• Nie Znaleziono Wyników

Petrophysical parameters of the Lower Triassic deposits in prospective location for Enhanced Geothermal System (central Poland)

N/A
N/A
Protected

Academic year: 2022

Share "Petrophysical parameters of the Lower Triassic deposits in prospective location for Enhanced Geothermal System (central Poland)"

Copied!
15
0
0

Pełen tekst

(1)

Char ac ter iza tion of petrophysical pa ram e ters of the Lower Tri as sic de pos its in a pro spec tive lo ca tion for En hanced Geo ther mal Sys tem (cen tral Po land)

Anna SOWI¯D¯A£1, *, Bartosz PAPIERNIK1, Grzegorz MACHOWSKI1 and Marek HAJTO1

1 AGH Uni ver sity of Sci ence and Tech nol ogy, Fac ulty of Ge ol ogy, Geo phys ics and En vi ron men tal Pro tec tion, De part ment of Fos sil Fu els, Al. A. Mickiewicza 30, 30-059 Kraków, Po land

Sowi¿d¿a³ A., Papiernik B., Machowski G. and Hajto M. (2013) Char ac ter iza tion of petrophysical pa ram e ters of the Lower Tri as sic de pos its in a pro spec tive lo ca tion for En hanced Geo ther mal Sys tem (cen tral Po land). Geo log i cal Quar terly, 57 (4):

729–744, doi: 10.7306/gq.1121

In the years 2010–2013, anal y sis of rocks that build the sed i men tary cov ers in Po land was car ried out from the point of view of uti li za tion of en ergy ac cu mu lated in Hot Dry Rock – used in En hanced Geo ther mal Sys tems (EGS). As a re sult of a num - ber of an a lyt i cal stud ies, the area sit u ated in the cen tral part of Po land was se lected as one of pro spec tive ar eas for lo ca tion of EGS in sed i men tary rocks. This area en com passes a ma jor part of the Mogilno–£ódŸ Trough, a part of the Kujawy Swell and a small frag ment of the Fore-Sudetic Monocline. The most fa vour able con di tions for de vel op ment of EGS oc cur in the Lower Tri as sic de pos its in the Kroœniewice–Kutno vi cin ity, where they are bur ied to depths greater than 5000 m b.s.l., their thick nesses ex ceeds 1500 m, po ros ity is about 3% and per me abil ity is about 0.02–0.1 mD. In the study area, ther mal char ac - ter iza tion of the for ma tion was car ried out for lo ca tion of the EGS in sed i men tary rocks. The tem per a ture at the top of the Lower Tri as sic res er voir is mod elled in the range of 165–175°C. Char ac ter iza tion of petrophysical pa ram e ters was the ba sis for fur ther mod el ling of EGS uti li za tion in this area.

Key words: En hanced Geo ther mal Sys tem (EGS), Pol ish Low lands, Lower Tri as sic, petrophysical pa ram e ters.

INTRODUCTION

The con cept of uti li za tion of heat from Hot Dry Rock as - sumes drill ing bore holes in ar eas char ac ter ized by high tem per - a ture anom a lies and in tense heat trans fer (Tester et al., 2006).

In 1970, it was pro posed as a method for ex ploit ing the heat con - tained in those vast re gions that con tain no flu ids in place. The HDR (Hot Dry Rock) sys tem re cov ers the Earth’s heat via closed-loop cir cu la tion of fluid from the sur face through a man-made con fined res er voir (Brown et al., 2012). Hot Dry Rock for a long time has been a syn onym for heat ex tracted from deep hot crys tal line rock (Tenzer, 2001). In most of the HDR pro jects in the world, gran ites con sti tute res er voir rocks for closed geo - ther mal sys tems (Tenzer, 2001; Sliaupa et al., 2005; Tester et al., 2006; Sausse et al., 2007; Brown et al., 2012). So lu tions that uti lize en ergy of hot sed i men tary rocks are rare, though such pro jects do ex ist. For ex am ple, the Lime stone Coast Geo ther - mal Pro ject (Aus tra lia) is de signed to dem on strate that geo ther - mal re sources within Aus tra lia’s hot sed i men tary bas ins can be used to gen er ate large amounts of com pet i tively priced zero-emis sion base-load power (Graaf et al., 2010). In case of sed i men tary cover, res er voir rocks con tain a small amount of ground wa ter, so the uti li za tion sys tem is called EGS (En hanced

Geo ther mal Sys tem). EGS was de fined as en gi neered res er - voirs that have been cre ated to ex tract eco nom i cal amounts of heat from low per me abil ity and/or po ros ity geo ther mal re - sources. EGS in cludes con duc tion-dom i nated, low-per me abil ity re sources in sed i men tary for ma tions (Tester et al., 2006). In EGS, the nat u rally oc cur ring hot rock does not con tain enough wa ter and gen er ally lies at a greater depth than is typ i cal of hy - dro ther mal sys tems. Frac tur ing of this rock and the in tro duc tion of geofluid (as sum ing wa ter ini tially, but later other fluid may be used, such as CO2) is nec es sary to en able the ex trac tion of use - ful heat en ergy. Again, the fluid is passed through a power plant on the sur face and sub se quently re inject ed (Antkowiak et al., 2010). Lo cal and re gional geo logic and tec tonic phe nom ena play a ma jor role in de ter min ing the lo ca tion and qual ity of geo - ther mal re sources. The first re quire ment is ac ces si bil ity. This is usu ally achieved by drill ing to depths of in ter est, fre quently us ing con ven tional meth ods sim i lar to those used to ex tract oil and gas from un der ground res er voirs. The sec ond re quire ment is suf fi - cient res er voir pro duc tiv ity. Ther mal en ergy is ex tracted from the res er voir by a cou pled trans port pro cess (con vec tive heat trans - fer in po rous and/or frac tured re gions of rock and con duc tion through the rock it self). The heat ex trac tion pro cess must be de - signed with the con straints im posed by pre vail ing in situ hy dro - log i cal, lithological and geo log i cal con di tions (Tester et al., 2006). In te grated geo ther mal ex plo ra tion strat egy cov ers all as - pects from geosystem anal y sis, res er voir char ac ter iza tion and res er voir geomechanics. Such an in te grated ap proach might be es sen tial for an eco nomic and sus tain able ex ploi ta tion not only of EGS but of all geo ther mal sys tems (Moeck et al., 2010).

* Corresponding author, e-mail: ansow@agh.edu.pl

Received: April 23, 2013; accepted: September 24, 2013; first published online: October 15, 2013

(2)

The re search pro ject, car ried out in the years 2010–2013 by lead ing sci en tific cen tres [the Con sor tium com posed of: the Pol - ish Geo log i cal In sti tute – Na tional Re search In sti tute, the AGH Uni ver sity of Sci ence and Tech nol ogy (AGH-UST), the Min eral and En ergy Econ omy In sti tute of the Pol ish Acad emy of Sci - ences, and the PBG Geo phys i cal Ex plo ra tion Co. Ltd.], is the first en ter prise of this type in Po land, which tends to rec og nize the po - ten tial of Hot Dry Rock for heat and elec tric ity pro duc tion. The main ob jec tive of the pro ject was to as sess the pos si bil ity of us ing geo log i cal suc ces sions for build ing EGS in the ter ri tory of Po land through car to graphic im ag ing of se lected suc ces sions, pro spec - tive for this type of sys tems in Po land. The goal of the re search con ducted by the AGH-UST team was to in di cate the best lo ca - tion for EGS in sed i men tary rocks (Górecki et al., 2013).

