• Nie Znaleziono Wyników

Approximate evaluation of added mass and damping coefficients of Two-dimensional SWATH sections

N/A
N/A
Protected

Academic year: 2021

Share "Approximate evaluation of added mass and damping coefficients of Two-dimensional SWATH sections"

Copied!
44
0
0

Pełen tekst

(1)

CO 00 CO

è

cc

CO

z

DAVID W. TAYLOR NAVAL SHIP

E S E A R C H AND DEVELOPMENT CENTER

Bethesda, Md. 20084

i

H UL

O

( / ) H Z UJ u LL U. LU

O

O ü

z

O.

<

APPROXIMATE EVALUATION OF ADDED MASS AND DAMPING C O E F F I C I E N T S OF

TWO-DIMENSIONAL SWATH SECTIONS

by Choung M. Lee A P P R O V E D F O R P U B L I C R E L E A S E : D I S T R I B U T I O N U N L I M I T E D

Q

LU

Q

a

<

U. CO

i i

LU ^ ÏÏ -J

u

1

O

X w

O z

SHIP PERFORMANCE DEPARTMENT R E S E A R C H AND DEVELOPMENT REPORT

October 1978

(2)

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS D T N S R D C C O M M A N D E R 0 0 T E C H N I C A L D I R E C T O R 01 O F F I C E R - I N - C H A R G E C A R D E R O C K 0 5 S Y S T E M S D E V E L O P M E N T D E P A R T M E N T I I S H I P P E R F O R M A N C E D E P A R T M E N T 15 S T R U C T U R E S D E P A R T M E N T 17 S H I P A C O U S T I C S D E P A R T M E N T 19 S H I P M A T E R I A L S E N G I N E E R I N G D E P A R T M E N T 23 O F F I C E R - I N - C H A R G E A N N A P O L I S 0 4 A V I A T I O N A N D S U R F A C E E F F E C T S D E P A R T M E N T C O M P U T A T I O N , M A T H E M A T I C S A N D L O G I S T I C S D E P A R T M E N T 118 P R O P U L S I O N A N D A U X I L I A R Y S Y S T E M S D E P A R T M E N T 2 7 C E N T R A L I N S T R U M E N T A T I O N D E P A R T M E N T 2 9

(3)

UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Date Entered)

REPORT DOCUMENTATION PAGE B E F O R E C O M P L E T I N G FORM R E A D I N S T R U C T I O N S

1. R E P O R T N U M B E R

DTNSRDC-78/084

2 . G O V T A C C E S S I O N N O . 3 . R E C I P I E N T ' S C A T A L O G N U M B E R

4. T I T L E f a n d S u b ( l ( / e ;

APPROXIMATE EVALUATION OF ADDED MASS AND DAMPING COEFFICIENTS OF

TWO-DIMENSIONAL SWATH SECTIONS

5. T Y P E O F R E P O R T 4 P E R I O D C O V E R E D

F i n a l

4. T I T L E f a n d S u b ( l ( / e ;

APPROXIMATE EVALUATION OF ADDED MASS AND DAMPING COEFFICIENTS OF

TWO-DIMENSIONAL SWATH SECTIONS 6 . P E R F O R M I N G O R G . R E P O R T N U M B E R 7. A U T H O R C » ;

Choung M. Lee

B. C O N T R A C T O R G R A N T N U M B E R f » ;

9 . P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D A D D R E S S

David W. T a y l o r Naval Ship Research and Development Center Bethesda, Maryland 20084 10. P R O G R A M E L E M E N T , P R O J E C T , T A I S K A R E A a W O R K U N I T N U M B E R S (See reverse s i d e ) I I . C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S 12. R E P O R T D A T E October 1978 I I . C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S 13. N U M B E R O F P A G E S 41

U . M O N I T O R I N G A G E N C Y N A M E ft A D D R E S S f y / d / / / e r e n ( Irom Controlllna Olllce) I S . S E C U R I T Y C L A S S , (ol Ihia report)

UNCLASSIFIED

U . M O N I T O R I N G A G E N C Y N A M E ft A D D R E S S f y / d / / / e r e n ( Irom Controlllna Olllce)

1 5 « . D E C L A S S I F I C A T I O N / D O W N G R A D I N G S C H E D U L E

16. D I S T R I B U T I O N S T A T E M E N T C o / l / i l s R e p o r O

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. D I S T R I B U T I O N S T A T E M E N T (ol the abstract entered In Block 20, II dlllerent Irom Report)

I B . S U P P L E M E N T A R Y N O T E S

19. K E Y W O R D S (Continue on reverse aide II neceaeary and Idenllly by black n u m b e r ;

Small-Waterplane-Area, T^<rin-Hull Ships Ship M o t i o n i n Waves

Two-Dimensional Added Mass and Damping

A B S T R A C T (Continue on reverse aide II naceasary and Identity by 6 / o c * n u m b e r ;

D e r i v a t i o n o f approximate formulas f o r d e t e r m i n i n g the added mass and damping c o e f f i c i e n t s o f two-dimensional, small-waterplane-area, t w i n - h u l l

(SWATH) s e c t i o n s i s d e s c r i b e d . The added mass and damping c o e f f i c i e n t s o f i n t e r e s t a r e those a s s o c i a t e d w i t h a f o r c e d o s c i l l a t i o n of SWATH s e c t i o n s m heave, sway, or r o l l mode i n a f r e e s u r f a c e . The o b j e c t i v e o f d e r i v i n g t h e

(4)

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Dele Entered) (Block 10) Program Element 62543N P r o j e c t ZF-43421 Task Area ZF-43421001 Work U n i t 1-1500-102 (Block 20 continued)

approximate formulas f o r t h e hydrodynamic c o e f f i c i e n t s i s t o s i m p l i f y the computation of motion of SWATH ships i n waves w i t h o u t s a c r i f i c i n g i t s accu-racy s i g n i f i c a n t l y .

The approximate formulas are d e r i v e d based on the p o t e n t i a l - f l o w

t h e o r y . The damping c o e f f i c i e n t s are obtained i n terms of the o u t g o i n g wave amplitudes, and the added mass c o e f f i c i e n t s are o b t a i n e d by using the damp-i n g c o e f f damp-i c damp-i e n t s through the s o - c a l l e d Kramers-Krondamp-ig r e l a t damp-i o n s . W damp-i t h damp-i n t h e frequency range of p r a c t i c a l i n t e r e s t , the approximate formulas p r o v i d e s a t i s f a c t o r y r e s u l t s .

(5)

TABLE OF CONTENTS : . Page LIST OF FIGURES „ i i i NOTATION. . . . V ABSTRACT 1 ADMINISTRATIVE INFORMATION 1 INTRODUCTION 1 ANALYTICAL METHODS 3 BACKGROUND . . . . . . . 3 ANALYSIS 4 Heave Damping A p p r o x i m a t i o n 4 Sway Damping A p p r o x i m a t i o n 12 R o l l Damping A p p r o x i m a t i o n 14 Sway-Roll C o u p l i n g Damping A p p r o x i m a t i o n 17 Added Mass A p p r o x i m a t i o n • • • 18 DISCUSSION OF RESULTS 20 SUMMARY AND CONCLUSIONS 29

ACKNOWLEDGMENTS 30 REFERENCES 31

LIST OF FIGURES

1 - D e m i h u l l Cross S e c t i o n o f a SWATH Ship 6 2 - Heave Damping C o e f f i c i e n t o f a SWATH S e c t i o n 21

3 - Heave Added-Mass C o e f f i c i e n t o f a SWATH S e c t i o n 2 1 4 - Heave Added-Mass and Damping C o e f f i c i e n t s

o f Submerged Twin C i r c l e s 23 5 - Sway Damping C o e f f i c i e n t o f a SWATH S e c t i o n 25

(6)

Page 7 - Sway Added-Mass and Damping C o e f f i c i e n t s

of Submerged Twin C i r c l e s 26 8 - R o l l Damping C o e f f i c i e n t o f a SWATH S e c t i o n . 28

(7)

NOTATION

A = A^/h^ R a t i o o f wave a m p l i t u d e t o o s c i l l a t i o n a m p l i t u d e

A^ A m p l i t u d e o f o u t g o i n g wave

a.. T w o - d i m e n s i o n a l added mass i n t h e i t h mode due t o t h e m o t i o n i n t h e j t h mode

(a„„,a„„) = ^ N o n d i m e n s l o n a l (sway, heave) added mass 22' 33' pS.

c o e f f i c i e n t

^24

= , T_o ^ N o n d i m e n s l o n a l s w a y - r o l l c o u p l i n g added mass

24 (pbS^) ^44 a, , = = N o n d i m e n s l o n a l r o l l added i n e r t i a ^ (pb^S^) b One-half o f t h e d i s t a n c e between t h e c e n t e r l i n e o f each h u l l b. . T w o - d i m e n s i o n a l wavemaklng damping i n t h e i t h mode due t o t h e m o t i o n i n t h e j t h mode

b S t r u t t h i c k n e s s a t t h e mean w a t e r l i n e o

- - ^^22'^33^

^^22'^33^ = — N o n d i m e n s l o n a l (sway, heave) damping c o e f f i c i e n t

b. '24 N o n d i m e n s l o n a l s w a y - r o l l c o u p l i n g damping 24 (pwbS.) A c o e f f i c i e n t ^ 4 b, , = ^ N o n d i m e n s l o n a l r o l l damping c o e f f i c i e n t (pwb^S^) C o r r e c t i o n f a c t o r ( 1 = 1,2,3) C C e n t e r l i n e o f t h e t w i n b o d i e s

(8)

