• Nie Znaleziono Wyników

Concept and design of a beam blanker with integrated photoconductive switch for ultrafast electron microscopy

N/A
N/A
Protected

Academic year: 2021

Share "Concept and design of a beam blanker with integrated photoconductive switch for ultrafast electron microscopy"

Copied!
12
0
0

Pełen tekst

(1)

Concept and design of a beam blanker with integrated photoconductive switch for ultrafast

electron microscopy

Weppelman, I. G.C.; Moerland, R. J.; Hoogenboom, J. P.; Kruit, P.

DOI

10.1016/j.ultramic.2017.10.002

Publication date

2018

Document Version

Final published version

Published in

Ultramicroscopy

Citation (APA)

Weppelman, I. G. C., Moerland, R. J., Hoogenboom, J. P., & Kruit, P. (2018). Concept and design of a

beam blanker with integrated photoconductive switch for ultrafast electron microscopy. Ultramicroscopy,

184, 8-17. https://doi.org/10.1016/j.ultramic.2017.10.002

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

(3)

ContentslistsavailableatScienceDirect

Ultramicroscopy

journalhomepage: www.elsevier.com/locate/ultramic

Concept

and

design

of

a

beam

blanker

with

integrated

photoconductive

switch

for

ultrafast

electron

microscopy

I.G.C.

Weppelman

,

R.J.

Moerland

,

J.P.

Hoogenboom

,

P.

Kruit

Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands

a

r

t

i

c

l

e

i

n

f

o

Article history: Received 2 July 2017 Revised 30 September 2017 Accepted 5 October 2017 Available online 13 October 2017

Keywords:

Ultrafast electron microscopy (UEM) Beam blankers

Photoconductive switches Scanning electron microscopy (SEM) Transmission electron microscopy (TEM)

a

b

s

t

r

a

c

t

Wepresentanewmethodtocreateultrashortelectronpulsesbyintegratingaphotoconductiveswitch with anelectrostaticdeflector. Thispaperdiscusses the feasibilityofsuchasystemby analyticaland numericalcalculations.Wearguethatultrafastelectronpulsescanbeachievedformicrometerscale di-mensionsoftheblanker,whicharefeasiblewithMEMS-basedfabricationtechnology.Accordingtobasic models,thedesignpresentedinthispaperiscapableofgenerating100fselectronpulses withspatial resolutionsoflessthan10nm.Ourconceptforanultrafastbeamblanker(UFB)mayprovideanattractive alternativetoperformultrafastelectronmicroscopy,asitdoesnotrequiremodificationofthemicroscope norrealignmentbetweenDCandpulsedmodeofoperation.Moreover,onlylowlaserpulseenergiesare required.DuetoitssmalldimensionstheUFBcanbeinsertedinthebeamlineofacommercial micro-scopeviastandardentryportsforblankersorvariableapertures.Theuseofaphotoconductiveswitch ensuresminimaljitterbetweenlaserandelectronpulses.

© 2017ElsevierB.V.Allrightsreserved.

1. Introduction

Ultrafastelectronmicroscopy(UEM)isanemergingfieldwhere the aim is to achieve sub-picosecond temporal resolution with spatialresolution inthe nanometer scale. This capability enables imaging in space and time of phenomena such as spin dynam-ics [1],excitedstate dynamics [2],opticalnearfields [3–6], quan-tumopticaleffects [7]andmotionofatoms [8].Almostall applica-tionsofUEMrelyonpump-probeexperiments,wherealaserpulse serves as the pump modifying the characteristics of the sample andtheelectronpulseprobestherelaxationofthesampletowards equilibrium.Thus,accurate,preferablyjitter-free,lockingofthe ul-trashortelectronpulses toa laserclockingpulseisofparamount importance.Also,therepetitionrateoftheelectronpulsesshould beequaltotherepetitionrateofthelaser.

Typically, pulsedelectronbeams arecreated by modifyingthe sourceunitofanelectronmicroscope(EM)toallowlaser-triggered emission.Forexample,aflatphotocathodeilluminatedwitha fem-tosecond laser can be employed to create femtosecond electron pulses [9].However,flatphotocathodeshavealow brightness.For thisreasontipbasedphoto-fieldemittersareused [10–12],which canhavebrightnessvaluescomparabletoregularlyused Schottky

Corresponding author.

E-mail addresses: j.p.hoogenboom@tudelft.nl , i.g.c.weppelman@tudelft.nl (I.G.C. Weppelman).

emitters [13]asmeasuredbyFeistetal. [14]andalsobyDominik etal.becausecoherenceisrelatedtothereducedbrightness [15].

Aknownalternativetoa lasertriggered sourceistheuseofa beamblanker.Beamblankersallowbothpulsedelectronbeam op-eration for time-resolved measurements andDC operation mode for normal imaging, where a user can relatively quickly switch betweenboth modes ofoperation. For a laser triggered Schottky source,switchingbetweenDCandpulsedmodesofoperationcan take up to 1 h [14]. Beam blankersbased using microwave cavi-tiestocreateultrashortelectronpulseswereenvisionedand real-izedbyOldfield [16]andUraandco-workers.Inthisway,electron pulsesof200fswerecreated [17].Atthattime,theelectronpulses were usedtomeasure switchingspeedsinelectronic circuitsand transistorsby meansofvoltage contrast [18,19].Lassise etal.and vanRens et al.calculated that a TEM110 cavitypositioned

conju-gate to theelectron beamfocal point is ableto createultrashort electron pulses while maintainingthe brightness of the continu-ous electron beam, recentlysuch a TEM110 cavityis incorporated

inacommercialTEM [20–22].Advancesintechnology nowallow synchronizationbetweenanRFmicrowavecavityandalaserclock pulsetovaluesof100fs andshorter,whereadditionallycarehas tobetakentomatchtheGHzmicrowavefrequencytotypicalMHz laser repetition rates [23,24]. Beam blankingtriggered by a laser clocking pulsewould directly and in a straightforward way syn-chronizeelectronandlaserpulses.

Here,we presentsuch an approachtocreateultrafastelectron pulses with a laser-triggered beam blanker. In our concept fem-https://doi.org/10.1016/j.ultramic.2017.10.002

(4)

Fig. 1. (a) Schematic drawing indicating conjugate beam blanking using an electrostatic deflector to sweep the electron beam over a blanking aperture. The deflector is in a conjugate plane with respect to the image/sample plane to ensure that the electron probe is always at the same location at the sample irrespective of the electric field strength in the deflector, neglecting abberations of the objective lens. (b) System overview of a commercial SEM, which can have a high brightness Schottky electron source. C1 and C2 denote condenser lenses to focus the electron beam between the blanker plates. The UFB is positioned at the standard entry port for blankers or variable apertures.

tosecond electron pulses are achieved through a combination of an electrostatic beam blankeranda photoconductive switch illu-minated withfemtosecondlaser pulses [25].The useof a photo-conductive switch enables miniaturization of the ultrafast beam blanker (UFB) such that it can be directly inserted in an exist-ing,commercialEM.AlsotheUFBisjitter-freelockedtothelaser pulse,essentialforachievingelectronpulsesdeepinthe femtosec-ondtime range.WewillfirstpresenttheconceptofourUFBand discuss thebasic requirements forrealization. We will then turn morein-depthtotherequirementsonthephotoconductiveswitch andphysicalpropertiesofavailablematerials,whichleadstoaset ofparametersfortheactual design.Based onthesewederivethe spatialandtemporalresolution thatcould be achievedwithsuch a design.Thisshowsthatelectronpulses inthe100femtosecond timerangewithsub-10nmspatialresolutionsmaybefeasible.

2. UFBconceptandrequirements

ElectrostaticbeamblankersarecommonlyusedinEM’sto en-surethat thesampleis exposedto theelectron beamonlywhen demanded, forexample for electron-beam lithography.In such a blanker the electron beam is deflected and then blocked by an aperture.Thepreferredpositionfortheblankerisinaplane con-jugate to the image plane located at thesample, asindicated in

Fig. 1[26,24]. Thisensures that the positionofthe electron spot is at a steady position at the sample while the blanker deflects theelectronbeam.Wewanttousethissameconcepttogenerate femtosecondelectronpulses,sweepingtheelectronbeamoveran aperturein(sub-)picosecondtimescales.