GEOLOGICAL SETTING

The area se lected for de tailed struc tural-para met ric and ther - mal mod el ling in terms of pre lim i nary as sess ment of po ten tial for EGS de vel op ment pos si bil ity is lo cated in cen tral Po land. Geo log - i cal set tings and evo lu tion of that area are very com plex. Its evo lu - tion start ing from the Pa leo zoic to Ce no zoic re sulted in its po ten - tial suit abil ity for geo ther mal uti li za tion. The area cov ers the mar - ginal part of the West and Cen tral Eu ro pean Pa leo zoic Plat form (WCEPP), in clud ing an ar ray of smaller ar eas known as the Trans-Eu ro pean Su ture Zone (TESZ; Królikowski, 2006;

Nawrocki and Poprawa, 2006; Fig. 1A), and to a lesser ex tent the East Eu ro pean Craton (EEC). The area also cov ers their tec tonic bor der, the NW–SE trending Teisseyre-Tornquist Zone (TTZ;

Po¿aryski and Brochwicz-Lewiñski, 1978; Dadlez et al., 1995;

Dadlez, 1997a, b; Grabowska et al., 1998; Grabowska and Bojdys, 2001; Kutek, 2001; Grad et al., 2002a) which is among the most im por tant deep lithospheric bound aries in Eu rope (Grad et al., 2002b; Dadlez et al., 2005; Grad and Guterch, 2006a, b;

Krzywiec, 2006a). TTZ is re placed to wards the NW by its pro lon - ga tion – the Sorgenfrei-Tornquist Zone (Krzywiec, 2006a; Jaro - siñski et al., 2009). The area of TTZ and partly TESZ roughly cor - re sponds to the lo ca tion of the ax ial part of the Pol ish Ba sin, known as the Mid-Pol ish Trough (MPT), which in turn was part of the Perm ian–Me so zoic sys tem of epicontinental bas ins of West - ern and Cen tral Eu rope (Ziegler, 1990a; Krzywiec, 2006a, b;

Jarosiñski et al., 2009), over lap ping much of the South ern Perm - ian Ba sin (SPB) area (Pha raoh et al., 2010). The Pol ish Ba sin was the east ern part of the SPB (Kiersnowski et al., 1995; Wees et al., 2000; Gast et al., 2010; Pha raoh et al., 2010). Its de vel op - ment re sulted from long-term ther mal sub si dence, which started in the Perm ian and lasted un til the Late Cre ta ceous. It com prised three ma jor pulses of ex ten sion-re lated ac cel er ated tec tonic sub - si dence dur ing Late Perm ian to Early Tri as sic times, in the Oxfordian to Kimmeridgian, and in the Early Cenomanian (Dadlez et al., 1995; Stephenson et al., 2003; Krzywiec, 2006a). Through - out Perm ian and Me so zoic times, the re gional sub si dence pat - terns of the Pol ish Ba sin fol lowed the evo lu tion of MPT. Lo cally, they were al tered by salt move ments that started dur ing the Early Tri as sic within the cen tral (Kuiavian) part of the trough, in the vi - cin ity of the K³odawa salt struc ture (Krzywiec, 2004, 2006a, b).

Zechstein salts were en gaged in a com plex sys tem of salt struc - tures de vel oped in the cen tral and north west ern seg ments of the MPT (Po¿aryski, 1977a, b; Krzywiec, 2004, 2006a, b). As a re sult 730 Anna Sowi¿d¿a³, Bartosz Papiernik, Grzegorz Machowski and Marek Hajto

Fig. 1A – study area on the back ground of the tec tonic map of Cen tral Eu rope, B – tec tonic set ting of Po land with out the Ce no zoic cover (af ter Jarosiñski et al., 2009)

B-VM – Bruno-Vistulicum Mas sif, FSM – Fore-Sudetic Monocline, HCMts. – Holy Cross Moun tains, MM – Ma³opolska Mas sif, RG – Rhine Graben, STZ – Sorgenfrei-Tornquist Zone,

TESZ – Trans-Eu ro pean Su ture Zone, TTZ – Teisseyre-Tornquist Zone

(3)

of long-last ing sub si dence, the Perm ian–Me so zoic thick sed i - men tary cover was de pos ited in the MPT, re sult ing in a col umn of over 8 km thick sed i ments, com pris ing Zechstein, Tri as sic, Ju ras - sic and Cre ta ceous suc ces sions (e.g., Marek and Pajchlowa, 1997; Becker, 2005a; Krzywiec 2006a, b; Bachmann et al., 2010;

Gast et al., 2010; Peryt et al., 2010; Leszczyñski, 2012). The fi nal stage of the Mid-Pol ish Trough evo lu tion was the Late Turonian–Paleocene in ver sion which also af fected the Sorgenfrei-Tornquist Zone, the Bo he mian Mas sif and the North Ger man Ba sin (Ziegler, 1990a, b; Krzywiec, 2006a; Jarosiñski et al., 2009; Pha raoh et al., 2010). In ver sion of the MPT was a broad up lift typ i cal for bas ins hav ing thick salts. The to tal up lift dur ing ba - sin in ver sion could reach 2500 to 3000 m, as seen in the Mid-Pol - ish Antictlinorium (MPA; Dadlez, 1980). In the Pol ish Low lands, the Ce no zoic se quence is thin typ i cally about 250 m. The rem nant top o graphic re lief of the MPA was re duced by ero sion dur ing the Eocene and was com pletely over stepped by mid-Oligocene times (Ziegler, 1990a), with no ev i dence for Pyr e nean or Savian in ver - sion (Jarosiñski et al., 2009; Pha raoh et al., 2010). In ver sion and sub se quent ero sion cre ated the sub-Ce no zoic tec tonic pat tern of the Pol ish Low lands. Star ing from the south, the in ves ti gated area cov ers the north ern rims of the Fore-Sudetic Monocline, and the Mogilno–£ódŸ seg ment of the South west ern Mar ginal Trough (Fig. 1B). The most EGS pros pect ing part of the area cov ers the Kuiavian seg ment of the Mid-Pol ish Anticlinorium (Swell) (Narkiewicz and Dadlez, 2008; Karnkowski, 2008; ¯elaŸniewicz et al., 2011). The Lower Tri as sic sec tion starts with the Lower Buntsandstein Sub group (LBS) which is of con ti nen tal to mar ginal ma rine or i gin (Warrington, 1974; Ziegler, 1990a; Röhling, 1991;

Geluk, 1999; Becker, 2005a; Bachmann et al., 2010). The Lower Buntsandstein Sub group in Po land is rep re sented by the Bal tic For ma tion (Fig. 2). In the Kuiavian seg ment, it is un der lain by the ca. 30 m thick Rewal For ma tion (Szyperko-Tellerand and Moryc, 1988; Becker, 2005a; Feldman-Olszewska, 2008). Its thick ness is ap prox i mately 400 m in depocentres of the Mid-Pol ish Trough (Szyperko-Teller and Moryc, 1988; Szyperko-Teller, 1997;

Iwanow and Kiersnowski, 1998; Bachmann et al., 2010). These are al lu vial and flu vial de pos its de rived from the sur round ing Variscan and older Bo he mian mas sifs and the Fenno scandian Shield, ac cu mu lated in mar ginal ar eas and pass ing dis tally into finer-grained mud-flat and mar ginal ma rine sed i ments (Pieñkowski, 1991; Szyper ko-Teller, 1997; Iwanow and Kiersnowski, 1998). The main clastic in put into the Pol ish Ba sin was from the south ern and south east ern mar gins of the cur rent SPB area (Marek and Pajchlowa, 1997; Bachmann et al., 2010).