D r a f t o f c r o s s s e c t i o n Depth t o t h e c e n t e r o f c i r c u l a r h u l l Depth o f s t r u t G r a v i t a t i o n a l a c c e l e r a t i o n A m p l i t u d e o f o s c i l l a t i o n o f body I m a g i n a r y u n i t Wave number y- and z-component o f u n i t n o r m a l v e c t o r p o i n t i n g i n t o body Radius o f c i r c u l a r p o r t i o n o f h u l l C y l i n d r i c a l c o o r d i n a t e s as d e f i n e d on page 5 Submerged c r o s s s e c t i o n a l a r e a o f one h u l l Sway v e l o c i t y Heave v e l o c i t y Right-handed C a r t e s i a n c o o r d i n a t e system; Oz i s d i r e c t e d v e r t i c a l l y upward and Oy c o i n c i d e s w i t h calm w a t e r l i n e

One-half o f sway added mass o f t w i n c i r c l e s submerged under a r i g i d s u r f a c e

Heave added mass o f SWATH d e m i h u l l c r o s s s e c t i o n a t zero f r e q u e n c y

Water d e n s i t y

V e l o c i t y p o t e n t i a l r e p r e s e n t i n g f l o w f i e l d d i s t u r b e d by (heave, sway, r o l l ) o s c i l l a t i o n

(9)

ABSTRACT

D e r i v a t i o n o f a p p r o x i m a t e f o r m u l a s f o r d e t e r m i n i n g t h e added mass and damping c o e f f i c i e n t s o f

two-d i m e n s i o n a l , s m a l l - w a t e r p l a n e - a r e a , t w i n - h u l l (SWATH) s e c t i o n s i s d e s c r i b e d . The added mass and damping c o -e f f i c i -e n t s o f i n t -e r -e s t a r -e t h o s -e a s s o c i a t -e d w i t h a f o r c e d o s c i l l a t i o n o f SWATH s e c t i o n s i n heave, sway, o r r o l l mode i n a f r e e s u r f a c e . The o b j e c t i v e o f d e r i v i n g t h e a p p r o x i m a t e f o r m u l a s f o r t h e hydrodynamic c o e f f i -c i e n t s i s t o s i m p l i f y t h e -c o m p u t a t i o n o f m o t i o n o f SWATH s h i p s i n waves w i t h o u t s a c r i f i c i n g i t s a c c u r a c y s i g n i f i c a n t l y . The a p p r o x i m a t e f o r m u l a s a r e d e r i v e d based on t h e p o t e n t i a l - f l o w t h e o r y . The damping c o e f f i c i e n t s a r e o b t a i n e d i n terms o f t h e o u t g o i n g wave a m p l i t u d e s , and t h e added mass c o e f f i c i e n t s a r e o b t a i n e d by u s i n g t h e damping c o e f f i c i e n t s t h r o u g h t h e s o - c a l l e d KramersK r o n i g r e l a t i o n s . W i t h i n t h e f r e q u e n c y range o f p r a c t i c a l I n t e r e s t , t h e a p p r o x i m a t e f o r m u l a s p r o v i d e s a t i s f a c -t o r y r e s u l -t s . ADMINISTRATIVE INFORMATION

T h i s work was sponsored by t h e N a v a l M a t e r i a l Command as p a r t o f t h e High Performance V e h i c l e Hydrodynamic Program o f t h e Ship Performance Department, D a v i d W. T a y l o r Naval Ship R&D Center (DTNSRDC). Funding was p r o v i d e d under t h e S h i p s , Subs and Boats Program, Element 62543N, Task Area ZF-43421001, P r o j e c t Number ZF-43421, Work U n i t 1-1500-102.

INTRODUCTION

One o f t h e advantages e x p e c t e d f r o m a s m a l l w a t e r p l a n e a r e a , t w i n -h u l l (SWATH) c o n f i g u r a t i o n i s t -h e improved seakeeping q u a l i t i e s compared t o m o n o h u l l s h i p s i n moderate sea c o n d i t i o n s . To a s s i s t i n t h e development o f t h e SWATH c o n c e p t , an a n a l y t i c a l p r e d i c t i o n o f m o t i o n o f SWATH s h i p s i n waves has been d e v e l o p e d a t t h e D a v i d W. T a y l o r N a v a l Ship R&D Center

1 * 2

(DTNSRDC). ' The a n a l y t i c a l method can p r e d i c t t h e m o t i o n o f a SWATH s h i p i n f i v e d e g r e e s - o f - f r e e d o m i n r e g u l a r and i r r e g u l a r waves. The s u r g e m o t i o n i s e x c l u d e d due t o i t s minor p r a c t i c a l s i g n i f i c a n c e .

(10)

A l t h o u g h t h e e x i s t i n g a n a l y t i c a l method has i t s own m e r i t s and s e r v e s i m p o r t a n t p u r p o s e s , i t has been f e l t t h a t i t i s t o o cumbersome t o be used i n t h e c o n c e p t u a l d e s i g n s t a g e a t w h i c h numerous c a n d i d a t e h u l l forms a r e

3

examined. D a l z e l l has addressed t h i s p r o b l e m by d e v e l o p i n g a s i m p l i f i e d method o f computing t h e hydrodynamic c o e f f i c i e n t s a s s o c i a t e d w i t h heave-p i t c h c o u heave-p l e d m o t i o n o f SWATH s h i heave-p s a t zero sheave-peed i n head waves. Since

2

t h e m a j o r p o r t i o n o f t h e computer program f o r p r e d i c t i o n o f m o t i o n i s comp r i s e d o f comcomputing t h e s e c t i o n a l added mass and damcomping, t h e a c c o m comp l i s h -ment o f D a l z e l l i n r e d u c i n g t h e s i z e and c o m p u t a t i o n t i m e o f t h e computer program i s r e g a r d e d t o be v e r y w o r t h w h i l e .

I n t h i s r e p o r t , an e x t e n s i o n o f t h e D a l z e l l e f f o r t t o a l l hydrodynamic c o e f f i c i e n t s a s s o c i a t e d w i t h t h e f i v e d e g r e e s - o f - f r e e d o m o f m o t i o n o f SWATH s h i p s i s d e s c r i b e d . The approach employed h e r e i s s i m i l a r t o t h e D a l z e l l approach. That i s , t h e s e c t i o n a l wavemaklng damping c o e f f i c i e n t s o f SWATH c r o s s s e c t i o n s a r e o b t a i n e d u s i n g t h e f a r - f i e l d p o t e n t i a l - f l o w t h e o r y . By

4

a p p l i c a t i o n o f t h e K r a m e r s - K r o n i g r e l a t i o n s t o t h e damping c o e f f i c i e n t s , t h e added-mass c o e f f i c i e n t , w h i c h can be r e g a r d e d as t h e c o n j u g a t e p a i r o f t h e damping, i s d e t e r m i n e d .

The advantage o f t h i s p r o c e d u r e over t h e c o n v e n t i o n a l m u l t i p l e -e x p a n s i o n m-ethod^ o r s o u r c -e - d i s t r i b u t i o n m-ethod^ i s t h a t t h -e wav-emaklng damping can be o b t a i n e d by d e t e r m i n i n g t h e o u t g o i n g wave a m p l i t u d e a t a f a r f i e l d r a t h e r t h a n by d e t e r m i n i n g t h e p r e s s u r e d i s t r i b u t i o n on t h e body. The o u t g o i n g wave a m p l i t u d e can be c l o s e l y a p p r o x i m a t e d by r e p r e s e n t i n g t h e f l o w d i s t u r b a n c e s by a p u l s a t i n g s i n g l e s o u r c e , a d i p o l e , o r a c o m b i n a t i o n of b o t h . F u r t h e r m o r e , t h e K r a m e r s - K r o n i g r e l a t i o n s can be expressed i n terms o f a h a l f - r a n g e d o u b l e F o u r i e r t r a n s f o r m . Because an e f f i c i e n t n u m e r i c a l p r o c e d u r e such as f a s t F o u r i e r t r a n s f o r m (FFT)'' i s a commonly a v a i l a b l e computer r o u t i n e , t h e p r o c e s s o f o b t a i n i n g t h e addedmass c o e f f i -c i e n t s -can be q u i -c k l y p e r f o r m e d .

Once t h e sèctional added mass and damping c o e f f i c i e n t s i n heave, sway, r o l l , and r o l l s w a y c o u p l e d modes a r e o b t a i n e d , t h e r e s t o f t h e motiön p r e -d i c t i o n p r o c e s s f o l l o w s i -d e n t i c a l l y t o t h a t -d e s c r i b e -d i n Reference 1 .

(11)

Comparison o f t h e r e s u l t s o b t a i n e d by e x p e r i m e n t s , t h e method o f source d i s t r i b u t i o n , and t h e p r e s e n t a p p r o x i m a t e method a r e p r e s e n t e d i n graphs. Agreements a r e , i n g e n e r a l , f a i r . The a p p r o x i m a t e method y i e l d s s a v i n g s i n t h e c o m p u t a t i o n t i m e by an o r d e r o f magnitude compared t o t h e c o n v e n t i o n a l method o f Reference 8. The r e a l m e r i t o f t h e a p p r o x i m a t e method w i l l be e v a l u a t e d i n t h e f u t u r e when an a n a l y t i c a l method o f p r e -d i c t i o n o f SWATH m o t i o n s i n waves i s -develope-d.

ANALYTICAL METHODS BACKGROUND

W i t h i n a l i n e a r a n a l y s i s , t h e added mass and damping c o e f f i c i e n t s o f o s c i l l a t i n g t w i n - c y l i n d r i c a l b o d i e s o f a r b i t r a r y c r o s s s e c t i o n have been

Q

d e t e r m i n e d by t h e method o f p u l s a t i n g s o u r c e d i s t r i b u t i o n . T h i s method has shown s a t i s f a c t o r y agreement w i t h t h e e x p e r i m e n t a l r e s u l t s o f v a r i o u s c r o s s s e c t i o n a l shapes such as t w i n s e m i c i r c l e s , r e c t a n g l e s , t r i a n g l e s , ^

9 and SWATH s e c t i o n s .