A first requirement forour beamblanker is that the electron beamsweepsbackandforthovertheapertureat(sub-)picosecond timescales.Obviously,thisneeds inversionofthevoltageoverthe deflector. As we want to synchronize the electron pulses to the output of a femtosecond laser (see details later), another impor-tantrequirementisthattheelectronpulsesaregeneratedatarate equaltotherepetitionrateofthelaser.Inordertosweepthe elec-tronbeamultrafastovertheapertureinbothpositiveandnegative direction,weproposetheinnovativeschemeshownin Fig.2.

By electrically connecting the photoconductive switch and beamdeflector inseries,the voltageatthe feedplatecan be in-verted each time the switch has beenilluminated withthe laser

pulse. For thisto be possible the photoconductive switch has to returntoitsinsulatingstateafterlaserilluminationonatimescale fastcomparedtotheintervalbetweenthelaserpulses.Inthatcase thevoltageatthefeedplatecanbe invertedwhilethevoltageat the deflector plate remains constant. This then ensures that the electronbeamis sweptover theblankeraperture inopposite di-rections for consecutive laser pulses. Hence, below the blanking aperturewewillgenerateelectronpulsesatarepetitionrateequal tothefemtosecondlasersystem.

Toincreasetheaveragecurrentinthepulsedelectronbeam, it isadvantageousto workathighestpossiblelaserrepetition rates, inpractice about100MHz. Thisrequirementlimitsthe pulse en-ergy available for operating the photoconductive switch to the nanojoule range,as this is the typical operation energyfor high repetitionratefemtosecondlasers.

Forpump-probemeasurementswithalaserandelectronpulse thetemporalresolutionisnotonlysetbytheelectronpulselength butalsobytheamountofjitterbetweenthelaserpulseand elec-tron pulse. The latter requirement of minimal jitter is relatively easily satisfied because we use a photoconductive switch illumi-nated with a laser pulse to change the deflection voltage at the beamblanker. In other words there is a direct link between the laserpulseandthechangeinvoltage.Aminimalamountoftiming jitterisstillpresent,wewilldiscussthisattheendofthepaper.

Ingeneral,forphotoconductiveswitches,ashortrecombination timeisimportanttogenerateshortvoltagepulses.However,inour casethisisnotimportant,becausewedirectlyconnectthe photo-conductive switch to thebeam blanker(see Fig. 2) andonly use therisingparttocharge thedeflectorplateandsweepthebeam. Whenthe laserilluminates thephotoconductiveswitch, electrons are excited to the conduction band, and, under influence of the biaselectricfield,diffusetotheblankerplateand(de)chargeit.

Finally, to create ultrashort electron pulses with the concept discussedhere,itisessentialthatphotoconductiveswitchand de-flectorhaveashortresponsetime.Forthisreasonwediscussthe physicalprocessesoccurringinthephotoconductiveswitchand re-sultingimplicationsforthedesigninthenextparagraphs.Westart withashortliteraturediscussionthatshowsthatphotoconductive switches are known to have ultrashort response times. We then discusstherequirementsonthesemiconductormaterialtobeused

(5)

Fig. 2. (a) Schematic indication of our UFB concept: a photoconductive switch is connected to an electrostatic beam blanker, the electron beam is deflected and intercepted by an aperture, the colors of the electrodes indicate + 10 V (blue), negative −10 V (red) and ground (grey). (b) Full modulation cycle for the UFB: (1) the beam is initially blanked by the deflection field in the blanker; (2) laser irradiation provides a conductive channel in the GaAs wafer inverting the voltage on the deflector and thus the deflection direction; (3) after the laser pulse, the GaAs restores to its insulating state, subsequently the bias on the feed voltage from the supply line is switched; (4) a next laser pulse again inverts the field in the deflector, sweeping the beam in opposite direction, after which the voltage supply inverts again and the modulation cycle is back to the initial situation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Basic principle of a photoconductive switch. Two conductors are connected via an isolating semiconductor material, a laser pulse creates free carriers to provide a conductive channel between the electrodes. Due to recombination of e-h pairs and/or diffusion of electrons and holes to the metal electrodes the conductivity will decrease again after illumination with the laser pulse.

andsubsequentlycalculatetheachievableconductivityinandfield strengths over the switch. Based on the photoconductive switch design requirements the dimensionsof the beam deflection unit canbe calculated,whichwe show inparagraph5. Then,in para-graph6,weprovideanestimationoftheachievableelectronpulse lengthforthe setofparameters requiredforthe design.We also estimatetheamountofjitteroftheelectronpulsewithrespectto thelaserpulsein paragraph7.The paperendswithaconclusion anddiscussionoftheconceptandresults.

3. Photoconductiveswitch

Intheaboveconcept,aphotoconductive switchisusedto cre-atean ultrafastvoltage ramp.A photoconductive switch basically consistsof a semiconductormaterial in betweentwo metal con-tacts,see Fig.3. In theliterature, such a device isalso calledan Austonswitch,namedaftertheinventor [27].

Photoconductive switches creating 825V pulses with 1.4ps risetime havebeen demonstrated [28],andfastphotoconductive switcheswith>100GHz bandwidthhavealsobeendemonstrated

[29].Photoconductiveswitchesare alsocommonlyusedto gener-ateTHzpulses [30]. Photoconductiveswitches are alsoemployed tocreate streakcameras to characterizeelectron pulses [31] and forX-raystreakcameras [32].Mostphotoconductive switchesare

made of the direct band-gap semiconductors GaAs or LT-GaAs, the latter consisting of a special top layer of GaAs grown at a lower temperature [33].Thesetwo semiconductor materials have the highest conductivity under laser illumination. LT-GaAs has a somewhat lower conductivity under laser illumination compared toGaAs butashortercarrierrecombinationtime, oftheorderof 1ps while normal GaAs has a recombination time of about 1ns

[34].In applications whereshort voltage pulsesare required, LT-GaAs isthe preferredchoice, because thevoltage pulselength is limitedbythecarrierlifetime.

For the UFB only the rising part of the photocurrent is im-portant,asthisdetermines thetimetocharge thedeflectorplate. However,asdiscussedaboveandindicatedin Fig.2,the photocon-ductive switch also hasto return to theinsulating state compar-ativelyfast to be able tomodulate thevoltage atthe feed plate. Otherwise, the voltage atthe deflector plate, indicated with the reddotted linein Fig.2,willbe affectedwhenthevoltageatthe feed plate is inverted. Hence, to sufficiently isolate the deflector andfeedplatethedarkresistance,Rs,off,hastoobeythefollowing

inequality: Rs,of fCblanker>

1

f (1)

where Cblanker is the capacity of the deflector plate and f is the

repetition rate of the laser. In the following paragraphs we will argue that thecapacitance of thedeflector platehasto be lower than10fF. Atypical Ti:Sapphlaser hasa repetitionrate, ofabout

f=100MHz,lower repetitionratesarenot attractivebecausethe average probecurrent willbe reduced, asmentioned inthe pre-viousparagraph.Hence, highvaluesofthedarkresistanceare re-quired,ofthe orderof106



range.This inturnrequires a

rela-tivelyshortrecombinationtime.Forthisreasonitisnotpreferred touseregular,1nsrecombinationtime,GaAsforthe photoconduc-tiveswitch,butLT-GaAsinstead.Forexperimentswherealow rep-etitionrateisrequired,therepetitionrateoftheelectronpulsecan bereducedbyswitchingthefeedplatevoltage,indicatedin Fig.2b, athalfthedesiredrepetitionratefortheelectronpulses.