An im por tant struc tural re or ga ni za tion took place at the end of Lower Buntsandstein sed i men ta tion. Ten sional and transtensional stresses cre ated NNE–SSW trending highs and lows that dis sected the sed i men tary ba sin of the Lower Buntsandstein Group into lo cal ar eas of sub si dence re lated to grabens, and much wider ar eas of up lift and ero sion (Bachmann et al., 2010). The Mid dle Buntsandstein Sub group (MBS) suc ces - sions in the Mid-Pol ish Trough have a thick ness ex ceed ing 1000 m. The MBS in the Mid-Pol ish Through is rep re sented by the Pomerania and Po³czyn for ma tions com posed of al ter nat ing thin-bed ded sand stones, siltstones and claystones of mar ginal ma rine to playa-flat and lac us trine or i gin (Szyperko-Teller, 1997;

Iwanow and Kiersnowski, 1998; Becker, 2005a, b). In the re - search area, some au thors (Szyperko-Teller, 2008) dis tin guish the in for mal Clayey For ma tion in stead of the Po³czyn For ma tion (Fig. 2). In Po land, the top most Lower Tri as sic de pos its are rep re - sented by rocks equiv a lent to the Röt For ma tion. In the re search area, this is sabkha of the Barwice For ma tion (Feldman- Olszewska, 2008). The Röt For ma tion is marked by an re gional in crease in ma rine in flu ence. Open-ma rine con di tions ex isted at that time in the fore land of the Holy Cross High, but gen er ally in

Fig. 2. Stra tig ra phy of the Lower Tri as sic in the BrzeϾ Kujawski IG 1 bore hole

(af ter Szyperko-Teller and Szulc, 2008) UBS – Up per Buntsandstein Sub group, MBS – Mid dle Buntsandstein Sub group, LBS – Lower Buntsandstein Sub group

(4)

the Pol ish Ba sin, the fa cies pat tern of the lower Röt For ma tion is typ i cal of a semi-closed evaporitic ba sin (Becker, 2005a, b). Fol - low ing evaporite de po si tion, a large brack ish-wa ter la goon de vel - oped, with de pos its of pre dom i nantly red fine-grained clastics (Szulc, 2000). A wide spread trans gres sion be gan dur ing the lat - est de po si tion of the Röt re sulted in the shal low sea car bon ate sed i men ta tion (Szyperko-Teller, 1997; Szulc, 2000; Bachmann et al., 2010) which pre vailed dur ing Mid dle Tri as sic times.

MATERIALS AND METHODS

Geo ther mal en ergy con sists of the ther mal en ergy stored in the Earth’s crust, which is dis trib uted be tween the con stit u ent host rock and the nat u ral fluid that is con tained in its frac tures and pores at tem per a tures above am bi ent lev els. The source and trans port mech a nisms of geo ther mal heat are unique to this en ergy source. Lo cal and re gional geo log i cal and tec tonic phe - nom ena play a ma jor role in de ter min ing the lo ca tion (depth and po si tion) and qual ity (fluid chem is try and tem per a ture) of a par - tic u lar re source. The first re quire ment for EGS is ac ces si bil ity.

This is usu ally achieved by drill ing to depths of in ter est, fre - quently us ing con ven tional meth ods sim i lar to those used to ex - tract oil and gas from un der ground res er voirs. The sec ond re - quire ment is suf fi cient res er voir pro duc tiv ity char ac ter ized by the tem per a ture dis tri bu tion within the res er voir (Tester et al., 2006).

EGS con cepts would re cover ther mal en ergy con tained in subsurface rocks by cre at ing or ac cess ing a sys tem of open, con nected frac tures through which wa ter can cir cu late down in - jec tion bore holes, heated by con tact with the rocks, and re turn to the sur face in pro duc tion bore holes to form a closed loop (Tester et al., 2006). There fore, the res er voir ge om e try should be ap pro - pri ate (re quire ments of min i mum thick ness).

Dur ing the ex e cu tion of the pro ject, based on in ter na tional ex - pe ri ences (Tenzer, 2001; Tester et al., 2006; Sausse et al., 2007;

Antkowiak et al., 2010; Brown et al., 2012), re quire ments for EGS in sed i men tary rocks have been spec i fied. Crit i cal re quire ments for the EGS lo ca tion in clude: ther mal pa ram e ters of the rocks (tem per a tures >150°C), thick ness of the res er voir (min i mum of 300 m), po ros ity and per me abil ity of the res er voir rocks (as the low est) and the depth of the res er voir (3–6 km).

Li thol ogy and me chan i cal prop er ties of res er voir rocks are also im por tant be cause of hydrofracturing. In case of sed i men tary rocks, com pact sand stones or lime stones should be ap pro pri ate.

The first step of the pre lim i nary anal y sis was based on the ex ist ing geo log i cal and geo ther mal data, e.g., those col lected in geo ther mal at lases (Górecki, 2006a, b) sup ple mented with new data. Com ple men tary anal y ses of raw data and maps of sur face heat flow den sity, subsurface tem per a tures, and maps of gravimetric and mag netic anom a lies al lowed de ter min ing sev - eral pro spec tive lo ca tions. The most prom is ing con di tions (tem - per a tures >150°C at a depth of 5 km) oc cur in cen tral Po land in the South west ern Mar ginal Trough and in small part of Mid-Pol - ish Swell re gions (Fig. 1). Pre lim i nary anal y ses re vealed pros - pects for build ing EGS in the Lower Tri as sic res er voir, which seems to be a com plex meet ing the EGS re quire ments. How - ever, the Perm ian and Car bon if er ous sand stones also have been iden ti fied as a po ten tial res er voir for EGS in this area (ac - cord ing to tem per a ture re quire ment). The ad van tage of the Lower Tri as sic res er voir was the con sid er able thick ness of sed i - men tary rocks com bined with the fa vour able res er voir pa ram e - ters for EGS (low po ros ity and per me abil ity). In or der to se lect the best pos si ble sites and rock com plexes for lo ca tions of EGS within a pre-in di cated area, ther mal, struc tural and para met ric mod el ling was per formed.

STRUCTURAL AND PARAMETRIC 3D MODELLING

Meth od ol ogy of ba sin-scale struc tural and para met ric mod - el ling of the sed i men tary cover used by the AGH-UST team has been de vel oped over past 20 years. The first re gional dig i tal mod els were bore hole-based struc tural maps in a form of dig i tal 2D grids with hor i zon tal res o lu tion of 5000 ´ 5000 m. They were later re placed by struc tural and isopach grids dis play ing res o lu - tion of up to 1000 m and rel e vant maps and cor re spond ing grids of petrophysical and ther mal pa ram e ters (po ros ity, per me abil ity, den sity, dis tri bu tion of subsurface tem per a ture; Górecki, 2006a, b; Doornenbal et al., 2010). These, in fact 2.5D so lu tions, were grad u ally re placed by fully 3D Pe trel-based geomodels de vel - oped ac cord ing to the mod ern struc tural and para met ric (static) mod el ling trends (e.g., Dubrule,1998, 2003; Zakrevsky, 2011).