To o b t a i n r e a s o n a b l y a c c u r a t e added mass and damping c o e f f i c i e n t s o f a SWATH c r o s s s e c t i o n , a t l e a s t 15 t o 20 p o i n t s o f source d i s t r i b u t i o n on the submerged c o n t o u r o f one h u l l s h o u l d be t a k e n f o r each f r e q u e n c y o f o s c i l l a t i o n . To o b t a i n a l l t h e hydrodynamic c o e f f i c i e n t s i n t h e l i n e a r e q u a t i o n s o f m o t i o n c o v e r i n g a l l d e g r e e s - o f - f r e e d o m , t h e s e c t i o n a l added mass and damping c o e f f i c i e n t s s h o u l d be computed f o r t h e sway, heave, and r o l l modes f o r about 20 c r o s s s e c t i o n s a l o n g t h e l e n g t h o f a s h i p . I f t h e m o t i o n o f a SWATH s h i p i n i r r e g u l a r waves f o r d i f f e r e n t wave headings and s h i p speeds i s t o be computed, t h e f o r e g o i n g number o f c a l c u l a t i o n s s h o u l d be r e p e a t e d f o r each wave h e a d i n g , s h i p speed, and f r e q u e n c y o f o s c i l l a t i o n . Thus, one can e a s i l y e x p e c t t h a t a s i g n i f i c a n t amount o f computer t i m e w i l l be r e q u i r e d t o e v a l u a t e t h e seakeeping q u a l i t i e s o f a s h i p .

I n s p i t e o f t h i s l a r g e expense o f c o m p u t a t i o n t i m e , what we a r e ob-t a i n i n g , a ob-t b e s ob-t , a r e m o ob-t i o n s based on ob-t h e hydrodynamic c o e f f i c i e n ob-t s w h i c h a r e o b t a i n e d under t h e a s s u m p t i o n o f t w o - d i m e n s i o n a l f l o w c o n d i t i o n s a t each c r o s s s e c t i o n . F u r t h e r m o r e , u n l i k e m o n o h u l l s h i p s , t h e m o t i o n o f SWATH s h i p s cannot be p r e d i c t e d a c c u r a t e l y by u s i n g o n l y t h e c o e f f i c i e n t s

(12)

o b t a i n e d f r o m t h e p o t e n t i a l - f l o w t h e o r y . There a r e v i s c o u s e f f e c t s and f i n e f f e c t s t o be i n c l u d e d i n t h e hydrodynamic c o e f f i c i e n t s . I t seems r e a s o n a b l e , t h e r e f o r e , t o seek a s i m p l i f i e d method o f o b t a i n i n g t h e sec-t i o n a l hydrodynamic c o e f f i c i e n sec-t s , i f sec-t h e economic s a v i n g s i n sec-t h e l a b o r a t i m e can j u s t i f y t h e l o s s o f a c c u r a c y o f t h e r e s u l t s w i t h i n a c e r t a i n m a r g i n .

ANALYSIS

From t h e p r i n c i p l e o f c o n s e r v a t i o n o f energy, t h e wavemaklng damping of an o s c i l l a t i n g t w o - d i m e n s i o n a l body can be d e t e r m i n e d by t h e a m p l i t u d e of t h e r a d i a t i n g waves a t a f a r d i s t a n c e f r o m t h e body. T h i s i m p l i e s t h a t the damping c o e f f i c i e n t can be d e t e r m i n e d by examining t h e f a r - f i e l d be-h a v i o r o f t be-h e d i s t u r b a n c e s g e n e r a t e d by t be-h e o s c i l l a t i n g body. Once t be-h e wavemaklng damping i s known, t h e s o - c a l l e d Kramers-Kronig r e l a t i o n s can be

i n v o k e d t o o b t a i n t h e added mass o f t h e body. Thus, b o t h c o e f f i c i e n t s can be o b t a i n e d by examining t h e f a r - f i e l d b e h a v i o r o f t h e o u t g o i n g waves. The advantage o f examining t h e f a r - f i e l d b e h a v i o r o f t h e f l u i d d i s t u r b a n c e s l i e s i n t h e f a c t t h a t t h e s o l u t i o n o f t h e p o t e n t i a l f u n c t i o n can be obt a i n e d by e x a m i n i n g obt h e a s y m p obt o obt i c b e h a v i o r o f obt h e f u n c obt i o n as obt h e h o r i -z o n t a l c o o r d i n a t e , f o r example y, goes t o i n f i n i t y . The a n a l y s i s w i l l be c a r r i e d o u t i n t h e f o l l o w i n g manner. F i r s t , t h e p o t e n t i a l f u n c t i o n r e p r e s e n t i n g t h e o u t g o i n g wave a t t h e f a r f i e l d , w h i c h i s g e n e r a t e d by o s c i l l a t i n g t h e d e m i h u l l o f a t w o - d i m e n s i o n a l SWATH f o r m , w i l l be d e t e r m i n e d . Then, t h e i n t e r f e r e n c e and b l o c k i n g e f f e c t s o f t h e o t h e r h u l l on t h e o u t g o i n g waves a t t h e f a r f i e l d w i l l be d e t e r m i n e d . The n e x t s t e p i s t o d e t e r m i n e t h e damping c o e f f i c i e n t i n terms o f t h e wave a m p l i t u d e and t h e n , t h e added-mass c o e f f i c i e n t by t h e K r a m e r s - K r o n i g r e l a t i o n s .

Heave Damping A p p r o x i m a t i o n

Assume t h a t t h e c i r c u l a r p o r t i o n o f a c r o s s s e c t i o n o f t h e d e m i h u l l of a SWATH s h i p can be r e p r e s e n t e d by a v e r t i c a l d i p o l e , w i t h t h e p u l s a t i n g

(13)

v e l o c i t y V l o c a t e d a t a c e r t a i n p o i n t on t h e submerged area o f t h e d e m i h u l l c r o s s s e c t i o n , w h i c h i s shown i n F i g u r e 1 . The n o t a t i o n s d e n o t i n g t h e dimensions o f t h e c r o s s s e c t i o n a r e a l s o g i v e n i n F i g u r e 1. The v e l o c i t y p o t e n t i a l r e p r e s e n t i n g t h e v e r t i c a l d i p o l e i n an un-bounded f l u i d i s g i v e n by (1) where p = w a t e r d e n s i t y = submerged c r o s s s e c t i o n a l a r e a o f t h e d e m i h u l l ~ heave added mass o f t h e d e m i h u l l c r o s s s e c t i o n i n an

unbounded f l u i d

( r, e ) = c y l i n d r i c a l c o o r d i n a t e s such t h a t y = r s i n 6 and z = r cos 6 - d , whe

o t h e d i p o l e i s l o c a t e d

z = r cos 6 - d , where d i s t h e d e p t h o f t h e p o i n t where o' o ^ ^

The heave added mass y ^ ^ w i l l be a p p r o x i m a t e d by

y ^ ^ = pTTR^ \ 1 - ( 2 )

Due t o t h e p r e s e n c e o f t h e s u r f a c e p i e r c i n g v e r t i c a l s t r u t , t h e d i s p l a c e d a r e a o f t h e c r o s s s e c t i o n changes a c c o r d i n g t o t h e v e r t i c a l o s c i l l a -t i o n o f -t h e body. The change i n -t h e d i s p l a c e d a r e a i s e q u i v a l e n -t -t o -t h e f l u x t h r o u g h t h e w i d t h o f t h e s t r u t w h i c h i s Vb^. Thus, an e q u i v a l e n t s o u r c e s t r e n g t h t o g e n e r a t e t h i s f l u x can be o b t a i n e d by V b ^ / ( 2 7 T ) , and t h e c o r r e s p o n d i n g s o u r c e l o c a t e d a t t h e p o i n t ( 0 , - d ) i s expressed by s Vb 27T , /' £n | / y 2 + ( , + d ^ ) 2 ( 3 )

(14)
(15)

Thus, t h e v e l o c i t y p o t e n t i a l r e p r e s e n t i n g a h e a v i n g d e m i h u l l SWATH c r o s s s e c t i o n i s o b t a i n e d a p p r o x i m a t e l y by V 2TT V -33 o Vb cos 6 o „ H -7,— x,n r ZT T | / y ^ + ( z + d ^ ) ^ ( 4 ) The f a r - f i e l d b e h a v i o r o f t h e s i n g u l a r i t i e s r e p r e s e n t e d by E q u a t i o n ( 4 ) , where t h e z = 0 i s r e g a r d e d as t h e calm-water l i n e , can be o b t a i n e d by * H ~ - i S . + ^ l K e ' ^ ^ - V ^ y ) A p , , K ( z - d + i y ) + b e s ^ o , . , - i w t . (-lOJh^e ) (5) where o n l y t h e r e a l p a r t o f t h e r i g h t - h a n d s i d e i s t o be r e a l i z e d , and . , - i w t V = - i w h e o 2 K = CO / g , t h e wave number CO = c i r c u l a r f r e q u e n c y o f o s c i l l a t i o n g = g r a v i t a t i o n a l a c c e l e r a t i o n 1 = /=ï

H e r e a f t e r , when a r e a l f u n c t i o n i s expressed i n a complex f o r m i n v o l v i n g e '^^^, i t w i l l be t a c i t l y assumed t h a t o n l y t h e r e a l p a r t o f t h e complex e x p r e s s i o n i s meant.