3.1. Responsetimephotoconductiveswitch

We will now discuss the conductivity values that can be achievedandtheelectricfieldstrengththatcanbemaximally

(6)

ap-Fig. 4. Conductivity in the photoconductive switch as function of time for illumi- nation with a Gaussian laser pulse of 50 fs duration and a scattering time in the semiconductor of 30 fs. The calculation is based on a Drude–Lorentz model for the average electron drift velocity, Eq. (2) , convoluted with a typical 50 fs FWHM Gaus- sian laser pulse. It takes approximately 100 fs to build up conductivity in the semi- conductor.

plied over the photoconductive switch. Hereto, we first consider thephysicalprocessesoccurringinthephotoconductiveswitch af-ter andduringilluminationwithafemtosecondlaserpulse,based onaDrude–Lorentzmodel.

Upon laser illumination,electron holepairs are createdinthe photoconductiveswitchprovidedthephotonenergyislargerthan the bandgap. We assume that every photon in the pulsecreates anelectronholepairwiththesameprobability,determinedbyan absorption coefficient anda quantumefficiency. Initially,electron and holewill be at ‘rest’ followed by accelerationin the electric field.Theaverageelectronvelocity,v,isdescribedbyNewton’s2nd law: d

v

dt = e mE

v

τ

s (2) where m∗ isthe effectivemass ofthe electrons, equalto 6.7% of the electron restmass,E is the localelectricfield,

τ

s is the

mo-mentum scatteringtime, equaltoabout30fs [35].The scattering termdescribes theloss ofkinetic energy dueto collisionsofthe freecarrierswiththelattice.Theelectricfieldconsistsprimarilyof thevoltageappliedontheelectrodesbutcanbepartiallyscreened by surroundingfree charges.Wenote that each electronalsohas a random thermal motion,but Eq. (2)describes the net average velocityoppositethedirectionoftheelectricfield.

Withtheaveragevelocitywecancalculatethecurrentdensity inthesemiconductor:

j=ne

v

=

σ

E (3)

wherenisthefreecarrierdensityand

σ

theconductivity.We as-sumea constantorslowlychanging electricfield E,andconvolve thesolution of Eq.(2)withaGaussian laserpulse, withatypical length of50fsFHWM, tofindhow theconductivityinthe semi-conductor develops in time. The result is given in Fig. 4, which showsthattheconductivitybuildsupinabout100fs.

Wedon’ttakeintoaccountnegligiblenonlineareffectslike op-ticalrectification inducingdisplacement currentsatterahertz fre-quencies. Note that there is also anotherinstantaneous effecton theconductivity,whichwedidnottakeintoaccountincalculation theresultin Fig.4:thelaserilluminationwillleadtoapolarization inthesemiconductor materialwhichinturnwillinduce abound

current.However,fromliterature,thisisknowntogiveanegligible contributiontothecurrentathighbiasfields [36,37].

3.2.Electricfieldstrengthoverthephotoconductiveswitch

IntheDrude–Lorentz model,thecharge carriersatsomepoint reach their so-calleddrift velocity, vd, the maximumaverage

ve-locityduetocollisionswitheachotherandthelattice:

v

d=

μ

E (4)

where

μ

isthe mobility,about0.3m2V−1s−1 forLT-GaAs [34,38].

Forexample,withafieldstrengthof2MV/m,thedriftvelocitywill be1.6.105m/saccordingtotheDrude–Lorentzmodeland

parame-tersused in Eq.(2). At low fields thetemperature of thecharge carriers is equal to the lattice temperature, but at higher fields the carrier temperature begins to deviate from the lattice tem-perature.Then, thedriftvelocitynolongerincreaseslinearlywith thefield andstartstosaturate. InGaAs,thesaturationvelocity is about2.105m/s [39],which isslightly above thedrift velocity at

2MV/m.Notethatthethermalvelocityofconductionelectronsis about3.7.105m/s.

Thus,for anelectricfield of 2MV/m, we canassume a linear relationbetweenbiasvoltageandcurrent. Wewillusethisvalue in the remainder of thispaper. In principle it ispossible to fur-therincreasethebiasvoltage,butothereffectslikeimpact ioniza-tionandvoltagebreakdownmaythenhappen.Inaddition,inIII-V compounds, like GaAs, the electron mobility also decreases with increasingfield duetoscatteringofelectrons byoptical phonons. Ithasbeenshownexperimentallythatthephotocurrentincreases ataslowerrateathigherfields [35].

3.3.Conductivityphotoconductiveswitch

Eq.(3)mayseemtoimplythatahigherlaserpowerinduces a largerphotocurrentandconductivity.However, itshouldbenoted thatatrelativelyhighfreecarrierdensitiesoscillationsinthe pho-tocurrentmay be induced. As the laser creates a plasma offree carriersinthesemiconductormaterial,electrons andholes inthe plasmawillseparate dueto theapplied electricfield. Dueto the resultingCoulomb forcesthe plasmamay start oscillatingand/or the photocurrent may decay very rapidly. A laser pulse shorter thanthemomentumscatteringtimecanalsoleadtothese oscilla-tions.InJepsenetal.,theseeffectsareexplainedindetailand fit-tedtomeasurements [35].Itisshownthattheonsetofplasma os-cillationsisdeterminedbytheproductofthescatteringtimeand theplasmafrequency,definedas:

ω

p=



ne2

ε

m∗ (5)

where



is the permittivity. We would enter the regime where theseoscillationsstarttooccurata=

ω

p

τ

s∼1.Therefore,wewant

tohaveadensityoffreecarriersequalto: n=a2

ε

m

e2

τ

2

s

=1.15· 1024[m−3] (6)

whereweassumeavalue12.3fortherelativepermittivityandfor the product of

ω

p

τ

s, we took a value ofa equal to 2. Note that

there is a difference between the situation described by Jepsen etal. and ourdesign, as in their case the electricfield over the switchisconstant.

Toconcludethissection,acarrierdensityofabout1.1024 m−3

should be achievable in combination with an electric field of 2 MV/m over the photoconductive switch. The switch can be broughtintheconductivestateinabout100fs,laterwewillgive more accurate values wherewe take into account the change in

(7)

electricfield over the photoconductive switch. In the next para-graphwe willdiscussthe dimensionsrequiredforthe photocon-ductiveswitch.

4. Transmissionofhighfrequencysignalsandimplicationsfor thedesign

We have seen above (see Fig. 4) that the conductivity of the photoconductive switch will change on time scales smaller than 1ps.Thiscorrespondstoterahertz-rangefrequencies.Transmission ofelectrical signalswith such highfrequencycomponents tothe deflectorisnottrivial:Normallyforelectronics,itisassumedthat the potential along a perfect conductor is independent of posi-tionevenwhenthepotentialistime-dependent. However, electri-calsignalsaretransferredatthelocalspeedoflight.So,whenthe signaldelay,asdeterminedbythelengthofthecableandits effec-tivepermittivity,becomescomparableto 0.1timesthesignalrise time,thepotentialbecomespositiondependent.

In vacuum, a 1ps electromagnetic wave has a wavelength of 300μm,a linelongerthan 30μmwill behavelike a transmission line.In ourcasewe alsohave toconsiderthat we havea broad-band signal while the response of the electrical circuit can be stronglywavelengthdependent.Inaddition,dispersionmayreduce the rise time of the electrical signal. Another issue is that high-frequencysignalsareabsorbedquitestronglybymetalsduetothe lowskin-depthandfiniteconductivity.

Finally,an essentialrequirementisthattheamountofcharges necessarytocharge ordischargethedeflectorplatehastobeless than the amount of charges created by the laser pulse. Because when all free charges (created by the laser pulse) are taken up bythe electrodestheresistance ofthe photoconductive switch is equaltotheinitialdarkresistanceandthephotocurrentwilldrop tozero.

Wechooseaphotoconductiveswitchwithdimensionsof10by 10μmbecauseitisonlyafractionofthewavelengthandbecause thefieldissetto2MV/m,seesectionparagraph3.2,resultingina voltagedifferenceof20Vover thephotoconductive switchwhich is relatively easy to achieve with standard pulse generators in a fewnanoseconds.Underthoseconditions,wewouldgenerate∼108

freecarriers,takingintoaccounttherequiredcarrierdensity calcu-latedin Section3.3andassumingaskindepthof1μm.Thismeans themaximumcapacitancewecanswitchisequalto8pFfora20V difference.Therequiredlaserpowerislow: withan 800nm fem-tosecondlaserat arepetition rateof 100MHz,5mW isrequired, excludinglosses.