That meth od ol ogy was ap plied to com plete re search in the fields of pe tro leum ge ol ogy (Papiernik et al., 2009, 2010, 2012), Car - bon Cap ture and Stor age – CCS (Wójcicki, 2012), and geo ther - mal sys tems as sess ment (e.g., Górecki, 2011, 2012). Struc tural sur faces were used in the study as in put data for mod el ling of a 3D geo met ri cal frame work. They are a com bi na tion of re gional and semi-re gional 2D grids. Struc tural 2D grids with hor i zon tal res o lu tion of 1000 ´ 1000 m (Górecki, 2006a, b; Doornenbal et al., 2010) were used as con di tion ing re gional trends for de tailed dig i tal sur faces dis play ing 250 ´ 250 res o lu tion, which were lo - cally up dated with new bore holes (e.g., Pabianice 1 and Kaszewy 1), de tailed struc tural maps cre ated for CCS aims (Wójcicki, 2012) and the new seis mic in ter pre ta tions com pleted for the re search pur poses. The re sul tant ba sic struc tural frame - work of the EGS model cov ers an area of ca. 36,000 km2. The area se lected for the pos si ble EGS lo ca tion cov ers ca. 19,000 km2 (Fig. 3, black line). It is com posed of thir teen struc tural ho ri - zons start ing from the base of the Car bon if er ous up to the top of the Cre ta ceous, and it con tains twelve strati graphic zones (strati graphic com plexes in the Pe trel sys tem no men cla ture), equiv a lent to strati graphic ep ochs (Fig. 3).

The struc tural frame work is rel a tively sim pli fied as it is com - pleted with out a fault model. The pres ence of faults is clearly re - flected in the ge om e try of Pe trel ho ri zons, how ever, faults were not mod elled as a Pe trel Fault Model due to a very large area of the 3D model and gen er ally weak seis mic con trol of ver ti cal and hor i zon tal ex tents of in di vid ual faults. The dis tin guished zones (strati graphic com plexes) were di vided into pro por tional lay ers and their ver ti cal res o lu tion was ac cepted ac cord ing to the ex - pected suit abil ity of each com plex for the EGS pur poses, di vid ing 4 to 20 pro por tional lay ers with the min i mum thick ness of 5 m.

Next steps of the mod el ling pro cess were lithological and para met ric mod el ling. The li thol ogy model is based on geo phys i - cal logs and in cludes eight li thol ogy types – sand stones, claystones, mudstones, marls, car bon ates, evaporites, grav els and oth ers (e.g., vol ca nic rock). It was es ti mated with the use of Se quen tial Gaussi an Sim u la tion al go rithm. Para met ric mod els are based on geo phys i cal logs of po ros ity – PHI (data from 54 bore holes), shale vol ume – Vsh (35 bore holes) and bulk den sity – RHOB (24 bore holes). The model of per me abil ity – PERM – was based on core data from 90 bore holes. For the sake of sim plic ity, the para met ric mod els were cal cu lated with the use of Kriging In - ter po la tion. Lo ca tion of bore holes used in para met ric mod el ling is shown in Fig ure 4.

The re sults of struc tural and para met ric mod el ling were con - verted into maps of av er age pa ram e ters and ef fec tive thick - nesses, su per im posed on maps of tem per a tures re lated to the tops of the mapped zones.

732 Anna Sowi¿d¿a³, Bartosz Papiernik, Grzegorz Machowski and Marek Hajto

(5)

Fig. 3. 3D geo met ri cal frame work in the se lected area for EGS lo ca tion

Fig. 4. Lo ca tion of bore holes used in para met ric mod el ling

(6)

SUBSURFACE THERMAL FIELD ANALYSIS

Pa ram e ters which de ci sively con trol the subsurface tem per - a tures are: den sity of Earth’s heat flow and di ver sity of ther mal prop er ties of rocks, par tic u larly their ther mal con duc tiv ity (Szewczyk, 2002). The heat flow de ter mines the rate of en ergy trans fer in time unit from higher- to lower-tem per a ture sites, whereas the tem per a ture is a quan ti ta tive mea sure of ther mal en ergy ac cu mu lated in a rock for ma tion at the ob ser va tion site.

Tem per a ture mea sure ments made in deep bore holes are the main source of in for ma tion about in ter nal ther mal re gime.

These data are col lected from:

1. Mea sure ments un der quasi-sta tion ary state, car ried out dur ing rec og ni tion of geo ther mal con di tions.

2. Tem per a ture mea sure ments un der unstabilized ther - mal con di tions.

3. Mea sure ments of bot tom-hole tem per a ture (BHT).

For rec og ni tion of true tem per a tures of rocks, the most im - por tant are mea sure ments car ried out un der con di tions pos si bly clos est to the geo ther mal bal ance. Within the area of geo ther - mal in ves ti ga tion, nine tem per a ture mea sure ments were made in the fol low ing deep bore holes un der con di tions clos est to those re garded as sta bi lized (so-called “mea sure ments for the pur - pose of geo ther mal gra di ent”): Czeszewo IG 1, Kroœniewice IG 1, Kutno 1, Objezierze IG 1, Piotrków Trybunalski IG 1, Poddêbice PIG-2, Wrzeœnia IG 1, Zakrzyn IG 1 and Zgierz IG 1.

The mea sure ments rep re sented a di rect source of in for ma tion on the subsurface ther mal re gime.

It is well known that the subsurface tem per a ture mea sure - ments, even when done with proper care, are af fected by a num - ber of er rors. Dis tur bance of the nat u ral ther mal re gime of rocks caused by drill ing op er a tions, mostly by the long-last ing cir cu la - tion of drill ing mud, sig nif i cantly changes the tem per a tures re - corded along the bore hole. Dis tur bances are rel a tively larg est in the top parts of the tem per a ture logs and small est in the deep est parts of bore hole that re mains un der dis turb ing con di tions for a short time. Com ple tion of drill ing ini ti ates the long-last ing pro - cess of sta bi li za tion, when the ther mal re gime re turns to the nat - u ral state. How ever, the pos si ble ver ti cal con vec tion of drill ing mud in the bore hole forced by tem per a ture gra di ents be tween var i ous parts of the bore hole may cause that the dis tur bances are prac ti cally ir re vers ible. An im por tant in di ca tor of sta bil ity of ther mal mea sure ments is the rough con sis tency be tween tem - per a tures re corded in the subsurface zone of the bore hole site and those mea sured in the ad ja cent ar eas.