Because t h e wave a m p l i t u d e , w h i c h i s denoted by A^, i s o b t a i n e d by

z y

= 0 — 00

(16)

A = -K ^A+ '33

-Kd -Kd

+b Ke

o (6)

From t h e c o n s e r v a t i o n o f energy, t h e r a t e o f work i m p a r t e d on t h e f l u i d by t h e body d u r i n g one c y c l e o f o s c i l l a t i o n s h o u l d be e q u a l t o t h e r a t e o f energy c a r r i e d by t h e r a d i a t i n g s u r f a c e waves d u r i n g t h e same p e r i o d . T h i s means t h a t where T F, a F^ V d t = - 2 p T 0 d t (})^ d) dz (7) p e r i o d o f o s c i l l a t i o n o

[-00 (M+a..) cos OJt-üJb.. s i n a3t+c cos ( O t ] h ^

-wh s i n (jOt o

gA^ cos (Ky-oat+a)e

to

Kz

phase a n g l e w i t h r e s p e c t t o t h e v e r t i c a l m o t i o n o f t h e body

( a . . , b . . , c . . ) = (added mass, damping, r e s t o r i n g ) i n t h e j t h mode 11 11 -11 due t o t h e m o t i o n i n t h e j t h mode M mass o f t h e body From E q u a t i o n ( 7 )

^j =Pn^

(8) S u b s t i t u t i n g E q u a t i o n ( 6 ) i n t o ( 8 ) / - \ 2 (9) where t h e s u p e r s c r i p t 1 i s used t o i n d i c a t e t h e q u a n t i t i e s c o r r e s p o n d i n g t o t h e d e m i h u l l o n l y .

(17)

I f b (1) i s n o n d i m e n s i o n a l i z e d by poaS , t h e n 33

(

-Kd -Kd 2 -K 7. °+b Ke s o ( 1 0 ) A To t a k e i n t o account t h e i n t e r f e r e n c e o r b l o c k a g e e f f e c t s f r o m t h e o t h e r h u l l , t h e r e f l e c t e d images a t y = 2b o f t h e d i p o l e and source i n -t r o d u c e d i n -t h e f o r e g o i n g a n a l y s i s s h o u l d be c o n s i d e r e d . F u r -t h e r , assume t h a t t h e d e m i h u l l i s r e p l a c e d by a v e r t i c a l b a r r i e r h a v i n g t h e d e p t h D; hence, t h e waves g e n e r a t e d by one h u l l cannot be t r a n s m i t t e d c o m p l e t e l y beyond t h e o t h e r h u l l .

I f we l e t e denote t h e r a t i o o f t h e wave a m p l i t u d e o f t h e i n c i d e n t wave b e f o r e t h e b a r r i e r t o t h e a m p l i t u d e o f t h e t r a n s m i t t e d wave b e h i n d t h e b a r r i e r , t h e waves g e n e r a t e d by t h e s i n g u l a r i t i e s can be expressed i n

where t h e i n c i d e n t wave a m p l i t u d e i s assumed t o be u n i t y , and a,^, i s t h e change o f t h e phase a n g l e o f t h e t r a n s m i t t e d wave.

E q u a t i o n ( 1 1 ) can be expressed as t h e f o r m

C = cos ( K y- ( j O t ) + e cos (Ky+2b-6Jt+a ) ( 1 1 )

C = 3 cos (Ky-oot+Ó) ( 1 2 )

(18)

O 111 = [1+e +2e cos (2Kb+a„)]

o J-(13) -e s i n (2Kb+a^) 6 = t a n l + e cos (2Kb+a,j,) , 12 The t r a n s m i s s i o n c o e f f i c i e n t e and t h e phase a n g l e a r e g i v e n by

K, (KD) e = ^ 1 (14) j/ V l ^ ( K D ) + K ^ ^ ( K D ) a„ = t a n _^ /Trl^(KD) T - "-^^ K, (KD) (15)

where I ^ and K^ a r e t h e m o d i f i e d B e s s e l f u n c t i o n s . For X < L i t can be shown t h a t 3 5 7 T rv^ - X + ^ + ^ + + .. . (16) \ W - 2 16 384 18432 - 3 2 ~ ^ " 768 ^ 36864 ^ where m Y = £im ^ - 5,n m ^ n = l = 0.57721566...

(19)

Because 3^ r e p r e s e n t s t h e i n t e r f e r e n c e and b l o c k a g e e f f e c t s on t h e wave a m p l i t u d e a t t h e f a r f i e l d , t h e t w i n - h u l l damping c o e f f i c i e n t can be d e t e r m i n e d by

S 3 = ^ 1 ^ 3 ' ^ ^ '

where i s i n t r o d u c e d h e r e as a c o r r e c t i o n f a c t o r i f t h e need a r i s e s . When t h e s t r u t t h i c k n e s s i s z e r o , t h e source p o t e n t i a l g i v e n by E q u a t i o n ( 3 ) can be d i s r e g a r d e d because b^ = 0.

A l s o , due t o t h e absence o f t h e v e r t i c a l b a r r i e r , i t i s assumed t h a t e = 1 and a,j, = 0. Thus, t h e heave damping o f c o m p l e t e l y submerged t w i n c i r c l e s can be o b t a i n e d f r o m E q u a t i o n s ( 9 ) and (18) as or (19) where 1TR' 2 d t h e d e p t h t o t h e c e n t e r o f t h e c i r c l e c

(20)

The l a s t two terms i n t h e b r a c k e t o f t h e e x p r e s s i o n o f y^^ r e p r e s e n t , r e s p e c t i v e l y , t h e t w i n h u l l e f f e c t and t h e f r e e s u r f a c e e f f e c t w h i c h i s a s

-13 sumed t o be a r i g i d w a l l .

Sway Damping A p p r o x i m a t i o n

From a f a r - f i e l d v i e w , t h e d e m i h u l l o f a SWATH s e c t i o n i n t h e sway m o t i o n can be r e g a r d e d as a v e r t i c a l p l a t e o f t h e same d r a f t as t h e body d r a f t . For s m a l l f r e q u e n c i e s o f o s c i l l a t i o n w h i c h a r e o f p r a c t i c a l

i n t e r e s t t o SWATH m o t i o n , i t can be f u r t h e r assumed t h a t , near t h e body, t h e f l u i d d i s t u r b a n c e s w o u l d be c l o s e t o t h o s e made by a v e r t i c a l p l a t e o f t w i c e t h e l e n g t h o f t h e body d r a f t i n sway m o t i o n i n an unbounded f l u i d .

I f t h e sway v e l o c i t y o f t h e body m o t i o n i s denoted by U, t h e f l o w f i e l d can be r e p r e s e n t e d by t h e v e l o c i t y p o t e n t i a l w h i c h can be expressed i n terms o f t h e d i p o l e d i s t r i b u t i o n as t i o n o f a f l a t p l a t e s u b j e c t t o n o r m a l u n i f o r m f l o w by t a k i n g t h e p o t e n t i a l jump a c r o s s t h e p l a t e . The c o r r e s p o n d i n g f a r - f i e l d e x p r e s s i o n w h i c h r e p r e s e n t s t h e r a d i a t i n g f r e e - s u r f a c e waves i s o b t a i n e d f r o m E q u a t i o n (13.29) o f Reference 1 1 as 0 (20) where t h e d i p o l e d e n s i t y can be o b t a i n e d f r o m t h e w e l l k n o w n s o l u -0 = i2KUe K ( z + i y ) B(K) (21) where

(21)

O

B(K) = f e^^ |/D2-?2 dC -D

= 2^ ( I j ^ ( K D ) - L ^ ( K D ) ) (22)

i n w h i c h i s t h e m o d i f i e d S t r u v e f u n c t i o n .

The a m p l i t u d e o f r a d i a t i n g wave a t |y| = °° i s o b t a i n e d by

. . 2aj|u|KB(K) 1 g and I f U = -ia)h e - i ' ^ ^ o t h e n A, A E - j ^ = 2 r B ( K ) (23) O

Thus, t h e sway damping f o r d e m i h u l l o f a SWATH c r o s s s e c t i o n can be ob-t a i n e d f r o m E q u a ob-t i o n s ( 8 ) and (23) as

'22 - pa3S^ [^2 )

= ^ ^ ^ (24)

^A

The i n t e r f e r e n c e e f f e c t f r o m t h e o t h e r h u l l w i l l be t r e a t e d t h e s ame as i n t h e p r e v i o u s case. That i s , t h e f a r - f i e l d wave a m p l i t u d e A^ w i l l be m o d i f i e d as 3^A^ where 3^ i s g i v e n by E q u a t i o n ( 1 3 ) . C o n s e q u e n t l y , t h e sway-damping c o e f f i c i e n t f o r t h e t w i n h u l l s i s o b t a i n e d by

(22)

where i s a c o r r e c t i o n f a c t o r w h i c h s h o u l d be d e t e r m i n e d as t h e need a r i s e s .

For t h e c r o s s s e c t i o n w i t h o u t t h e s t r u t s , t h e sway damping i s assumed t o be s i m i l a r t o t h e heave damping g i v e n by E q u a t i o n ( 1 9 ) , i . e . . , -2Kd 2 / R2 2 = 2C K e

S

R

2- +

1

(1+ cos 2Kb) (26) 2b 2d ^ c where S, = TTR^ A y 22

o n e - h a l f o f t h e sway added mass o f t w i n c i r c l e s under a r i g i d s u r f a c e

9 2 2b'^ 2d ^

c

R o l l Damping A p p r o x i m a t i o n

The r o l l moment e x e r t e d on a SWATH c r o s s s e c t i o n due t o hydrodynamic p r e s s u r e s p can be expressed by

MR = j p(yn^-zny)d£, (27)

where n^ and n^ a r e , r e s p e c t i v e l y , t h e y-component and t h e z-component o f t h e u n i t n o r m a l v e c t o r p o i n t i n g i n t o t h e body on t h e submerged c o n t o u r o f t h e c r o s s s e c t i o n , and (I d£ i s t h e i n t e g r a l over t h e submerged c r o s s

-J s e c t i o n c o n t o u r .