To summarize, the capacitance that can be connected to the photoconductiveswitch islimited. Together withthe need to re-duce absorption, dispersion, and transmission line behavior, this translatesto photoconductive switch dimensions of the order of tenmicrometers.Therefore,we choosetointegrate the photocon-ductiveswitchandthedeflectorinasingleMEMS-sizeddevice.

5. DimensionMEMSbeamblanker

Intheprevious paragraphwediscussedthat the photoconduc-tive switch and deflectorshould be integrated in a singleMEMS sized device. From this requirement and the required sub-10nm spatialresolution wecan calculatetypicaldimensionsforthe de-flector.

The deflectionanglecanbe calculatedfromthedimensionsof theblankerusingthefollowingequation(seealso Fig.6):

α

b=

El 2

φ

=

Vbl

2

φ

d (7)

whereE is the electricfield betweenthe deflector plates,Vb the

voltagedifferenceoverthe deflectorplatesand

φ

is the

accelera-tionvoltage.Allother variables aredefinedin Fig.6.The two re-quirementsforblankingare:

α

b>2

α

d>dg+

α

l (8)

wheredgisthediameterofthefocusedspotbetweenthe

deflec-torplates,i.e.thecrossoverdiameter.Thefirstrequirementstates that we have to deflect at least an angle

αb

to have the beam completelyblockedbytheaperture.Thesecondrequirementstates thatthebeamshouldnothitthedeflectorplate.

Eq. (8) tells that the blanking angle will be determined by thehalfopeningangle.Inelectronmicroscopy,thechoiceof half-opening angle

α

b is a balance between spatial resolution and

probecurrent.Ahigheropeningangleleadstoalargercurrentbut atthecostofspatialresolutionduetoincreasinglensaberrations, exceptat very low openingangles where diffractioncan become dominant.Withourbeamblanker,thecurrentatthesamplewill be reducedsignificantlycompared tocontinuousbeamoperation. Therefore, in the remainder of this section we will work with a highbeamcurrentof16nA.For100fselectronpulsesanda rep-etition rateof100MHz,thiswill resultina dutycycleof 1.10−5.

Withthis16 nADCcurrent, every electronpulsewill onaverage contain0.01electron.

Withthe16nAcurrent,andconsideringtheprobesizelimited by spherical aberration andsource to image plane magnification, theprobesizeatthesampleisgivenby [40]:

Ip=2.47

d8p/3Br

φ

C2s/3

(9) where we assume a reducedbrightness Br=5.107 A/m2.sr.V and

Cs=15mm. Notice that we a spherical aberration coefficient for

a non-immersion lens, in a system with an immersion lens the sphericalaberrationcoefficientwillbelowerandsubsequentlythe probewillbe reduced.Theaccelerationvoltage,

φ

,istakento be equalto30kVtoobtainhighestspatialresolutionandbecauseat lowerbeamenergiestheelectron pulselength willincreasemore dueto theenergy spreadwithin the pulse. Theeffects ofenergy spreadwillbediscussedindetailinthenextpaper.Withthe num-bersstatedabove, we see that fora DCcurrentof16 nA, a spot sizeof8.3nmcanbeobtained.

With the geometrical part of the spot size at the sample we calculateaFW50valueof200nmforthespotsizeattheblanker,

dg,forasampletodeflectormagnificationof30.Theopeningangle

attheblankercanbe calculatedusingconservationofbrightness:

α

p=



4Ip Br

π

2

φ

1 dg (10) Thisresultsinahalf-openingangleof0.32mrad.

Tobeabletodesignthedeflectorwehavetoestimatethe prod-uct oftheblankingvoltageVb andblankerlength lwhichcan be

calculatedas:

Vbl>2

φα

bd=38.9· 10−6[V· m] (11)

with a separation between the deflector plates, d=1μm, and

αb

=0.32mrad.Theseparationbetweenthedeflectorplatesis cho-sentobeinmicrometer-rangefortworeasons.Thefirstoneisthat thedistance betweentheelectrode containingthesignal andthe groundplateispreferredtobe(deep)subwavelength.Thesecond reason is that with smaller separation, the electric field will be maximizedwhich reducestherequired lengthandblanking volt-age.Notethattheblankingvoltagehastobelowerthanthe max-imum deflection voltagethat we can deliver withthe photocon-ductiveswitch,whichwas10Vasdiscussedintheprevious para-graph.Also, even smaller distancebetween theplates is difficult

(8)

Fig. 5. (a) Sketch of the photoconductive switch with feed, ground, and deflector plates. The electron beam traverses the space between the ground and deflector plate perpendicular to this plane. (b) View of the LT-GaAs plane from (a), with feed and deflector plates. The photoconductive switch is 10 by 10 μm as discussed in the text. The feed plate is 30 μm wide to assure that locally enough charges are present to charge the deflector plate when the photoconductive switch is in the conductive state.

Fig. 6. Sketch of a beam blanker. The incoming electron beam has a half-opening angle αand has a crossover of diameter d g between the deflector plates. The de-

flector has a length l and the plates are separated by a distance d . The deflector sweeps the beam over an aperture. αb is the smallest deflection angle with which

the beam is completely blocked by the aperture.

becausethesystembecomesmoresensitivetodriftand mechani-calstabilityandisalsolimitedbythe200nmspotdiameterofthe electronbeamintheblanker.Finally,wenotethatadeflectorwith anaspectratiolargerthan1:10willbemoredifficulttoalignwith respectto theelectronoptical axis.Wethenseethat fora10μm longdeflectionplate,ablankingvoltageof3.8Visrequired.

6. Electronpulselength

With the dimensionsof the blankerand the blankingvoltage set,wecan estimatetheelectronpulselength.Hereto,weneeda calculation for thetime-dependent voltageat thedeflector plate. Twoapproximationsinthissection aredescribedtocalculatethe electron pulselength. Inthe first approximation we considerthe photoconductiveswitchasaresistorandthedeflectorasa capaci-torandwecalculatetheRCtime.

From the conductivity, calculatedin Section 3.3,a mobilityof 3000cm2/V.s,andskin-depthof800nmlightinGaAsof1μm,the

resistance of the photoconductive switch is about 18



. The de-flector plate, indicated in Fig. 5, can be approximated as a par-allel plate capacitorwith a capacitance of 6 fF, neglecting para-sitic capacitances.Where it is assumed that the area is equal to

l.L

d=300 μm2, and the plate separation is 1μm in combination

Fig. 7. Schematic of the electrical circuit used. With a set of differential equations the time-dependent voltage at the feed plate, V feed (t), and at the deflector plate

V def (t) is calculated. The voltage delivered by the source, Vs, is constant. The resis-

tance of the photoconductive switch, R(t) is time-dependent. Also the Drude model and a laser pulse duration of 25 fs is taken into account.

witha relative permittivity of 2.25due to the presenceof glass. HencetheRCtimeisabout110fs,incombinationwitha conduc-tivitybuilt-upofabout100fs,shownin Fig.4,andsquareaddition theelectronpulselengthwillbeintheorderof150fs.

In the RC time calculation the response of the photoconduc-tiveswitchisnotconsidered.Inrealitythephotoconductiveswitch hasanon-zero responsetime asdescribedby theDrude–Lorentz modelin Eq. (2). Alsotheelectricfield over thephotoconductive switchdependsontimeafterillumination.