For in ter pre ta tion of the dis tri bu tion of subsurface tem per a - tures, syn thetic thermograms were em ployed, which were re - corded in con di tions of the sta ble ther mal equi lib rium (as con tin - u ous mea sure ments). The com piled thermograms in cluded also the so-called cli ma tic cor rec tion re lated to tem per a ture dis tur - bances in the up per part of the geo log i cal pro file due to tem per a - ture changes at the earth sur face, oc cur ring in gla cial cy cles (ice ages) dur ing the Late Ho lo cene (e.g., Beck, 1992; Šafanda and Kubik, 1992; Beltrami et al., 2001; Šafanda and Rajver, 2001;

Majorowicz et al., 2002; Szewczyk, 2002; Szewczyk et al., 2007;

Szewczyk and Gientka, 2009).

The cov er age of the study area is rel a tively reg u lar. Most bore holes with the tem per a ture mea sure ments are lo cated to the north of £ódŸ (Kutno 1, Zgierz IG 1, Poddêbice PIG-2 and Kroœniewice IG 1 bore holes). A key ques tion for eval u a tion of the qual ity and use ful ness of the col lected syn thetic thermograms was to as cer tain whether the subsurface tem per a - ture mea sure ments were made re ally in the sta bi lized ther mal con di tions (af ter a suit ably long stand still time). Conformability of tem per a ture mea sure ments re corded in the near-sur face zone

is a valid in di ca tion of the sta bil ity of ther mal mea sure ments (their so lid ity). Se ri ous dis crep an cies be tween these tem per a - tures in di cate mea sure ments made in con di tions de part ing from sta bi lized (Plewa, 1966, 1994). In or der to as sess the qual ity of the in put data, anal y sis of the tem per a ture dis tri bu tion with depth in par tic u lar bore holes was made. The scale of tem per a ture dis - tur bances in the near-sur face zone and in the res er voir in ter vals was eval u ated. Mak ing use of the lin ear re gres sion model, in ter - val gra di ents and mean gra di ents for the whole bore holes were es ti mated.

Anal y sis of the re gres sion curves in di cates some de par tures from the es ti mated val ues of tem per a ture in the near-sur face zone from val ues of tem per a tures To re corded in the ther mally neu tral zone, ex tent of which in Po land is es ti mated at about 18–20 m be low ground level (Plewa, 1966, 1994). Match ing of the re gres sion model to the mea sure ment curves, de ter mined by the co ef fi cient R2, var ies in a nar row range from R2 = 98.3%

for the Kroœniewice IG 1 bore hole to R2 = 99.8% for the Objezierze IG 1 bore hole, which in di cates a very good match of the mea sure ments to the lin ear model of vari abil ity in the subsurface tem per a tures. A lin ear re gres sion model was also adopted for draw ing the map of geo ther mal gra di ent, which was used as an aux il iary pa ram e ter to de ter mine the change of tem - per a ture at dif fer ent depths – on maps. The mean geo ther mal gra di ent is a pa ram e ter that al lows es ti mat ing the for ma tion tem - per a ture at a par tic u lar depth, with out knowl edge of heat flow val ues and ther mal prop er ties of rocks in a geo log i cal pro file in a given lo ca tion. The anal y sis of geo ther mal gra di ent dis tri bu tion in the study area was based on in ter pre ta tion of four teen ther mal curves re corded in quasi-sta tion ary con di tions (Szewczyk and Gientka, 2009), of which nine bore holes were lo cated within the com pass of the pro spec tive area. On the ba sis of the com piled data, a map of vari a tions in the mean gra di ents was con structed for the whole study area. The map is pre sented in Fig ure 5.

The anal y sis of heat flow den sity dis tri bu tion was car ried out on the ba sis of 69 de ter mi na tions of this pa ram e ter, of which nine are lo cated within the pro spec tive area for HDR sys tems.

The heat flow de ter mi na tion data were com piled from Szewczyk and Hajto (2006) and Szewczyk and Gientka (2009). On the ba - sis of the col lected ter res trial heat flow data, a map of vari a tions in this pa ram e ter was con structed for the study area (Fig. 6).

In or der to il lus trate the tem per a ture vari a tion in the ver ti cal pro file of the re search area based on the tem per a ture curve anal y sis, maps of iso therms for var i ous depths, and a tem per a - ture map for the top of the Lower Tri as sic res er voirs were pro - duced. Due to the var ied dis tri bu tion of mea sure ment points (bore holes) in the study area, the av er age geo ther mal gra di ent was in cor po rated to as sess the subsurface tem per a ture dis tri bu - tion. The use of a gen er al ized model of subsurface tem per a ture vari abil ity in the form of maps of av er age geo ther mal gra di ent al - lowed eval u at ing subsurface tem per a tures in ar eas poorly doc u - mented with ther mal mea sure ments and es ti mat ing the tem per - a tures at greater depths by ex trap o lat ing trends in subsurface tem per a ture vari abil ity in the whole study area. The map of tem - per a tures at the top of the Lower Tri as sic aqui fer pro spec tive for EGS sys tems is shown in Fig ure 7.

RESULTS

The struc tural, para met ric and ther mal mod el ling al lowed char ac ter iza tion of petrophysical pa ram e ters of the Lower Tri as - sic de pos its in the pro spec tive lo ca tion for EGS in sed i men tary rocks in di cated as the best sed i men tary res er voir for this kind of sys tem on the ba sis of pre lim i nary de ter mi na tion of ge om e try of 734 Anna Sowi¿d¿a³, Bartosz Papiernik, Grzegorz Machowski and Marek Hajto

(7)

Fig. 6. Map of ter res trial heat flow den sity in the se lected area for EGS lo ca tion Ex pla na tions as in Fig ure 5

Fig. 5. Map of av er age geo ther mal gra di ent in the se lected area for EGS lo ca tion

(8)

736 Anna Sowi¿d¿a³, Bartosz Papiernik, Grzegorz Machowski and Marek Hajto

Fig. 7. Map of tem per a tures at the top sur face of the Lower Tri as sic in the se lected area for EGS lo ca tion Ex pla na tions as in Fig ure 5

Fig. 8. Struc tural map of the top of the Lower Tri as sic in the se lected area for EGS lo ca tion Ex pla na tions as in Fig ure 5

(9)

the res er voir as well as ther mal pa ram e ters of the rocks. This lo - ca tion is shown in Fig ure 1.

In this area, the top of the Lower Tri as sic oc curs at depths from 2000 m b.s.l. (at the south west ern mar gin of the area) to about 6000 m b.s.l. (in the east ern part; Fig. 8). The to tal thick - ness of the Lower Tri as sic de pos its is ap pro pri ate for EGS prac - ti cally in the whole area be cause it ex ceeds the re quired 300 m and reaches the great est val ues (over 2000 m) in the east ern part of the in ves ti gated area (Fig. 9). The Lower Tri as sic zone of the mod elled area is dom i nated by claystones (nearly 40%), siltstones (28.5%) and sand stones (27.5%). The great est thick - ness of sand stones, which are con sid ered as res er voir rocks for EGS, is found in the cen tral and south east ern part of the area, where they pre vail in the Lower Tri as sic suc ces sion. The rocks of this area are char ac ter ized by shale vol ume in the range of 50–65% (on av er age 60%; Fig. 10). The po ros ity of the Lower Tri as sic var ies from 0 to 21%, with the global av er age for the en - tire model equal to 3.92% (Fig. 11). The per me abil ity model of the Lower Tri as sic for ma tions was based mainly on lab o ra tory data. It was cor re lated with the po ros ity model based on the bore hole logs; its cred i bil ity may be low. The mod elled per me - abil ity for the Lower Tri as sic for ma tions ranges from 0 to 32.84 mD, with an av er age for the en tire model of 0.36 mD (Fig. 12). The mod elled tem per a ture at the top of the ana lysed ho ri zon var ies from about 120 to more than 170°C (Fig. 7).