(23)

I f (f)^ d e n o t e s t h e v e l o c i t y p o t e n t i a l a s s o c i a t e d w i t h a f o r c e d r o l l o s c i l l a t i o n o f t h e c r o s s s e c t i o n , t h e n , f r o m t h e l i n e a r i z e d B e r n o u l l i e q u a t i o n , P = ipoj(j)j^ hence = ipo) j ) (j)^(yn^-zny)d£ ( 2 8 ) Assume t h a t \ = - "^s^ (29) Then, s u b s t i t u t i n g E q u a t i o n ( 2 9 ) i n t o E q u a t i o n ( 2 8 ) , d l y = ipu) y^ j (})j^n^d£+z^ j ^^n^ - (I yz(())gn^+(})^ny)d£ ( 3 0 )

where t h e mean-value theorem i s used by d e f i n i n g

-1

f y'Vz^^

y = /= (I (j) n d £ il z -1 f ^ ^ ^ ^ ^ / ^ •7 = *- T it (f)^n d£ S y

(24)

The l a s t i n t e g r a l i n E q u a t i o n ( 3 0 ) can be a p p r o x i m a t e d by

(I yz ((t)gn^-(|)yny)d£ = 2b j) z((})gn^-(l)^ny)d£ DH

where ƒ means t h e i n t e g r a l a l o n g t h e submerged c o n t o u r o f t h e d e m i h u l l . DH

From t h e f a r - f i e l d p o i n t o f v i e w , I t can be a p p r o x i m a t e d t h a t (f)g i s odd and é i s even w i t h r e s p e c t t o t h e v e r t i c a l c e n t e r l i n e o f t h e d e m i h u l l .

H

Then, due t o t h e f a c t t h a t z and n a r e even and n i s odd, t h e i n t e g r a n d z y

o f t h e f o r e g o i n g i n t e g r a l becomes odd, hence t h e i n t e g r a l v a n i s h e s . Because t h e i m a g i n a r y p a r t o f E q u a t i o n ( 3 0 ) c o r r e s p o n d s t o t h e r o l l damping, t h e r o l l damping can be o b t a i n e d by

^ 4 = y ^ 3 ' ^22 or - = 44 ' 4 4 " 2 pa)b^S^ iy' b33+z2 b^^) . ^33+^22 ^ (31)

(25)

2 2 2 where I t i s assumed t h a t y = b = An a p p r o x i m a t e z i s g i v e n by u -D B(K) (32) For t h e c r o s s s e c t i o n w i t h o u t t h e s t r u t s , t h e r o l l damping i s a p p r o x i -mated by ^ 4 = ^ 3 1^+ , 2 (33)

where b^^ corresponds t o t h e one g i v e n by E q u a t i o n ( 1 9 )

Sway-Roll C o u p l i n g Damping A p p r o x i m a t i o n

The same assumptions made i n t h e a p p r o x i m a t i o n o f t h e r o l l damping w i l l y i e l d ^^22 ^22" ^24 ^ ^42^ pojbS^ b (34) where C d g B(K) (35) For t h e c r o s s s e c t i o n w i t h o u t t h e s t r u t s . b„„d 22 c '24 " b (36) where g i v e n by E q u a t i o n ( 2 6 )

(26)

Added Mass A p p r o x i m a t i o n Once t h e damping c o e f f i c i e n t s a r e d e t e r m i n e d , t h e n t h e c o r r e s p o n d i n g c o n j u g a t e p a i r s , i . e . , t h e added-mass c o e f f i c i e n t s can be o b t a i n e d by t h e Kramers-Kronig r e l a t i o n s . A c o n v e n i e n t f o r m f o r n u m e r i c a l m a n i p u l a t i o n s i s g i v e n i n Reference 4 as 2 a., (cj) a., (°°) = -j k ' -j k TT r f b.k(^')-b..(°°)

cos üJt ^, J*^ s i n co't dco'dt ( 3 7 ) 0

f o r j , k = 2, 3, and 4

where a., i s t h e added-mass c o e f f i c i e n t i n t h e i t h mode due t o t h e m o t i o n i n t h e k t h mode, and b., (°°), i n g e n e r a l , i s zero because no s u r f a c e wave

j 1^

can be g e n e r a t e d a t 00 = °°. The n o n d i m e n s i o n a l added-mass c o e f f i c i e n t s w i l l be denoted by t h e b a r s i g n , and a r e d e f i n e d by (-22'^33) ^ (^^^ ^ 4 = ^ 4 2 = ^ (^5) ^44 " The added-mass c o e f f i c i e n t s a t t h e i n f i n i t e f r e q u e n c y a r e a p p r o x i m a t e d by a^^C-) = ( 4 1 ) w h i c h i s based on t h e f l a t p l a t e r e s u l t s .

(27)

(42)

j / b

2 2 —

where TT D /32 i s o b t a i n e d by a^^ (°°)/a22 (°°) f o r a v e r t i c a l p l a t e h a v i n g t h e d r a f t D / ' ^ ^42^") = ^ 2 ^ ^ ) l b ^''^ For t h e c r o s s s e c t i o n w i t h o u t t h e s t r u t s , assume t h a t 2b^ 2d ^ ' c = (46) 2b^ 2d ^ ' c .2 / D^ 2 a ^ ^ ( . ) = a 3 3( « ^ ) H- 3 ^ m (47)

where C3 i s a c o r r e c t i o n f a c t o r w h i c h s h o u l d be d e t e r m i n e d when t h e need a r i s e s . The e x p r e s s i o n s g i v e n by E q u a t i o n s (45) and ( 4 6 ) c o r r e s p o n d t o t h e cases t h a t t w i n c i r c l e s , s e p a r a t e d by 2b between t h e c e n t e r s , move w i t h a c o n s t a n t v e l o c i t y i n t h e unbounded f l u i d i n t h e d i r e c t i o n o p p o s i t e t o each o t h e r , and i n t h e same d i r e c t i o n n o r m a l t o t h e l i n e c o n n e c t i n g t h e c e n t e r s o f t h e c i r c l e s , r e s p e c t i v e l y .

(28)

DISCUSSION OF RESULTS

The n u m e r i c a l r e s u l t s o b t a i n e d by t h e a p p r o x i m a t e methods d e s c r i b e d i n the p r e c e d i n g s e c t i o n s a r e p r e s e n t e d i n F i g u r e s 2 t h r o u g h 9. The r e s u l t s of t h e a p p r o x i m a t e methods a r e compared w i t h t h e r e s u l t s o b t a i n e d by t h e a c c u r a t e t h e o r y , ^ and w i t h t h e a v a i l a b l e e x p e r i m e n t a l r e s u l t s . H e r e a f t e r , the method d e s c r i b e d i n Reference 8 s h a l l be r e f e r r e d t o as " a c c u r a t e t h e o r y . "

The damping c o e f f i c i e n t s o f a h e a v i n g , t w o - d i m e n s i o n a l SWATH c r o s s s e c t i o n a r e p r e s e n t e d i n F i g u r e 2. The heave damping b^^ i s made nond i m e n s i o n a l by t h e p r o nond u c t o f t h e nond i s p l a c e nond f l u i nond mass (pS^) annond t h e c i r -c u l a r f r e q u e n -c y o f o s -c i l l a t i o n ((JO) . The r e l a t i v e dimensions o f t h e s e c t i o n a r e as shown i n t h e f i g u r e . The a p p r o x i m a t e heave damping c o e f f i c i e n t s a r e o b t a i n e d by E q u a t i o n (18) w i t h C^ = 1 and = 0. I t means t h a t t h e phase change o f t h e t r a n s m i t t e d wave beyond t h e v e r t i c a l b a r r i e r i s n e g l e c t e d . I n c l u s i o n o f t h e phase change i n E q u a t i o n (18) r e s u l t e d i n p o o r e r a g r e e -ment w i t h t h e a c c u r a t e t h e o r e t i c a l r e s u l t s . As can be seen, t h e t h r e e

2

r e s u l t s agree r e a s o n a b l y w e l l f o r t h e f r e q u e n c y number (o) R/g) l e s s t h a n 0.5.

Because t h e s h o r t e s t w a v e l e n g t h o f p r a c t i c a l i n t e r e s t i n SWATH m o t i o n a t z e r o f o r w a r d speed i s about o n e - h a l f o f t h e s h i p l e n g t h , t h e h i g h e s t f r e q u e n c y number c o r r e s p o n d i n g t o t h i s w a v e l e n g t h f o r a SWATH s h i p h a v i n g the l e n g t h - t o - d i a m e t e r r a t i o o f 15 i s about 0.8. Beyond t h i s h i g h e s t f r e q u e n c y l i m i t , SWATH s h i p s would b a r e l y respond t o waves, w h i c h means t h a t t h e r e i s no need o f computing t h e t r a n s f e r f u n c t i o n o f t h e m o t i o n response beyond t h i s f r e q u e n c y l i m i t . Thus, t h e a p p r o x i m a t e r e s u l t s shown i n F i g u r e 2 would be q u i t e r e a s o n a b l e f o r use i n t h e c o m p u t a t i o n o f m o t i o n of SWATH s h i p s i n waves.