Forthis reason, we performed a second approach which also takes into account the response time and the time-dependency of the conductivity. We implement a time-dependent field over thephotoconductiveswitchbymodelingthetransmissionline be-tween constant voltage source and photoconductive switch with an inductor L0 and capacitor C0 (Fig. 7), Also, we take a

time-dependent resistance of the photoconductive switch using the Drude–Lorentz model describedin Section 3.1. Finally, the finite duration of the laser pulse is taken into account using a Gaus-sian pulseshape with25 fs FWHM. Inthis way,we derive a set ofdifferentialequations,asdetailedinthe AppendixA.Theseare numericallysolvedwithMATLAB. Ascatteringtime

τ

s of30fs is

assumed forthis calculation which corresponds to a mobility of 786cm2/V.s,theexactmobilityandscatteringtimedodependon,

forexample,theannealingtime oftheLT-GaAslayer [34].The re-sultsofthe calculationareshownin Fig.8,allvaluesusedinthe calculationsarelistedinthe AppendixA.

In Fig.8bwe cansee thatthe FW50electron pulselength in-creaseswhen thecarrierdensitydecrease,butthat thisdoesnot occurinthesimplelinearrelationpredictedbythebareRCmodel. Onereasonfor thisisthat inthe time-dependentmodel,the re-sponseof theswitch becomeslimitedby the accelerationoffree carriers.

Fig.8cclearlyshowsthatthepulselengthstronglydependson thecapacitance ofthe deflectorplate.A low valueforthe capac-itanceresultsina shortelectronpulselength.However,asstated

(9)

Fig. 8. (a) Calculated voltage at the deflector plate as function of time for different free carrier densities n in [1 . 10 24 m −3 ]. At high carrier densities oscillations occur which

has to do with the delay in the supply of charges at the feed plate. (b) The FW50 electron pulse length increases with lower carrier density. In (a) and (b) the capacitance of the deflector is 6 fF. (c) FW50 electron pulse length as function of the feed plate capacitance, for a fixed carrier density of 1.5 . 10 24 m −3 . In the calculations, the voltage at

which the electron beam is fully blanked is assumed to be 3.8 V.

Fig. 9. Voltage over the deflector as function of time in case without noise, dotted line, due to voltage noise, V n , the graph moves to the right, solid line, the zero

crossing by an amount t . Hence the electron pulse is also shifted by an amount of t.

before (see, e.g., Eq. (1)), a low capacitance also reduces the RC time in the dark state of the switch. For too low capacitance, it willbecomeimpossibletoinvertthevoltageatthefeedplate be-tween two subsequent laser pulses while keeping the voltage at thedeflectorplateconstant.Atypical darkresistanceismeasured tobeinthe10M



range,resultinginaRCtimeof10nsfora1fF deflector.Thisistoolowforalaserrepetitionrateof100MHz.

The electron pulselength dependslinearlyonthe capacitance ofthedeflectorplate, asshownin Fig.8c.Analyticalequationsto estimatetheexactcapacitanceofa3Dgeometrywithdifferent di-electricmaterials around the deflector are not available. We will discussthisfurther in thesubsequent paper were we performed numericalsimulationsoftheUFB.

7.Timejitterbetweenthelaserpulseandtheelectronpulse

Intheprevioussectionwehavecalculatedthatelectronpulses inthe100 fsrangearefeasible.However,thetemporal resolution inaUEM isnot onlydeterminedby theelectronpulselengthbut alsodueto time jitter betweenthelaser pulseenvelopeand the electron pulse. The jitter is presentbecause the photoconductive switchconvertsan opticalsignal, thelaser pulse,toan electronic signal whichhas some noise. The noise on thevoltage will con-vertedtotimejitterduetoatimeshiftinthezerocrossingofthe deflectorvoltage(Fig.9).

Weconsidertwocontributionstothejitter; thermalnoiseand shotnoise.Firstlythelattercontributionisestimated,thermsshot noisecurrentisgivenby:

Ishot=



2eIavg

f=



2enfIavg

τ

0 (12) where Iavg is the average current and

f is the bandwidth. The

bandwidth is equal to a factor nf times the inverse of the time

constant

τ

0ofthesystem.Thepowerspectraldensityofshotnoise

isconstantaslongasthefrequencyissmallerthan1/

τ

e,where

τ

e

isthepulsewidthofaoneelectronpulse.

Theaveragecurrent,Iavg,throughthecapacitoriscalculatedas

follows: I

(

t

)

=Cde fdVdt =2 Cde fV0 τ0 exp

(

τ

/

τ

0

)

Iavg=Cde f4τV20 0 4τ0 0 exp

(

τ

/

τ

0

)

d

τ

Cde fV0 2τ0 (13) where we estimate the deflectoris exponentially chargedwith a time constant

τ

0. The average current Iavg. is calculatedby

inte-gratingthecurrentoveratimewindowof4

τ

0.Theshiftin

charg-ingtimeisapproximatedas:

tIshot Iavg

τ

0= 2



qnf V0Cde f

τ

0 (14) Whenatimeconstantof300fs,adeflectionvoltageof10Vand acapacitanceCdefof7fFandanfof3(correspondingtoa10THz bandwidth)isassumed, theshotnoise jittercontributionisabout 1fs.

Jitterisalsointroducedbythermalagitationofchargecarriers, asdiscussedbyNyquist [41].Thermalvoltagenoiseovera capaci-torcanbe calculatedwiththeequipartition theoremandisequal to [42]:

v

n=



kT Cde f (15) wherekisBoltzmann’sconstantandT thetemperature.Thedrop ofthermal noise athighfrequencies, around 1THz, is neglected. From Eq. (15) the time jitter, due to thermalnoise, is calculated as:

t

v

n V0

τ

0 = 1 V0



kT Cde f

τ

0 (16)

(10)

Fora temperatureof 300K,andall other parameters equalto thevaluesusedfortheshotnoisejittercontribution,avalueof23 asisobtained.

Amplitudenoiseinthelaserwillinducenoiseinthe photocon-ductivityandhencejitterintheelectronpulse. Ina modelwhere the conductivityoftheswitch varieslinearlywiththeamountof photons inthe pulse, theresulting time jitter fora relative laser amplitudenoise

η

isequalto:

t=t0ln

(

2

)

η

(17)

For a laser amplitude noise of 0.05% RMS over a bandwidth from 10Hz the jitter is about 10 as, for longer time scales the power stabilityis some 0.5%resulting in a time drift of about1 fs.The lattercontributionisonlyrelevantformeasurements who requirelongintegrationtimes.Thermsamplitudenoiseandpower stabilityaretypicalforaCoherentVitaraTi:Saphhoscillator.

Thusthedominantsourceofjitterisshotnoisewhichisinthe orderof1fs, sothetime jitteris negligibletotheelectron pulse duration of 100 fs.The amount oftime jitter isalso significantly lower compared to systems employing GHz cavities, forexample Brussardetal.achieved96fstimejitterandmorerecentlyGliserin etal.reducedthetimingjitterto4fs [23,24].

In reality thejitter will belarger asthe mechanicaland ther-malstabilityofthewholesetupisessential,mechanicalvibration amplitudesintheopticalsetupwilleasilyaddafewfemtosecond ofjitter. Nevertheless,theamountofjitter canbe expectedtobe significantlysmallerthantheelectronpulselength.

8. Discussion

Theaboveconsiderationsandmodelinghavedemonstratedthe feasibility ofoperating an UFB basedon a laser-illuminated pho-toconductive switch.Inthecalculationsseveralidealized assump-tions are made, for instance idealelectrical contacts to the pho-toconductive switch,no parasiticcapacitances,no leakagecurrent exceptthroughthephotoconductiveswitch.

Inour calculations, wehaveworkedwitha relativelyhighDC currentof16nAinordertooptimizetheaveragenumberof elec-tronsperpulse.Ahigherbrightnesselectronsourceoralower de-siredcurrentwillleadto(significantly)smalleropeninganglesand hence higher spatial resolution and shorter electron pulses. We havebeenconservativebyassumingareducedbrightnessvalueof 5.107 A/[m2.sr.V].Afactor4highercanbeachievedwitha

Schot-tkyemitter asshownby vanVeenetal. [43].This wouldreduce theblankingvoltagebyafactorof16forthesameDCcurrentand probesize.Hence,theexactdesignoftheUFBcandependonthe EMto beused andforsome applicationlower currentsmightbe acceptable.

