( 2 1 ) holds.

Let ( 2 1 ) be true for к — 1 . But Daf e C l {Q) for |a| = к — 1 , so by virtue of (18), we have

11/1Ьм(П)< e,{(l + d)*-2C(û, 8 , M)\\f\\wk_2iS) +

+ d k- 1 У \ c ( Q , S , M ) W f l \ L (s) + 2 C ( n ,M ) d V l l f w ) 11

i Æ . L ы » дх<

< 2c 3 m a x (l, C(n, M)) { ( 1 + d f - 1 C ( Q , 8 , M ) 1 1 / 1 1 ^ + ^ £ И

\a\=k

C o r o l l a r y 1 . I f f e W k M{Q), Q is bounded and starlike with respect to S and

there exists a sequence of functions <pseC™(Q) satisfying ( 8 ), then f satisfies ( 2 1 ).

C o r o l l a r y 2 . I f f e Wk M{Q) , Q is bounded and starlike with respect to S, then f satisfies ( 2 1 ).

P r o o f . This follows from the density of G°°{Q) in W^( Q) (see [5]) and from Lemma 4.

C o r o l l a r y 3 . I f f e W k M(Q), where Q is as in Lemma 3 and f (x) = 0

for xeS, then

(22) !l/lliM(o) < L ' W l w

|a|=A;

} dt

L e m m a 5. Let Ш be such that --- < oo and let Q a R n, Q ф R n

0J K ~ l {tn)

be an open set. Then for every f eC ^( Q) the following inequality holds : 2 3

( 2 3 ) ll/lln M( û \ f le) ^ c4 fifc ^ ll-D 7 lU _ M( a \ o 2e) >

|a|=*

where the constant c4 depends on n, к, M only.

n-times

P r o o f . Let В = { . . ., —2, —1 , 0 , 1 , 2 , . . . } , Bn = 5 х Б х ... х Б , and

G ! G

Further, let — l = [—

2 \ 2

= \xeRn: X - - 1

2

/l(®) = /(®),

0 ,

Х ей , x i ü . e

In • • • i j for l = (h, • • 1 ^n) and

—L Then e )

2 j U #

UBn И) = R n. Let

’•i)

those balls K ^ l , ^ that £?\Ц, п . ёг |— Z, Ф 0 (if Q is bounded,

then there exists a finite number of such balls, if Q is not bounded, then

(13)

Density in generalised Orlics-Sobolev space 77

there exists a countable set of such balls). Let us denote these balls by L{

and their centers by ж(г). Further, let be a point from Г ( й ) such that d(x{i\ Г{ й)) = ||a?(i) — y(i)\\. Let us denote by the balls with centers y{%) and radius 2e. Since L { c QiJ so

Wfl\LM(0\Qe) ^ \\fl\\LM(Li) < \\fl\\LM{Qi)‘

i i

*

We have f(x) = 0 in Q — Qh for sufficiently small Ji. Hence there exist smaller balls in the balls in which f (x) = 0. By inequality (22), we obtain

\ \ f l \ \ L M {Q i) < Сз ( 2 е ) * £ \ № af l \ \ L M (Q i) •

|a|=fc

Thus

ll/lliM (0\£>e) ^ |a|=fc

i

Since every point xeQ{ belongs to at most 16w balls of the family {Qj}jLi (see [1], p. 54-55), so

%OrsQi{x) < 16nXu(^^Qt.)(^) » x e R n.

% i

Hence

11/11ьж (Д \«е) ^ C4£fe1 6 n ^ ll-Da/ l l i ilf(i3\02s)j

|a|=A

i.e., inequality (23) holds.

C

o r o l l a r y

4 . For every function f e W k M{Q) such that there exists a sequence of functions (pseCf (Q) satisfying ( 8 ), inequality (23) holds.

P r o o f . If ( 8 ) holds, then

№ ~ (P s \\ l m (0)-+ 0 and ^ \\Daf — В а(р 8\\Ьм(а\оя)->0 1 as e-+ o o .

|a| = k

Hence, we obtain

|a|=& |a|=&

Since ( 2 2 ) is satisfied by the functions (p 8, as e->0, so, by (24), it is satisfied by /, too.

T

h e o r e m

2. I f f e W k M(Q), where Q is an arbitrary open set in Rn, M(v) satisfies condition (zl2), J dt dt < oo and if there exists a se-

о к ~ Ч П

quence of functions <pseC™(Q) such that ( 8 ) holds, then condition (7) is satis­

fied.

(14)

P ro o f . If Q = R n, then (7) is satisfied immediately. Let Q Ф Rn and choose <5 > 0. From ( 8 ) it follows that there exists s 0 such that

Thus, the proof of Theorem 2- is complete.

The autor is much indebted to Professor J. Musielak for his kind remarks in a course of preparing of this paper.

[1] В. И. Б у р е н к о в , О приближений функции из пространства Wp(Q) фини­

тными функциями для произвольного открытого множества, Труды Стек­

лова, C X X X I , Москва 1974, р. 51-63.

[2] H . G-. H a r d y , J. Е. L i t t le w o o d and G. P o l y a , Inequalities, Cambridge, Uni­

versity Press, 1934.

[3] H. H u d z ik , A generalization of Sobolev space (I), Functiones et Approxim ate II»

Poznan 1975, p. 67-73.

[4] — On generalized Orlicz-Sobolev space, ibidem 4, Poznan 1976, p. 37-51.

[5] — On density ofO °°(Q ) in Orlicz-Sobolev space W \l {Q) for every open set Q <= R n, ibidem 5, Poznan 1977, p. 113-128.

[6] M. А. К р а с н о с е л ь с к и й , Я. Б. Р у т и ц к и й , Выпуклые функции и прост­

ранства Орлича, Государственное Издательство Физико-Математической Литературы, Москва 1958.

[7] Н. M u s ie la k , Inequalities of Bernstein and Privalov type, Functiones et Appro­

x im a te I, Poznan 1974, p. 5 5-66.

[8] — and W . O r lic z , On modular spaces, Studia Math. 18 (1958), p. 49-65.

Let s0 be such that

1!9%И£м(Я\Де) — 0 f°r 0 < £ ^ £0.

Then, for 0 < £ < £0, by Corollary 4, we have

l l / l l i M( a \ o e) ^ ll/~ '9 % Н ь д/( о \ о г) + 119%11£м ( о \ л е)

References

Cytaty

Powiązane dokumenty

Therefore, Theorem 4.3 may be generalized to all line graphs of multigraphs which possess maximal matchable subsets of vertices – for example, the line graphs of multigraphs

Hedetniemi, Defending the Roman Empire, principal talk presented at the Ninth Quadrennial International Conference on Graph Theory, Combina- torics, Algorithms, and

had considered boundary values of solutions of elliptic equations to prove his Theorem 5. Whenever there is an epochmak- ing discovery, there are always forerunners. The real

In [7] a normalized basis of L 2 -holomorphic one forms is constructed, the Riemann operator and associated theta function are analyzed, a vanishing theorem is proved and a

In monograph [2] th e theorem concerning th e convergence of the Poisson integral for boundary continnons fonction is given.. In th e present paper we shall

But in a topological group, the closure of any set is the intersection of products of that set with each member of the entire family of neighborhoods of its identity

In Section 4, we develop a capacity theory based on this space; we study basic properties of capacity, including monotonicity and countable subadditivity, as well as several

In fact, it can be proved by applying the method of moving planes [5] that all stationary solutions of (3) in R 2 with finite total mass are radially symmetric, hence have the