The heave added-mass c o e f f i c i e n t f o r t h e SWATH s e c t i o n shown i n

F i g u r e 2 i s p r e s e n t e d i n F i g u r e 3. The r e s u l t s f r o m t h e a p p r o x i m a t e method a r e o b t a i n e d f r o m E q u a t i o n s (37) and ( 4 2 ) . The i n t e g r a l s on t h e r i g h t - h a n d s i d e o f E q u a t i o n ( 3 7 ) , i n f a c t , r e p r e s e n t d o u b l e F o u r i e r t r a n s f o r m s . A f a s t F o u r i e r t r a n s f o r m s u b r o u t i n e o f t h e system l i b r a r y o f t h e computer

(29)

(Mi 0.5 h 0.2 h 0.1 1 r 1 r 1.25-A E X P E R I M E N T A C C U R A T E T H E O R Y A P P R O X . T H E O R Y J L 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 W-^R/g

F i g u r e 2 - Heave Damping C o e f f i c i e n t o f a SWATH S e c t i o n

A ' ' ^ i l l l 1 1.2 A E X P E R I M E N T A C C U R A T E T H E O R Y •=• = - A P P R O X . T H E O R Y 1.0 ~ A A 0.8

-^ n c

1

0.6

1

t ^

0.4 I • 0.2

1 \y

n 1 1 1 I l l l 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 w'^R/g

(30)

f a c i l i t y a t t h e Center was used t o e v a l u a t e t h e double F o u r i e r t r a n s f o r m s . The s u b r o u t i n e i s c a l l e d "FFT" w h i c h was o r i g i n a l l y developed a t t h e Los Alamos S c i e n t i f i c L a b o r a t o r y i n C a l i f o r n i a .

As can be observed i n F i g u r e 3, an a p p a r e n t d i s c r e p a n c y between t h e e x a c t and a p p r o x i m a t e methods i s a t those f r e q u e n c i e s a t w h i c h t h e e x a c t method shows a b r u p t d i s c o n t i n u i t i e s . So f a r as t h e problem i s c o n f i n e d t o a t w o - d i m e n s i o n a l f l o w c o n d i t i o n , t h e d i s c o n t i n u i t i e s e x h i b i t e d by t h e e x a c t method can be r e a l p h y s i c a l phenomena*; a l t h o u g h , t h e e x p e r i m e n t a l r e s u l t s , u n f o r t u n a t e l y , were n o t t a k e n a t t h o s e f r e q u e n c i e s . However, f o r t h r e e -d i m e n s i o n a l t w i n b o -d i e s such as SWATH, t h e r e cannot be a complete t r a p p i n g o f waves between t h e two h u l l s ; hence, no a b r u p t d i s c o n t i n u i t i e s o f t h e hydrodynamic c o e f f i c i e n t s a t c e r t a i n f r e q u e n c i e s s h o u l d e x i s t . I n t h i s r e s p e c t , t h e a p p r o x i m a t e method, w h i c h does n o t c r e a t e t h e d i s c o n t i n u i t i e s , may cause l e s s e r r o r s a t those f r e q u e n c i e s a t w h i c h t h e d i s c o n t i n u i t y i n

t h e hydrodynamic c o e f f i c i e n t o c c u r s .

The SWATH c r o s s s e c t i o n s a t f a r f o r w a r d o r a f t p o r t i o n o f t h e body do n o t have v e r t i c a l s t r u t s . For t h e s e s e c t i o n s , t h e c r o s s - s e c t i o n v i e w i s c o m p l e t e l y submerged t w i n c i r c l e s . The heave added mass and and damping c o e f f i c i e n t s o f such a c r o s s s e c t i o n a r e shown i n F i g u r e 4. For t h e

— 2KR

damping. E q u a t i o n (19) was used w i t h = e , and f o r t h e added mass. E q u a t i o n s (37) and (46) w i t h C^ = 1.1 were used. Agreement between t h e two methods appears good f r o m a p r a c t i c a l v i e w p o i n t f o r t h e p r e d i c t i o n o f SWATH m o t i o n . T h i s i s because a s i g n i f i c a n t l y l a r g e r magnitude o f heave damping c o n t r i b u t e d by v i s c o s i t y and s t a b i l i z i n g f i n s s h o u l d be added t o the wavemaklng damping i n t h e a n a l y t i c a l p r e d i c t i o n o f SWATH m o t i o n ; t h e r e -f o r e , a 50 p e r c e n t e r r o r , as can be observed i n t h e heave damping i n F i g u r e 4, i s n o t g o i n g t o a f f e c t , s i g n i f i c a n t l y , t h e f i n a l r e s u l t s o f t h e m o t i o n . There appears t o be a maximum o f about 5 p e r c e n t e r r o r i n t h e heave added mass c a l c u l a t e d by t h e a p p r o x i m a t e method. Because t h e SWATH m o t i o n i s f a r

l e s s s e n s i t i v e t o t h e added mass t h a n t o t h e damping, a 5 p e r c e n t e r r o r i n the addedmass c o e f f i c i e n t i s n o t g o i n g t o a f f e c t , s i g n i f i c a n t l y , t h e p r e -d i c t e -d r e s u l t s o f SWATH m o t i o n .

(31)

F i g u r e 4 - Heave Added-Mass and Damping C o e f f i c i e n t s o f Submerged Twin C i r c l e s

(32)

The sway damping o f a SWATH c r o s s s e c t i o n i s p r e s e n t e d i n F i g u r e 5, t o g e t h e r w i t h t h e r e l a t i v e d i m e n s i o n o f t h e c r o s s s e c t i o n . The damping co-e f f i c i co-e n t s o b t a i n co-e d by t h co-e a p p r o x i m a t co-e mco-ethod a r co-e basco-ed on E q u a t i o n (25) (d /(2R)-KD) w i t h t h e m o d i f i c a t i o n f a c t o r = e ° where d^, t h e d e p t h o f t h e c e n t r o i d o f t h e submerged c r o s s s e c t i o n a l a r e a , can be o b t a i n e d by A t p r e s e n t , t h e r e i s no r a t i o n a l e x p l a n a t i o n f o r t h e d e r i v a t i o n o f t h e m o d i f i c a t i o n f a c t o r as i t i s e x c e p t t h a t such a f a c t o r seems t o r e p r e -s e n t t h e b e h a v i o r o f t h e -sway damping i n t h e low and h i g h f r e q u e n c y range-s r e a s o n a b l y w e l l . A l s o , i n t h e v i c i n i t y o f t h e f r e q u e n c y where an a b r u p t d i s c o n t i n u i t y o c c u r s , t h e m o d i f i c a t i o n f a c t o r appears t o make t h e a p p r o x i -mate method behave smoothly a c r o s s t h e d i s c o n t i n u i t y p r e d i c t e d by t h e a c c u r a t e t h e o r y . The c h a i n e d c u r v e shown i n F i g u r e 5 r e p r e s e n t s t h e r e s u l t s o f t h e a p p r o x i m a t e method u s i n g =

1-The sway added mass o f t h e SWATH c r o s s s e c t i o n shown i n F i g u r e 5 i s p r e s e n t e d i n F i g u r e 6. The a p p r o x i m a t e r e s u l t s were o b t a i n e d by E q u a t i o n s

(37) and ( 4 1 ) . I n t h e f r e q u e n c y range o f 0.2 < A / g < 0.5, t h e a p p r o x i -mate r e s u l t s show a l a r g e d i s c r e p a n c y . I t i s n o t o b v i o u s a t t h e p r e s e n t s t a g e w h e t h e r t h e sway added mass computed by t h e a p p r o x i m a t e method would n e c e s s a r i l y r e s u l t i n p o o r e r p r e d i c t i o n o f SWATH m o t i o n t h a n t h a t o b t a i n e d by t h e a c c u r a t e t h e o r y .

The sway added mass and damping c o e f f i c i e n t s f o r submerged t w i n c i r c l e s a r e p r e s e n t e d i n F i g u r e 7. E q u a t i o n (26) was used t o o b t a i n t h e damping, and E q u a t i o n s (37) and (45) w i t h C3 = 1.1 were used t o o b t a i n t h e added mass. The t r e n d o f t h e r e s u l t s i s v e r y c l o s e t o t h a t o f t h e heave added mass shown i n F i g u r e 4.

The r o l l damping o f a SWATH c r o s s s e c t i o n i s p r e s e n t e d i n F i g u r e 8. The dimensions o f t h e c r o s s s e c t i o n a r e a l s o shown i n t h e f i g u r e . Note t h a t t h e c e n t e r o f r o l l i s l o c a t e d above t h e calm w a t e r l e v e l by t h e

(33)

3.8 1 r SWAY DAMPING A E X P E R I M E N T A C C U R A T E T H E O R Y APPROX. T H E O R Y APPROX. T H E O R Y WITH -1.25 H 1.8 tJ^R/g

F i g u r e 5 - Sway Damping C o e f f i c i e n t o f a SWATH S e c t i o n

A E X P E R I M E N T A C C U R A T E T H E O R Y A P P R O X . T H E O R Y - 1 . 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 W^R/g

(34)

0.9 h 0.8'

-i

L 0.2 0.4 0.6 J L 0.8 1.0 A C C U R A T E T H E O R Y APPROX. T H E O R Y 2.5 W^R/g

F i g u r e 7 - Sway Added-Mass and Damping C o e f f i c i e n t s o f Submerged Twin C i r c l e s

(35)

d i s t a n c e o f 3.1 t i m e s t h e r a d i u s o f t h e c r o s s s e c t i o n . The damping c o e f f i -c i e n t s were o b t a i n e d by E q u a t i o n ( 3 1 ) . Both t h e e x p e r i m e n t a l and t h e a c c u r a t e t h e o r e t i c a l r e s u l t s show d i s c o n t i n u i t y a t about W^R/g = 0.65. However, as i n t h e case o f heave and sway, t h e a p p r o x i m a t e r e s u l t s do n o t e x h i b i t any d i s c o n t i n u i t y . The r e l a t i v e t r e n d s o f t h e t h r e e d i f f e r e n t r e s u l t s a r e q u i t e s i m i l a r t o t h e sway damping sho\m i n F i g u r e 5.

The r o l l added i n e r t i a c o e f f i c i e n t o f t h e c r o s s s e c t i o n shown i n F i g u r e 8 i s p r e s e n t e d i n F i g u r e 9. The a p p r o x i m a t e r e s u l t s show a l a r g e

2

d i s c r e p a n c y i n 0.2 < co R/g < 0.5 as was a l r e a d y observed i n F i g u r e 6 f o r the sway added mass. The same remarks as g i v e n e a r l i e r on t h e sway added mass a p p l y t o t h e r o l l added i n e r t i a o b t a i n e d by t h e a p p r o x i m a t e method.