The resistance of the photoconductor in its photoconductive state can beadjusted bysetting theamountofphotonsper laser pulse. Withfewer photonsper pulse, therise time ofthe deflec-tion field woulddecrease.Thiscan be usedtoincrease the pulse lengthandthusalsoincreasethecurrentforexperimentswherea lower temporalresolutionisacceptable.Ifrequired,therepetition rateoftheelectronpulsecanbereducedby invertingthevoltage atthefeedplateataratelowerthanthelaserrepetitionrate.

The concept of a MEMS-based UFB presented here would in principle beapplicableto anytype ofEMbecauseofits small di-mensions. This way constitute a unique advantage compared to other UFB concepts, such as GHz resonant cavities [44,45]. The MEMSsizeddevicecouldbeinsertedviaastandardEMentryports used for aperture strips and regular pico- to nanosecond scale beamblankers [46]. Atthe sametime, all DCimagingmodalities arekeptintactbecauseneitherthehighbrightnesselectronsource northecolumnismodified.Also,anEMequippedwithaUFBcan be switched between pulsed and DC operation without any

re-alignments.InthispaperweassumedthattheUEMwouldbeused inan imagingmode wherethe sampleandUFBare inconjugate planes.Forsome imagingtechniqueslikeLorentz microscopyand holography,thisisnotpossible.Theeffectsofsweepingthebeam, suchasapossiblereductionoftransversecoherence ora correla-tionbetweenthespatialdomainandthetimewithintheelectron pulsewillbediscussedinaseparatepaper.

Fabrication ofthe MEMSsized UFBis inprinciple possibleby usingnanotechnology tools such asstandard lithography, deposi-tionandetchingtools.CurrentlywehavefabricatedsuchaMEMS sizedUFBandwearecurrentlytestingtheperformanceofthe de-viceinaSEM.

9. Conclusion

Inthis paper,we havepresented a newconcept foran ultra-fastbeamblankerusing acombination ofan electrostatic deflec-tor connected inseries with a photoconductive switch. We have demonstratedthefeasibilityofthisconceptbasedonadesignthat followedfrom basic,practical requirements foroperation ofsuch an UFB in a standard EM.A crucial aspect ofour design is that onlytherisingpartofthesignalfromtheswitchisusedtoinvert thevoltageoverthedeflectoratsub-picosecondtimescales.By in-vertingthevoltageatthefeedplateinbetweenlaserpulses,itis possibletoscantheelectronbeamoverablankingapertureat ul-trafasttimescales.Byintegratingthephotoconductiveswitchwith abeamblankerthe dimensionscan bekept substantially smaller thanthewavelengthandthecapacitancecanbereduced,enabling invertingthedeflectorvoltageat(sub-)picosecondtimescales. Ac-cording to our basic models, 100 fs electron pulses with spatial resolution of less than 10nm can be achieved. Moreover, as the electron beamis onlytransmitted through the blankingaperture whena laserpulseilluminates thephotoconductive switch, there will be minimal jitter (only about1 fs) between the laser pulse andelectron pulse. Our calculationshave shown that all dimen-sionsoftheUFBneedtobe micronscaletoprevent transmission linebehavior,dispersionandabsorptionofthehighfrequency sig-nalcomponents,whichisfeasiblewithMEMSfabrication technol-ogy.Ourconcept foran UFBmayprovideanattractive alternative todoultrafastelectronmicroscopy, asitdoesnotrequire modifi-cationofthemicroscopenorrealignmentbetweenDCandpulsed modeofoperation.

Acknowledgements

ThisworkispartoftheresearchprogrammeoftheFoundation forFundamental Research onMatter (FOM), which is partof the Netherlands Organisation for Scientific Research (NWO). The au-thorswouldliketothankP.Plankenforusefuldiscussions.

AppendixA. Modelphotoconductiveswitchandelectrical circuit

Here we describe a modelof the electrical circuitand photo-conductiveswitch, inorder tocalculatethe time-dependent volt-ageoverthedeflector.Forthemodelasetofdifferentialequations is derived describing the time-dependent voltages in the system asfunctionofparameters likethe deflectorcapacitanceandlaser pulseenergy.Theresultsareshownin Fig.8of Section6.

InthemodelitisassumedthatthecurrentsintheUFBcanbe describedby basiccircuit laws,validbecause thedimensionsare significantlysmaller thanthewavelength. Fig.10 showsthe elec-tricalcircuitusedforthemodel.Weassumeaconstantvoltageat thesource,Vs,connectedviaatransmissionlinetothe

photocon-ductive switch. The transmissionline issimplified asa combina-tionofacapacitorandinductor.

(11)

Fig. 10. Scheme of the electric circuit. A laser pulse illuminates the photoconduc- tive switch which has a length L and cross area A and generates a free carrier den- sity n (t). The carriers accelerate in the field, according to a Drude–Lorentz model, the average velocity, v ( t ), of the electrons is considered positive when they move to the left in this figure.

Fig. 11. Microstrip line with electrode separation h , in our case 1 μm, the width, w, is equal to 30 μm. The dielectric has a relative permittivity εr .

The capacitance andinductancein Fig.10,L0 andC0,are

esti-matedbyassuming theelectrodesarelike amicrostrip line.The characteristicimpedanceZ0 ofamicrostriplineisestimatedusing

theequationsinDemarest [47]:

ε

e f f ≈12

(

ε

r+1

)

+ 1 2

(

ε

r− 1

)



1+12w h



−1/2 Z0≈ 120

π

ε

e f f



w h +1.393+0.667ln



w h +1.444



−1 (18) This equation is valid for w/h > 1, all variables are defined in Fig. 11. For the relative permittivity we take the average of glass and GaAs which have refractive indices of 1.5 and 3.4 re-spectively. In our design the characteristic impedance is equal to4.3.

The capacitance per unit length is calculated under the as-sumptionof a simple 2 plate capacitor,with the dimensions in-dicated in Fig. 11and is equalto 1.9nF/m. From the capacitance andimpedancetheinductanceperunit lengthiscalculated using

L0=Z02C0andisequalto36nH/m.

In thefollowing section we useKirchhoff’s currentlawatthe feedplateanddeflectorplatetoderive twohigherorderordinary differentialequations.Thedifferentialequationsarerewrittenina setoffirstorderordinarydifferentialequationswhichare numeri-callysolvedwithMatlab.

The sumof the currentsat the feedplate hasto be equal to zero: 1 Lf

Vs− Vf

dt− C0 dVf dt − eAn

(

t

)

v

(

t

)

=0 (19) The first term describes the effect of the coil, included in the model because the source can’t instantaneously deliver new charges to the feed plate. The next term describes the current flowingfromthefeed plateduetoits capacitance. The last term describes the current flowing into the photoconductive switch. Whichisdetermined by theamount ofcarriersgenerated bythe laserpulseandtheaveragevelocity,v(t).Differentiatingthis equa-tiontotime,inordertogetridoftheintegral,gives:

Vs− Vf

L0 − C0 d2V f dt2 − eA

v

dn dt +n d

v

dt

=0 (20)

Thevelocity isdescribedwithaDrude–Lorentzmodelgivenin

Eq.(2),whichhasan additionaltermto correctforthereduction

inaveragevelocityduetothenewlygeneratedfreecarriersatlater timeinstances [38]: d

v

dt = e mE

v

τ

s

v

dn/dt n (21)

wherenisthedensityofcharges,proportionaltotheintegralofa Gaussianshapedlaserpulse:

n

(

t

)

=1 2n0



1+er f



1.67t− t0

τ





(22) where n0 is the total amount of carriers generated by the laser

pulse,t0 isthetime thelaserpulseilluminatesthe

photoconduc-tiveswitch and

τ

istheFWHMlaserpulselength.Recombination ofelectron-holepairsisnottakenintoaccountbecauseithappens atatimescaleof10–15ps.