Anal y sis of the heat flow map in di cates that the heat flow in the study area var ies from 60 to 110 mW/m2. The gen eral trend of vari a tions in the heat flow in di cates its in crease from the east to the west and south-west. In creased heat flow val ues were re -

corded along the south west ern bound ary of the Mogilno–£ódŸ Trough at the con tact with the Fore-Sudetic area where the heat flow has its max i mum val ues. In this area, the high est heat flow val ues were re corded in the bore holes of Broniszewice 1 (106.2 mW/m2), Kotlin 2 (103.8 mW/m2) and Witowo 2 (100.1 mW/m2). Re duced heat flow val ues (about 70 mW/m2) are char ac ter is tic of the £ódŸ area. Lo cal neg a tive heat flow anom a lies (on the or der of 70–75 mW/m2) oc cur along the north - east ern bound ary of the Mogilno–£ódŸ Trough at the con tact with the Kujawy Swell (Fig. 5).

SELECTION OF PROSPECTIVE LOCATION FOR EGS

Anal y sis of the re sults of struc tural, para met ric and ther mal mod el ling for the pre-in di cated area (cen tral Po land) al lowed spec i fy ing the pro spec tive lo ca tion for EGS in sed i men tary rocks.

The main re quire ment for EGS is pos si bil ity to ex tract ther - mal en ergy from a res er voir, so ther mal pa ram e ters are very im - por tant. The high est tem per a tures are ob served in the east ern part of the mod elled area (Kroœniewice–Kutno re gion), in places of the deep est po si tion of the Lower Tri as sic de pos its, where the tem per a ture at the top of the Lower Tri as sic is in the range of 165–175°C. De spite the con sid er able depth to the res er voir (5–7 km be low sea level), the up per part of the res er voir ful fils the ac ces si bil ity re quire ments (max. 6 km be low sea level). Be - cause of the ne ces sity to cre ate a sys tem of con nected open

Fig. 9. Map of to tal thick ness of the Lower Tri as sic in the se lected area for EGS lo ca tion Ex pla na tions as in Fig ure 5

(10)

738 Anna Sowi¿d¿a³, Bartosz Papiernik, Grzegorz Machowski and Marek Hajto

Fig. 10. Shale vol ume model of the Lower Tri as sic – fence di a gram

Fig. 11. Map of av er age po ros ity of the Lower Tri as sic in the se lected area for EGS lo ca tion Ex pla na tions as in Fig ure 5

(11)

frac tures to re cover ther mal en ergy, the un ques tion able ad van - tage is the great thick ness of Lower Tri as sic sed i men tary rocks in the Kroœniewice–Kutno area, which ex ceeds 1500 m (Fig. 13).

This con sid er able thick ness have in flu ence of higher tem per a - ture within the res er voir than at the top, which could at tain up to 190°C. EGS in cludes con duc tion-dom i nated, low-per me abil ity re sources in sed i men tary for ma tions (Tester et al., 2006), so petrophysical pa ram e ters of the res er voir are also sig nif i cant for EGS. In the Kroœniewice–Kutno area, sand stones are taken into con sid er ation as res er voir rocks for EGS. Based on a lab o ra tory anal y sis of Lower Tri as sic sand stones from the Kroœniewice–Kutno area (tests were per formed within the frame work of the HDR pro ject at the AGH Uni ver sity with use of the trans mit ted-light op ti cal mi cro scope and scan ning elec tron mi cro scope), it is pre dicted that the sand stones are ce mented with sil ica. This type of ma trix should be suit able for hydrofracturing, how ever, there is not much ex pe ri ence world - wide with hydrofracturing in this type of rock for EGS. Cre at ing the con nec tion be tween the bore holes was a cru cial step in de - vel op ing the EGS res er voir. Rock-fluid in ter ac tions, which may have a long-term ef fect on res er voir op er a tion, are also very im - por tant. Dis so lu tion and pre cip i ta tion prob lems in very high-tem - per a ture EGS fields are not well un der stood (Tester et al., 2006).

Lab o ra tory test ing of me chan i cal prop er ties has shown that the sand stones are strong or very strong rocks (tests were per - formed within the frame work of the HDR pro ject at the AGH Uni - ver sity). In the Kroœniewice–Kutno area, res er voir rocks are char ac ter ized by very low per me abil ity (0.02–0.1 mD) and low po ros ity (ap prox i mately 3%). Sand stones are dom i nant in the

lower and the mid dle parts of the sec tion, at tain ing a thick ness of sev eral hun dred metres (Fig. 13). Lithological com po si tion of the Lower Tri as sic were re fined in the spa tial dis tri bu tion of shale vol ume, es ti mated on the ba sis of a larger num ber of in put data.

This model in di cates that the sand stones con tain much clay ma - te rial and rep re sent a tran si tional lithological type be tween clayey sand stones and sandy mudstones. Even the sand stones from the Kroœniewice–Kutno area con tain from 40 to 65% of clay, which is a rel a tively high pro por tion.

Con sid er ing the above, the most pro spec tive area for the EGS lo ca tion in sed i men tary rocks in Po land was iden ti fied in the Kuiavian seg ment of the Mid-Pol ish Anticlinorium in the Kroœniewice–Kutno area. Us ing cross-sec tions through the most pro spec tive zone, we can as sess its ge om e try. It is elon - gated in the NW–SE di rec tion, its width is ap prox i mately 8 km and the length is about 30 km (Fig. 13).

CONCLUSIONS

The EGS tech nol ogy is con sid ered to be the tech nol ogy of the fu ture. Cur rently, hydrogeothermal en ergy is uti lized in Po - land, and the en ergy car rier is warm ground wa ter pro duced by bore holes. On the other hand, petrogeothermal en ergy (ex - ploited by EGS), which con sti tutes heat re sources of rocks, has not yet been uti lized.

In most of the EGS pro jects world wide, gran ites con sti tute the res er voir rocks for closed geo ther mal sys tems. So lu tions of en ergy uti li za tion from hot sed i men tary rocks are rare, al though

Fig. 12. Map of av er age per me abil ity of the Lower Tri as sic in the se lected area for EGS lo ca tion Ex pla na tions as in Fig ure 5

(12)

ex per i men tal sys tems cur rently op er ate. The prob lem with sed i - men tary rocks can be the vari abil ity of rel e vant pa ram e ters of the mod elled sys tem (e.g., sus cep ti bil ity to frac ture rocks).

There are a num ber of prob lem atic is sues that could po ten tially af fect the ef fec tive ness of EGS, such as the het er o ge ne ity of res er voir rocks, the pres ence of clay ma te rial and the im pact of the oc cur rence of mineralised wa ters. These prob lems can be solved at the stage of pro ject im ple men ta tion, but the first step to de velop EGS in Po land is to rec og nize the geo ther mal po ten tial for such sys tems.