The a c c u r a t e t h e o r y , r e f e r r e d t o f r e q u e n t l y i n t h i s r e p o r t , i s based on t h e Green f u n c t i o n method w h i c h l e a d s t o an i n t e g r a l e q u a t i o n i n v o l v i n g the unknown s t r e n g t h s o f t h e source d i s t r i b u t i o n over t h e submerged c o n t o u r s of t h e c r o s s s e c t i o n o f t h e t w i n h u l l s . The n u m e r i c a l e v a l u a t i o n o f t h e i n t e g r a l e q u a t i o n r e q u i r e s a s e g m e n t a t i o n o f t h e i n t e g r a l a l o n g t h e c r o s s -s e c t i o n c o n t o u r i n t o a f i n i t e number o f i n t e g r a l -s . I n c r e a -s i n g t h e number of segments o f t h e c o n t o u r i n c r e a s e s t h e accuracy o f t h e r e s u l t s . For SWATH s e c t i o n s , i t t a k e s about f i f t e e n t o t w e n t y segments on t h e c o n t o u r o f the d e m i h u l l c r o s s s e c t i o n t o o b t a i n a c c u r a t e r e s u l t s . A t y p i c a l computa-t i o n by computa-t h e CDC 6 0 0 0 - s e r i e s compucomputa-ter a computa-t computa-t h e Cencomputa-ter f o r computa-t h e sway and heave hydrodynamic c o e f f i c i e n t s f o r submerged t w i n c i r c l e s f o r t w e n t y f r e q u e n c i e s t o o k about 220 seconds o f e x e c u t i n g t i m e .

On t h e o t h e r hand, t h e p r e s e n t a p p r o x i m a t e method t o o k o n l y about 16 seconds t o o b t a i n t h e sway, heave, r o l l , and s w a y - r o l l c o u p l i n g c o e f f i c i e n t s f o r 256 f r e q u e n c i e s . * Even i f a d i s c o u n t i s made f o r t h e l a r g e number o f f r e q u e n c i e s w h i c h a r e d i c t a t e d by t h e usage o f t h e f a s t F o u r i e r t r a n s f o r m t e c h n i q u e b u t n o t by t h e p r a c t i c a l n e c e s s i t y , t h e a p p r o x i m a t e t h e o r y seems to y i e l d a t i m e s a v i n g i n t h e c o m p u t a t i o n by an o r d e r o f magnitude compared to t h e a c c u r a t e t h e o r y . *Most o f t h e f a s t F o u r i e r t r a n s f o r m s u b r o u t i n e r e q u i r e s t h a t t h e f u n c -t i o n -t o be -t r a n s f o r m e d s h o u l d be g i v e n i n numbers o f 2^^ where n i s an

i n t e g e r . For t h e p r e s e n t work, i t was found t h a t n = 8 y i e l d s s a t i s f a c t o r y r e s u l t s .

(36)

A A "I 1 1 1 1 ^ R O L L DAMPING i A E X P E R I M E N T A P P R O X . T H E O R Y 3.1

t

1 I A ; F i g u r e 8 = R o l l Damping C o e f f i c i e n t o f a SWATH S e c t i o n

T r

A E X P E R I M E N T A C C U R A T E T H E O R Y A P P R O X . T H E O R Y

J L A

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 U J ^ R / g F i g u r e 9 - R o l l A d d e d - I n e r t i a C o e f f i c i e n t o f a SWATH S e c t i o n

(37)

SUMMARY AND CONCLUSIONS

To develop a s i m p l i f i e d a n a l y t i c a l p r e d i c t i o n o f SWATH m o t i o n s i n waves, a p p r o x i m a t e methods o f computing t h e hydrodynamic c o e f f i c i e n t s o f o s c i l l a t i n g c r o s s s e c t i o n s o f a SWATH c o n f i g u r a t i o n a r e d e v e l o p e d . The hydrodynamic c o e f f i c i e n t s s t u d i e d a r e t h e added mass and t h e wavemaking damping c o e f f i c i e n t s i n sway, heave, r o l l , and s w a y - r o l l c o u p l i n g modes.

The a p p r o x i m a t e methods a r e based on t h e concept t h a t t h e wavemaking damping c o e f f i c i e n t s can be o b t a i n e d by t h e a m p l i t u d e s o f t h e o u t g o i n g waves a t t h e f a r f i e l d . The o u t g o i n g waves a t t h e f a r f i e l d can be r e p r e -sented by a p a i r o f sources and o f d i p o l e s f o r t h e heave o s c i l l a t i o n and by a d i p o l e d i s t r i b u t i o n on t h e v e r t i c a l c e n t e r l i n e o f each h u l l f o r t h e sway and r o l l o s c i l l a t i o n s . The s t r e n g t h o f t h e s i n g u l a r i t i e s a r e o b t a i n e d under t h e assumption t h a t t h e c r o s s s e c t i o n i s o s c i l l a t i n g i n an unbounded f l u i d .

The hydrodynamic i n t e r a c t i o n s between t h e two h u l l s a r e t r e a t e d as i f one h u l l i s r e p l a c e d by a v e r t i c a l b a r r i e r h a v i n g t h e d r a f t as t h e

o r i g i n a l f o r m and, t h e r e f o r e , i t b l o c k s t h e passage o f t h e waves g e n e r a t e d by t h e o t h e r h u l l .

The added-mass c o e f f i c i e n t s a r e o b t a i n e d by i n v o k i n g t h e Kramers-K r o n i g r e l a t i o n s w i t h t h e known damping c o e f f i c i e n t s and t h e added-mass c o e f f i c i e n t s a t t h e i n f i n i t e f r e q u e n c y , as i n d i c a t e d by E q u a t i o n ( 3 7 ) . The e v a l u a t i o n o f E q u a t i o n (37) i s c a r r i e d o u t by a w e l l - k n o w n n u m e r i c a l

a l g o r i t h m c a l l e d f a s t F o u r i e r t r a n s f o r m t e c h n i q u e . When needed, t h e ap-p r o x i m a t e methods a r e augmented by t h e m o d i f i c a t i o n f a c t o r s w h i c h a r e de-t e r m i n e d by a n u m e r i c a l de-t r i a l - a n d - e r r o r approach.

The r e s u l t s f r o m t h e a p p r o x i m a t e methods, t h e a c c u r a t e t h e o r y based on t h e source d i s t r i b u t i o n on t h e submerged c o n t o u r s , and t h e e x p e r i m e n t s , i f a v a i l a b l e , a r e compared i n F i g u r e s 2 t o 9. The agreements o f t h e r e s u l t s i n t h e f r e q u e n c y range o f p r a c t i c a l i n t e r e s t f o r SWATH m o t i o n a r e , i n g e n e r a l , f a i r ; however, t h e a b r u p t d i s c o n t i n u i t i e s o f t h e hydrodynamic c o e f f i c i e n t s a t c e r t a i n f r e q u e n c i e s e x h i b i t e d by t h e a c c u r a t e t h e o r y and t h e e x p e r i m e n t s a r e n o t r e p r o d u c e d by t h e a p p r o x i m a t e methods. The a b r u p t

(38)

d i s c o n t i n u i t i e s a r e m e r e l y caused by t h e t w o - d i m e n s i o n a l f l o w c o n d i t i o n , and i n r e a l i t y , f o r t h r e e - d i m e n s i o n a l b o d i e s , t h e y do n o t e x i s t ; hence, the c o n t i n u i t y o f t h e hydrodynamic c o e f f i c i e n t s a t a l l f r e q u e n c i e s g i v e n by the a p p r o x i m a t e methods c o u l d be more r e a l i s t i c .

The t i m e s a v i n g i n t h e c o m p u t a t i o n o f t h e hydrodynamic c o e f f i c i e n t s a c h i e v e d by use o f t h e a p p r o x i m a t e method i s r e m a r k a b l e ; t h e a p p r o x i m a t e method can p r o v i d e t h e r e s u l t s i n l e s s t h a n one-hundredth o f t h e t i m e w h i c h would be r e q u i r e d by t h e a c c u r a t e t h e o r y .

I t i s t o o e a r l y t o j u d g e whether t h e a p p r o x i m a t e methods developed h e r e w i l l p r o v i d e r e a s o n a b l e p r e d i c t i o n o f SWATH m o t i o n s i n waves. The u s e f u l n e s s o f t h e a p p r o x i m a t e methods w i l l be r e a l i z e d o n l y when t h e y a r e sho\«/n t o p r o v i d e adequate p r e d i c t i o n s o f t h e m o t i o n s f o r use d u r i n g t h e s t a g e o f c o n c e p t u a l h u l l d e s i g n o f SWATH c o n f i g u r a t i o n s . However, i t i s b e l i e v e d t h a t a f i n a l u s e f u l method o f p r e d i c t i n g SWATH m o t i o n can be de-v e l o p e d on t h e b a s i s o f t h e a p p r o x i m a t e methods p r e s e n t e d i n t h i s r e p o r t by an i n t e l l i g e n t usage o f t h e m o d i f i c a t i o n f a c t o r s a s s o c i a t e d w i t h t h e ap-p r o x i m a t e methods.

ACKNOWLEDGMENTS

The a u t h o r would l i k e t o express h i s a p p r e c i a t i o n f o r t h e f u n d i n g s u p p o r t g i v e n by t h e H i g h Performance V e h i c l e s Program O f f i c e o f t h e Ship Performance Department a t t h e Center. He a l s o would l i k e t o e x t e n d h i s g r a t i t u d e t o Ms. M a r g a r e t D. Ochi and Mr. Grant R. Hagen f o r t h e i r en-couragement d u r i n g t h e c o u r s e o f t h i s work.