Inserting Eq.(21)in Eq.(20)resultsinthefollowingequation:

Vs− Vf

L0 − C0 d2V f dt2 − eA



ne Lm

Vf− Vd

n

v

τ

s



=0 (23)

Combiningthisequationwith (19)byreplacingthetermn(t)v(t) anddifferentiatingtotime:

−1 Lf dVf dt − C0 d3V f dt3 − Ae2 Lm

dVf dtdVd dt

nAe2 Lm

Vf− Vd

dn dt + 1 Lf

τ

s

Vs− Vf

C0

τ

s d2V f dt2 =0 (24)

Wenowhaveadifferentialequationindependentofthe veloc-ity,v,describingthevoltageatthefeedplateVf.Asecondequation isrequiredbecausetherearestilltwounknowns,VfandVd.

AseconddifferentialequationisderivedbyapplyingKirchhoff’s circuitruleatthedeflectorplate:

Cd

dVd

dt − eAn

v

=0 (25)

Differentiatingthisequationtotimegives: Cd d2V d dt2 − eA

nd

v

dt +

v

dn dt

=0 (26)

Inserting Eq.(21)in Eq.(26)resultsin: Cd d2V d dt2 − eA

n e mEn

v

τ

s

v

dn/dt+

v

dn dt

=0 Cd d2V d dt2 − eA

n e mVf− Vd Ln

v

τ

s

=0 d2V d dt2 = e2An LCdm

Vf− Vd



1

τ

s



dV d dt (27)

With2differentialequationsand2unknownsitispossibleto numericallycalculatethevoltagesasfunctionoftime.Inorderto solvethe setofdifferentialequationsnumerically, usingMATLAB, werewriteitinasetoffirstorderdifferentialequations,wherewe define:

v

(

1

)

=Vd

v

(

2

)

= dVd dt

v

(

3

)

=Vf

v

(

4

)

= dVf dt

v

(

5

)

= d 2V f dt2 (28)

(12)

The setof coupledfirst orderdifferential equationswe solved inMATLABare:

v



(

1

)

=

v

(

2

)

v



(

2

)

=

α

n Cd

(

v

(

3

)

v

(

1

)

)

− 1

τ

s

v

(

2

)

v



(

3

)

=

v

(

4

)

v



(

4

)

=

v

(

5

)

v



(

5

)

=− 1

τ

2 f

v

(

4

)

α

n Cf [

v

(

4

)

v

(

2

)

]−

α

Cf [

v

(

3

)

v

(

1

)

]dn dt + 1

τ

s

τ

2f [Vs

v

(

3

)

]− 1

τ

s

v

(

5

)

(29) where:

α

= e2A mL,

τ

2f =CfLf (30)

A value of 1.9nF/mand35 nH/m is used for respectivelythe capacitance andinductanceofthefeedplate. Weusealength,Lf, of10μmforthetransmissionline.The crosssection Aisequalto 10 μm2, L is equal to 10μm and the effective mass is 0.067m

0,

where m0 is equal to the electron restmass. A value of 6 fF is

usedforthecapacitanceofthedeflectorplate.Theelectronscatter time istakentobeequalto 30fs,correspondingto amobilityof 786cm2/V.s.

References

[1] R.M. Van Der Veen, O. Kwon, A. Tissot, A. Hauser, A.H. Zewail, Single- nanoparticle phase transitions visualized by four-dimensional electron mi- croscopy, Nat. Chem. (2013) 1–8, doi: 10.1038/NCHEM.1622 .

[2] D.-S. Yang, O.F. Mohammed, A.H. Zewail, Environmental scanning ultrafast electron microscopy: structural dynamics of solvation at interfaces, Angew. Chem. Int. Ed. Engl. 52 (2013) 2897–2901, doi: 10.1002/anie.201205093 .

[3] B. Barwick, D.J. Flannigan, A.H. Zewail, Photon-induced near-field electron mi- croscopy, Nature 462 (2009) 902–906, doi: 10.1038/nature08662 .

[4] A. Yurtsever, R.M. van der Veen, A.H. Zewail, Subparticle ultrafast spectrum imaging in 4D electron microscopy, Science 335 (2012) 59–64, doi: 10.1126/ science.1213504 .

[5] A. Feist, K.E. Echternkamp, J. Schauss, S.V. Yalunin, S. Schäfer, C. Ropers, Quan- tum coherent optical phase modulation in an ultrafast transmission electron microscope, Nature 521 (2015) 200–203, doi: 10.1038/nature14463 .

[6] A. Ryabov , P. Baum , Electron microscopy of electromagnetic waveforms, Sci- ence 2182 (2016) 2179–2182 .

[7] K.E. Echternkamp, A. Feist, S. Schäfer, C. Ropers, Ramsey-type phase control of free-electron beams, Nat. Phys. 12 (2016) 10 0 0–10 04, doi: 10.1038/nphys3844 .

[8] A.H. Zewail, Four-dimensional electron microscopy, Science 328 (2010) 187– 193, doi: 10.1126/science.1166135 .

[9] B. Barwick, H. Soon Park, O.-H. Kwon, J.S. Baskin, A.H. Zewail, 4D imaging of transient structures and morphologies in ultrafast electron microscopy, Science 369 (2008) 1227–1232, doi: 10.1007/978- 1- 59745- 294- 6 .

[10] V.A. Lobastov, R. Srinivasan, A.H. Zewail, Four-dimensional ultrafast electron microscopy, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 7069–7073, doi: 10.1073/ pnas.0502607102 .

[11] P. Hommelhoff, C. Kealhofer, M.A. Kasevich, Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses, Phys. Rev. Lett. 97 (2006) 247402, doi: 10.1103/PhysRevLett.97.247402 .

[12] D.-S. Yang, O.F. Mohammed, A.H. Zewail, Scanning ultrafast electron mi- croscopy, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 14993–14998, doi: 10.1073/ pnas.1009321107 .

[13] B. Cook, P. Kruit, Coulomb interactions in sharp tip pulsed photo field emitters, Appl. Phys. Lett. 109 (2016) 151901, doi: 10.1063/1.4963783 .

[14] A. Feist, N. Bach, N. Rubiano da Silva, T. Danz, M. Möller, K.E. Priebe, T. Dom- röse, J.G. Gatzmann, S. Rost, J. Schauss, S. Strauch, R. Bormann, M. Sivis, S. Schäfer, C. Ropers, Ultrafast transmission electron microscopy using a laser- driven field emitter: femtosecond resolution with a high coherence electron beam, Ultramicroscopy 176 (2017) 63–73, doi: 10.1016/j.ultramic.2016.12.005 .

[15] D. Ehberger, J. Hammer, M. Eisele, M. Krüger, J. Noe, A. Högele, P. Hommelhoff, Highly Coherent Electron Beam from a Laser-Triggered Tungsten Needle Tip, Phys. Rev. Lett. 114 (2015) 1–5, doi: 10.1103/PhysRevLett.114.227601 .

[16] L.C. Oldfield, A rotationally symmetric electron beam chopper for picosecond pulses, J. Phys. E 9 (1976) 455–463, doi: 10.1088/0022-3735/9/6/011 .

[17] T. Hosokawa, H. Fujioka, K. Ura, Generation and measurement of subpicosec- ond electron beam pulses, Rev. Sci. Instrum. 49 (1978) 624, doi: 10.1063/1. 1135464 .

[18] K. Ura , H. Fujioka , T. Hosokawa , Picosecond pulse stroboscopic scanning elec- tron microscope, J. Electron Microsc. 27 (1978) 247–252 (Tokyo) .

[19] M. Brunner, D. Winkler, B. Lischke, Electron-beam test system for high-speed devices, 9 (1987) 201–204.

[20] A.C. Lassise , Miniaturized RF Technology for Femtosecond Electron Microscopy, Eindhoven University of Technology, 2012 .

[21] J.F.M. van Rens, W. Verhoeven, J.G.H. Franssen, A.C. Lassise, X.F.D. Stragier, E.R. Kieft, P.H.A. Mutsaers, O.J. Luiten, Theory and particle tracking simulations of resonant, radio frequency cavities in TM110 mode as dynamic electron-optical elements for ultrafast electron microscopy, (2017). http://www.sciencedirect. com/science/article/pii/S0304399117303339? _ rdoc=1& _ fmt=high& _ origin= gateway& _ docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb .

[22] W. Verhoeven, E.R. Kieft, O.J. Luiten, High quality ultrafast transmission elec- tron microscopy using resonant microwave cavities, arXiv. (2017).

[23] G.J.H. Brussaard, A. Lassise, P.L.E.M. Pasmans, P.H.A. Mutsaers, M.J. van der Wiel, O.J. Luiten, Direct measurement of synchronization between femtosec- ond laser pulses and a 3 GHz radio frequency electric field inside a resonant cavity, Appl. Phys. Lett 103 (2013) 141105, doi: 10.1063/1.4823590 .

[24] A. Gliserin, M. Walbran, P. Baum, Passive optical enhancement of laser- microwave synchronization, Appl. Phys. Lett 103 (2013) 1–5, doi: 10.1063/1. 4815929 .

[25] P. Kruit, I.G.C. Weppelman, Device and Method for Generating Charged Particle Beam Pulses, WO2016076718 A3, 2016.

[26] J.T.L. Thong , Picosecond electron pulse generation via beam deflection-chop- ping in the SEM, Meas. Sci. Technol. (1991) 207–216 .

[27] D.H. Auston, P. Lavallard, N. Sol, D. Kaplan, An amorphous silicon photodetector for picosecond pulses, Appl. Phys. Lett 36 (1980) 66, doi: 10.1063/1.91276 .

[28] T. Motet , J. Nees , S. Williamson , G. Mourou , 1.4 ps rise-time high-voltage pho- toconductive switching, Appl. Phys. Lett. 59 (1991) 1455–1457 .

[29] Y. Chiu, S.B. Fleischer, D. Lasaosa, J.E. Bowers, Ultrafast (370 GHz bandwidth) using low-temperature-grown GaAs p-i-n traveling wave photodetector using low-temperature-grown GaAs, Appl. Phys. Lett. 71 (1997) 2508–2510, doi: 10. 1063/1.120115 .

[30] C.A. Schmuttenmaer, Exploring dynamics in the far-infrared with terahertz spectroscopy, Chem. Rev. 104 (2004) 1759–1779, doi: 10.1021/cr020685g .

[31] G.H. Kassier, K. Haupt, N. Erasmus, E.G. Rohwer, H.M. Von Bergmann, H. Schwoerer, S.M.M. Coelho, F.D. Auret, A compact streak camera for 150 fs time resolved measurement of bright pulses in ultrafast electron diffraction, Rev. Sci. Instrum 81 (2010), doi: 10.1063/1.3489118 .

[32] J. Feng, H.J. Shin, J.R. Nasiatka, W. Wan, A.T. Young, G. Huang, A. Comin, J. Byrd, H.A. Padmore, An x-ray streak camera with high spatio-temporal resolution, Appl. Phys. Lett 91 (2007) 134102, doi: 10.1063/1.2793191 .

[33] A.M. Johnson, D.H. Auston, P.R. Smith, J.C. Bean, J.P. Harbison, A.C. Adams, Pi- cosecond transient photocurrents in amorphous silicon, Phys. Rev. B. 23 (1981) 6 816–6 819, doi: 10.1103/PhysRevB.23.6816 .

[34] M.C. Beard, G.M. Turner, C.A. Schmuttenmaer, Subpicosecond carrier dynam- ics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy, J. Appl. Phys. 90 (2001) 5915, doi: 10.1063/1.1416140 .

[35] P.U. Jepsen, R.H. Jacobsen, S.R. Keiding, Generation and detection of terahertz pulses from biased semiconductor antennas, J. Opt. Soc. Am. B 13 (1996) 2424, doi: 10.1364/JOSAB.13.002424 .

[36] A.V. Kuznetsov , C.J. Stanton , Ultrafast optical generation of carriers in a dc elec- tric field: transient localization and photocurrent, Phyiscal Rev. B 48 (1993) 10828–10845 .

[37] B.B. Hu , A.S. Weling , D.H. Auston , A.V. Kuznetsov , C.J. Stanton , dc-electric-field dependence of THz radiation induced by femtosecond optical excitation of bulk GaAs, Phys. Rev. B. 49 (1994) 2234–2237 .

[38] H. Ne ̌mec, A. Pashkin, P. Kuz ̌el, M. Khazan, S. Schnu ¨ll, I. Wilke, Carrier dy- namics in low-temperature grown GaAs studied by terahertz emission spec- troscopy, J. Appl. Phys. 90 (2001) 1303–1306, doi: 10.1063/1.1380414 .

[39] J. Požela, A. Reklaitis, Electron transport properties in GaAs at high elec- tric fields, Solid. State. Electron 23 (1980) 927–933, doi: 10.1016/0038-1101(80) 90057-X .

[40] P. Kruit, M. Bezuijen, J.E. Barth, Source brightness and useful beam current of carbon nanotubes and other very small emitters, J. Appl. Phys. 99 (2006), doi: 10.1063/1.2162270 .

[41] H. Nyquist, Thermal agitation of electric charge in conductors, Phys. Rev. 32 (1928) 110–113, doi: 10.1103/PhysRev.32.110 .

[42] R. Sarpeshkar, T. Delbruck, C.A. Mead, White noise in MOS transistors and re- sistors, IEEE Circ. Devices Mag. 9 (1993) 23–29, doi: 10.1109/101.261888 .

[43] A.H.V. van Veen, C.W. Hagen, J.E. Barth, P. Kruit, Reduced brightness of the ZrO/W Schottky electron emitter, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 19 (2001) 2038, doi: 10.1116/1.1409390 .

[44] A . Lassise, P.H.A . Mutsaers, O.J. Luiten, Compact, low power radio frequency cavity for femtosecond electron microscopy, Rev. Sci. Instrum. 83 (2012) 43705, doi: 10.1063/1.3703314 .

[45] W. Verhoeven, J.F.M. van Rens, M.A.W. van Ninhuijs, W.F. Toonen, E.R. Kieft, P.H.A. Mutsaers, O.J. Luiten, Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities, Struct. Dyn. 3 (2016) 54303, doi: 10.1063/1. 4962698 .

[46] R.J. Moerland , I.G.C. Weppelman , W.H. Garming , P. Kruit , J.P. Hoogenboom , Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states, Opt. Express 24 (2016) 499–504 .

Cytaty

Powiązane dokumenty

W świetle przeprowadzonej analizy zarówno postać *Dobrava (oraz jej wa- riant spieszczony *Dobravka) jak i *Dobrówka (wariant morfologiczny po- wstały na gruncie spol., utworzony nie

Schulz jest, bądź co bądź, autorem krótkiej recenzji książki Aldousa Huxleya M uzyka nocą 9, cytowanej chęt­ nie przez Barbarę Sienkiewicz, gdzie pojawia się wizja

W tym tekście chcę pokazać, że w ramach historii komunikacji mieści się również – a w przyjmo- wanej przeze mnie perspektywie przede wszystkim – historia idei

Autorka koncentruje się na biografiach wybitnych pisarzy lub ludzi, którzy się o literaturę tylko otarli, wnosząc w nią choćby mimowolny wkład; dzieła traktuje raczej

Jest tam to samo środowisko, kończy się tak samo z tym zamknięciem - jeżeli koledzy ten tom znają, to wiedzą, jak on się kończy, natomiast przy przyglądaniu się zorientowałem

Większość z wymienionych wyżej portali historycznych ma charakter ogólny, tzn. gromadzi i udostępnia informacje oraz materiały mogące zainteresować historyka na

Udzielone odpowiedzi rzu- cają światło na licealistę jako odbiorcę utworów dawnych oraz tych, opisujących bar- dzo istotny element tradycji, jakim jest obrzęd, a w efekcie

Moreover, the phase drift of the interrogator, caused by temperature fluctuations, can be compensated by using one of the sensors as reference sensor to which no external excitation