Be cause of the dis tri bu tion of subsurface tem per a tures and great depths to the thick sed i men tary rocks, the Lower Tri as sic

de pos its of cen tral Po land seem to be the most ap pro pri ate for EGS. In te grated ther mal, para met ric and struc tural mod el ling helped to iden tify the most pro spec tive lo ca tion for such a geo - ther mal sys tem in sed i men tary rocks, which is the Kroœniewice–Kutno area. For this par tic u lar pro spec tive area, petrophysical pa ram e ters of the Lower Tri as sic are as follows:

1. The res er voir oc curs at a depth from about 5000 to 6000 m b.s.l.

2. To tal thick ness of the Lower Tri as sic for ma tion is suf fi - cient to per form frac tur ing.

3. The tem per a ture within the res er voir ex ceeds 165°C.

4. The po ros ity of res er voir rocks is ap prox i mately 3%.

740 Anna Sowi¿d¿a³, Bartosz Papiernik, Grzegorz Machowski and Marek Hajto

Fig. 13. Lo ca tion of the pro spec tive depth in ter val of the Lower Tri as sic in the Kroœniewice–Kutno area A – along the NW–SE cross-sec tion, B – lo ca tion of cross-sec tions shown on the back ground of the struc tural map

of the top of the Rotliegend, C – along the SW–NE cross-sec tion

(13)

5. The per me abil ity of res er voir rocks is in the range of 0.02–0.1 mD.

Char ac ter iza tion of petrophysical pa ram e ters was the ba sis for fur ther mod el ling of EGS uti li za tion. The crit i cal re quire ments for the EGS lo ca tion in clude: ther mal pa ram e ters of rocks (tem - per a tures >150°C), thick ness of the res er voir (min i mum of 300 m), po ros ity and per me abil ity of res er voir rocks (as the low est) and depth to the res er voir (3–6 km). Based on these re quire - ments, the Lower Tri as sic sand stones of the Kroœniewice–Kutno area can be con sid ered as po ten tial res er voir rocks for EGS.

The fi nal as sess ment needs fur ther in ves ti ga tion based on high-qual ity data as well as a sig nif i cantly greater num ber of ex - per i ments re lated to the frac tur ing of sed i men tary rocks.

Ac knowl edge ments. The re search has been un der taken on re quest of the Min is try of the En vi ron ment and fi nanced from the sources of the Na tional Fund for En vi ron men tal Pro tec tion and Wa ter Man age ment. The Fac ulty of Ge ol ogy, Geo phys ics and En vi ron men tal Pro tec tion, AGH Uni ver sity of Sci ence and Tech nol ogy, is grate ful to Schlumberger In for ma tion So lu tions for mak ing it pos si ble to use the soft ware, which has been sup - plied un der Do na tion Agree ment CTT-tt-4_2012_PL be tween AGH-UST Kraków and GeoQuest Sys tems B.V. The pa per has been pre pared un der AGH-UST stat u tory re search grant No.

11.11.140.321. The au thors would like to thank the re view ers A.

Becker, S. Šliaupa and P. Such for their con struc tive com ments and many use ful re marks. Many thanks are also due to the Ed i - tor-in-Chief T.M. Peryt for ed i to rial sup port.

REFERENCES

Antkowiak M., Snyder N.K., Low ry T.S. (2010) A high level geo ther - mal sys tem scoping model: a first step to ward En hanced Geo ther - mal Sys tem En gi neer ing. Pro ceed ings, Thirty-Fifth Work shop on Geo ther mal Res er voir En gi neer ing, Stan ford Uni ver sity, Stan ford, Cal i for nia, Feb ru ary 1–3, 2010: 1–8. http://www.geo ther mal-en - ergy.org/pdf/IGAstandard/SGW/2010/antkowia.pdf

Bachmann G.H., Geluk M.C., Warrington G., Becker-Ro man A., Beutler G., Hagdorn H., Hounslow M.W., Nitsch E., Röhling H.-G., Si mon T., Szulc A. (2010) Tri as sic. In: Pe tro leum Geo log i - cal At las of the South ern Perm ian Ba sin Area (eds. J.C.

Doornenbal and A.G. Stevenson): 149–173. EAGE Pub li ca tions b.v., Houten.

Beck A.E. (1992) In fer ring past cli mate change from subsurface tem - per a ture pro files: some prob lems and meth ods. Palaeo ge ogra - phy, Palaeoclimatology, Palaeo ec ol ogy, 98: 73–80.

Becker A. (2005a) Sequenzstratigraphie und Fazies des Unteren und Mittleren Buntsandsteins im östlichenTeil des Germanischen Beckens (Deutsch land, Polen). Hallesches Jahrbuch für Geowissenschaften, Reihe B: Geologie, Paläontologie, Mineralogie, Beihefte, 21:1–117.

Becker A. (2005b) Flu vial and brack ish-lac us trine de pos its of the Lower Tri as sic and their cor re la tion in the east ern part of the Cen tral Eu ro pean Ba sin. In: Sed i ment 2005. The Sed i ment Fac - tory. 18–20 July in Gwatt, Lake Thun, Swit zer land. Ab stracts.

Hannover. Deut sche Gesellschaft für Geowissenschaften: 29.

Beltrami H., Har ris R.N., eds. (2001) Spe cial is sue of jour nal Global and Plan e tary Change on Cli mate from Un der ground Tem per a - tures. Global and Plan e tary Change, 29: 145–360.

Brown D.W., Duchane D.V., Heiken G., Hriscu V.T. (2012) Min ing the Earth’s Heat: Hot Dry Rock Geo ther mal En ergy. Springer.

Dadlez R. (1980) Tec ton ics of the Pom er a nian Swell, NW Po land (in Pol ish with Eng lish sum mary). Kwartalnik Geologiczny, 24 (4):

741–767.

Dadlez R. (1997a) Epicontinental bas ins in Po land: De vo nian to Cre - ta ceous – re la tion ships be tween the crys tal line base ment and sed i men tary infill. Geo log i cal Quar terly, 41 (4): 419–432.

Dadlez R. (1997b) Tektonika kompleksu permsko-mezozoicznego.

Prace Pañstwowego Instytutu Geologicznego, 153: 410–415.

Dadlez R., Narkiewicz M., Stephenson R.A., Visser M.T.M., Wees J.D. van (1995) Tec tonic evo lu tion of the Mid-Pol ish Trough:

mod el ling im pli ca tions and sig nif i cance for cen tral Eu ro pean ge - ol ogy. Tectonophysics, 252: 179–195.

Dadlez R., Grad M., Guterch A. (2005) Crustal struc ture be low the Pol ish Ba sin: is it com posed of prox i mal ter ranes de rived from Baltica? Tectonophysics, 411: 111–128.

Doornenbal J.C., Abbink O.A., Duin E.J.T., Dusar M., Hoth P., Jasionowski M., Lott G.K., Mathiesen A., Papiernik B., Peryt T.M., Veldkamp J.G., Wirth H. (2010) In tro duc tion, strati graphic frame work and map ping. In: Pe tro leum Geo log i cal At las of the

South ern Perm ian Ba sin Area (eds. J.C. Doornenbal and A.G.

Stevenson): 1–9. EAGE Pub li ca tions b.v., Houten.

Dubrule O. (1998) Geostatistics in Pe tro leum Ge ol ogy. AAPG Con - tin u ing Ed u ca tion Course Note Se ries, 38. AAPG, Tulsa, Oklahoma, USA.