(39)

REFERENCES

1 . Lee, CM., " T h e o r e t i c a l P r e d i c t i o n o f M o t i o n o f S m a l l W a t e r p l a n e -A r e a , T w i n - H u l l (SW-ATH) Ships i n Waves," DTNSRDC Report 76-0046 ( 1 9 7 6 ) .

2. M c C r e i g h t , K.K. and CM. Lee, "Manual f o r M o n o h u l l o r T w i n - H u l l Ship M o t i o n P r e d i c t i o n Computer Program," DTNSRDC Report SPD-686-02 ( 1 9 7 6 ) .

3. D a l z e l l , J.F., "Seakeeping E v a l u a t i o n o f t h e MARAD SWATH F e a s i -b i l i t y Designs," Davidson L a -b o r a t o r y o f Stevens I n s t i t u t e o f Technology, L e t t e r R e p o r t , SIT-DL-77-1970 ( 1 9 7 7 ) .

4. Landau, L.D. and E.M. L i f s h i t z , " S t a t i s t i c a l P h y s i c s , " Addison Wesley P u b l . Co., I n c . , pp. 392-398 ( 1 9 5 8 ) .

5. U r s e l l , F., "On t h e Heaving M o t i o n o f a C i r c u l a r C y l i n d e r on t h e S u r f a c e o f a F l u i d , " Q u a r t . J . , Mech. and A p p l . Math., V o l . 2, pp. 218-231

( 1 9 4 8 ) .

6. Frank, W., " O s c i l l a t i o n o f C y l i n d e r s I n o r Below t h e Free S u r f a c e o f Deep F l u i d s , " DTNSRDC R e p o r t 2375 ( 1 9 6 7 ) .

7. S i n g l e t o n , R.C, "On Computing t h e F a s t F o u r i e r T r a n s f o r m , " Communication o f A s s o c i a t i o n f o r Computing M a c h i n e r y , V o l . 10, pp. 647-654

(Oct 1967).

8. Lee, CM. e t a l . , "Added Mass and Damping C o e f f i c i e n t s o f Heaving Twin C y l i n d e r s i n a Free S u r f a c e , " DTNSRDC Report 3695 ( 1 9 7 1 ) .

9. Lee, CM. and R.M. Curphey, " P r e d i c t i o n o f M o t i o n , S t a b i l i t y , and Wave Load o f S m a l l - W a t e r p l a n e - A r e a , T w i n - H u l l S h i p s , " Trans. Soc. Naval A r c h i t e c t s and M a r i n e E n g i n e e r s , V o l . 85, pp. 94-130 ( 1 9 7 7 ) .

10. K o t i k , J . and V. M a n g u l i s , "On t h e K r a m e r s - K r o n i g R e l a t i o n s f o r Ship M o t i o n s , " I n t . Ship B l d g . P r o g r e s s , V o l . 9, No. 97, pp. 361-368 ( 1 9 6 2 ) .

1 1 . Wehausen, J.V. and E.V. L a i t o n e , " S u r f a c e Waves," E n c y c l o p e d i a o f P h y s i c s , V o l . 9, S p r i n g e r - V e r l a g , B e r l i n ( 1 9 6 0 ) . (See p a r t i c u l a r l y E q u a t i o n s (13.28) and ( 1 3 . 2 9 ) . )

12. U r s e l l , F., "The E f f e c t o f a F i x e d V e r t i c a l B a r r i e r on S u r f a c e Waves i n Deep Water," Proc. Cambridge P h i l . S o c , V o l . 43, pp. 374-382

(40)

13. Kennard, E.H., " I r r o t a t i o n a l Flow o f F r i c t l o n l e s s F l u i d s , M o s t l y o f I n v a r i a b l e Depth," DTNSRDC R e p o r t 2299, pp. 235-239 ( 1 9 6 7 ) .

14. K o t i k , J . , "Damping and I n e r t i a C o e f f i c i e n t s f o r a R o l l i n g o r Swaying V e r t i c a l S t r i p , " J. Ship Res., V o l . 7, No. 2, pp. 19-23 ( 1 9 6 3 ) .

(41)

Copies 1 2 1 1 I N I T I A L DISTRIBUTION Copies 1 1 1 7 1 5 CHONR/438 Cooper NRL 1 Code 2027 1 Code 2627 NORDA NOO/Lib ( N a v a l Oceanographic O f f i c e ) USNA 1 Tech L i b

1 Nav Sys Eng Dept 1 B h a t t a c h r y y a 1 C a l i s a l NAVPGSCOL 1 L i b r a r y 1 T. Sarpkaya 1 T h a l e r NOSC, San Diego

1 L i b r a r y 1 Lang 1 Higdon NCSC/712 D. Humphreys NCEL/Code 131 NUSC/Lib NAVSEA 1 SEA 03221 1 SEA 032 1 SEA 03512/Peirce 1 SEA 037 3 SEA 09G32 NAVFAC/Code 032C NAVSEC 1 SEC 6114/Kerr 1 SEC 6114P2/Kennell 1 SEC 6136 1 SEC 6136/Comstock 1 SEC 6 1 3 6 / G o l d s t e i n 12 DDC 1 NSF/Eng L i b 1 LC/Sci and Tech 1 DOT/Lib TAD-491.1 2 MMA 1 Capt McClean 1 L i b r a r y 1 MARAD/Lib 4 U. o f Cal/Dept N a v a l A r c h , B e r k e l y 1 Eng L i b r a r y 1 Webster 1 P a u l l i n g 1 Wehausen 1 C a t h o l i c U. o f A m e r / C i v i l and Mech Eng 2 F l o r i d a A t l a n t i c U. 1 Tech L i b 1 S. Dunne 1 U. o f H a w a i i / S e i d l 2 U. o f Iowa 1 L i b r a r y 1 Landweber 3 MIT 1 Mandei 1 A b k o w i t z 1 Newman 4 U. o f Mich/NAME 1 L i b r a r y 1 O g i l i v i e 1 Beck 1 Daoud

(42)

Copies Copies SIT 1 ]. :i, 1 1 .1 L i b r a r y B r e s l i n S a v i t s k y D a l z e l l F r l d s m a Kim Southwest Res I n s t 1 A p p l i e d Mech Rev 1 Abramson Dr. E. N e a l , C h i A s s o c i a t e s , I n c . , S u i t e 316 1011 A r l i n g t o n B l v d . A r l i n g t o n , VA 22209 Dr. K.H. Kim O p e r a t i o n s Research, I n c . 1400 S p r i n g S t . S i l v e r S p r i n g , MD 20910 CENTER DISTRIBUTION 1 S t a n f o r d Res I n s t / L i b

Copies Code Name 2 U. o f Washington

1 1170 J.L. Gore

1 Eng L i b 1 1170 G.R. Lamb

1 Mech Eng/Adee 1 1170 S. Hawkins

3 Webb I n s t .1 1500 W.E. Cummins

1 L i b r a r y V.J. M o n a c e l l a 1 Lewis 1 1504 V.J. M o n a c e l l a 1 Ward 1 1506 M.K. Ochi 1 SNAME/Tech L i b 1 1507 D. Moran

Exxon, NY/Design D i v , :i. 1520

R. Wermter 1 Exxon, NY/Design D i v ,

Tank Dept 1 1521 P. P i e n

Gibbs and Cox/Tech I n f o 1 1524

J.F. Odea 1 Gibbs and Cox/Tech I n f o

1 1524 W.C. L i n 1 1524 A.M. Reed 3 H y d r o n a u t i c s G. Dobay 1 L i b r a r y 1 1532 G. Dobay 1 E. M i l l e r 1 1532 M. W i l s o n 1 R. B a r r 1 1540 W.B. Morgan

2 Lockheed, Ocean Systems, 1 1542 B. Yim

Sunnyvale 1 1552 J. McCarthy

1 P o t a s h 1 1552 N. Salvesen

1 Chung 1 1552 K.J. B a i

2 American Bureau o f S h i p p i n g 1 1560 N. Hubble

1 L i b 1 1560 G. Hagen

1 Cheng 10 1561 CM. Lee

1 M a r i t i m e Research I n f o r m a t i o n 1 1562 M. M a r t i n

S e r v i c e 1 1564 J. Feldman

(43)

Copies Code Name 1 1568 G. Cox 1 1568 N.K. Bales 1 1568 E.A. B a l t i s 1 1568 W.R. M c C r e i g h t 1 1572 M.D. Ochi 1 1572 W.H. L i v i n g s t o n 1 1572 K.K. M c C r e i g h t 1 1572 J.A. F e i n 1 1576 W.E. Smith 10 5214.1 R e p o r t s D i s t r i b u t i o n 1 522.1 U n c l a s s i f i e d L i b r a r y (C) 1 522.2 U n c l a s s i f i e d L i b r a r y (A)

(44)

Cytaty

Powiązane dokumenty

Since it is usually very difficult to calculate the damping force and added mass for heaving and pitching of three-dimensional ships having a given forward speed, the strip method

The distribution of damping results in cofficient of the heave velocity coupling terms, which depend on the forward speed. In the practical range of frequencies the ooiffici.nte of

In the first paper [1], the general theory was applied to obtain expressions for the added-mass coefficients of arbitrary two-dimensional forms, on the assumption that the

The foregoing analyses have, demonstrated a general echthque of employing Schwartz-Christoffel transformation for the added mass calculation of two-dimensional cylinders with

After an investigation of the added mass for vertical vibration of some typical se tions of marked V character similar to the author's series of m=7, Prohaska C2J found that, for

Responses for a non-operating feathered blade and a rotating blade are determined, on which basis both the contribution of the second order forcing and the total added damping are

The test campaign, method of analysis introduced and results discussed in this paper provide an excellent basis for a new series of forced vibration experiments which should provide

The response period of the heave motion can be used to derive the (added) mass properties; the decay of the heave motion in time can be used to calculate the damping.. The DFBI