Dubrule O. (2003) Geostatistics for Seis mic Data In te gra tion in Earth Mod els. 2003 Dis tin guished In struc tor Short Course. Dis - tin guished In struc tor Se ries. No. 6 SEG/EAGE. Tulsa, Oklahoma, USA.

Feldman-Olszewska A., ed. (2008) BrzeϾ Kujawski IG 1, IG 2, IG 3.

Pro file g³êbokich otworów wiertniczych Pañstwowego Instytutu Geologicznego, 125.

Gast R.E., Dusar M., Breitkreuz C., Gaupp R., Schnei der J.W., Stemmerik L., Geluk M.C., Geisler M., Kiersnowski H., Glen - nie K.W., Kabel S., Jones N.S. (2010) Rotliegend. In: Pe tro leum Geo log i cal At las of the South ern Perm ian Ba sin Area (eds. J.C.

Doornenbal and A.G. Stevenson): 101–121. EAGE Pub li ca tions b.v., Houten.

Geluk M.C. (1999) Palaeogeographic and struc tural de vel op ment of the Tri as sic in the Neth er lands – new in sights. Zentralblatt für Geologie und Paläontologie (Halle), 7–8: 727–745.

Górecki W., ed. (2006a) At las of Geo ther mal Re sources of Me so zoic For ma tions in the Pol ish Low lands. AGH-UST, Kraków.

Górecki W., ed. (2006b) At las of Geo ther mal Re sources of Pa leo - zoic For ma tions in the Pol ish Low lands. AGH-UST, Kraków.

Górecki W., ed. (2011) At las of Geo ther mal Wa ters and En ergy Re - sources in the West ern Carpathians. AGH-UST, Kraków.

Górecki W., ed. (2012) Geo ther mal At las of the Carpathian Foredeep. AGH-UST, Kraków.

Górecki W., Sowi¿d¿a³ A., Hajto M., Jasnos J. (2013) The lat est re - sults of geo ther mal pro jects in Po land. Pro ceed ings Eu ro pean Geo ther mal Con gress 2013, June 3–7, 2013, Pisa, It aly. In ter na - tional Geo ther mal As so ci a tion – Eu ro pean Branch Pub li ca tions, HS1-34: 1–9.

Graaf L. de, Palmer R., Reid I. (2010) The Lime stone Coast Geo - ther mal Pro ject, South Aus tra lia: A Unique Hot Sed i men tary Aqui fer De vel op ment. Pro ceed ings World Geo ther mal Con gress 2010, April 25–29, 2010, Bali, In do ne sia. In ter na tional Geo ther - mal As so ci a tion Pub li ca tions, 3134: 1–7.

Grabowska T., Bojdys G. (2001) The bor der of the East-Eu ro pean Craton in south-east ern Po land based on grav ity and mag netic data. Terra Nova, 13: 92–98.

Grabowska T., Bojdys G., Dolnicki J. (1998) Three-di men sional den sity model of the Earth’s crust and the up per man tle for the area of Po land. Jour nal of Geodynamics, 25: 5–24.

Grad M., Guterch A. (2006a) Seis mic mod els of the crustal struc ture of the Trans-Eu ro pean Su ture Zone (TESZ) in NW and cen tral Po land. Prace Pañstwowego Instytutu Geologicznego, 188:

41–52.

(14)

Grad M., Guterch A. (2006b) Lithospheric struc ture of the TESZ in Po land based on mod ern seis mic ex per i ments. Geo log i cal Quar - terly, 50 (1): 23–32.

Grad M., Guterch A., Mazur S. (2002a) Seis mic re frac tion ev i dence for con ti nen tal struc ture in the cen tral part of Trans-Eu ro pean Su - ture Zone in Po land. Geo log i cal So ci ety Spe cial Pub li ca tions, 201: 295–309.

Grad M., Keller G.R., Thybo H., Guterch A., POLONAISE WORKING GROUP (2002b) Lower lithospheric struc ture be - neath the Trans-Eu ro pean Su ture Zone from POLONAISE’97 seis mic pro files. Tectonophysics, 360: 153–168.

Iwanow A., Kiersnowski H. (1998) Paleografia wczesnego i œrodkowego piaskowca pstrego. In: At las paleogeograficzny epikontynentalnego permu i mezozoiku w Polsce (eds. R.

Dadlez, S. Marek and J. Pokorski). Pañstwowy Instytut Geologiczny, Warszawa.

Jarosiñski M., Poprawa P., Ziegler P.A. (2009) Dy namic evo lu tion of the Pol ish fore land dur ing Ce no zoic times. Geo log i cal Quar - terly, 53 (1): 3–26.

Karnkowski P.H. (2008) Tec tonic sub di vi sion of Po land: Pol ish Low - lands (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 56: 895–903.

Kiersnowski H., Paul J., Peryt T.M., Smith D.B. (1995) Fa cies, paleogeography and sed i men tary his tory of the South ern Perm - ian Ba sin in Eu rope. In: The Perm ian of North ern Pangea (eds.

P.A. Scholle, T.M. Peryt and D.S. Ulmer-Scholle): 119–136.

Springer-Verlag, Berlin.

Królikowski C. (2006) Crustal-scale com plex ity of the con tact zone be tween the Palaeozoic Patform and the East Eu ro pean Craton in the NW Po land. Geo log i cal Quar terly, 50 (1): 33 –42.

Krzywiec P. (2004) Tri as sic evo lu tion of the K³odawa salt struc ture:

base ment-con trolled salt tec ton ics within the Mid-Pol ish Trough (cen tral Po land). Geo log i cal Quar terly, 48 (2): 123–134.

Krzywiec P. (2006a) Tri as sic–Ju ras sic evo lu tion of the Pom er a nian seg ment of the Mid-Pol ish Trough – base ment tec ton ics and sed - i men tary pat terns. Geo log i cal Quar terly, 50 (1): 139–150.

Krzywiec P. (2006b) Struc tural in ver sion of the Pom er a nian and Kuiavian seg ments of the Mid-Pol ish Trough – lat eral vari a tions in tim ing and struc tural style. Geo log i cal Quar terly, 50 (1):

151–168.

Kutek J. (2001) The Pol ish Permo-Me so zoic Rift Ba sin. Memoires du Musee Histoire Naturelle, 186: 213–236.

Leszczyñski K. (2012) The in ter nal ge om e try and lithofacies pat tern of the Up per Cre ta ceous–Danian se quence in the Pol ish Low - lands. Geo log i cal Quar terly, 56 (2): 363–386.

Majorowicz J.A, Šafanda J., Skinder W.R. (2002) East to west re - tar da tion in the on set of the re cent warm ing across Can ada in - ferred from in ver sions of tem per a ture logs. Jour nal of Geo phys i - cal Re search, 107: B10.

Marek S., Pajchlowa M., eds. (1997) Perm ian and Me so zoic in Po - land (in Pol ish with Eng lish sum mary). Prace Pañstwowego Instytutu Geologicznego, 153.

Moeck I., Brandt W., Bruhn D., Munoz G., Ritter O., Bauer K., Weber M.,Back ers T., Kwiatek G., Huenges E. (2010) From Pros pect ing to Drill ing: New Ex plo ra tion Strat e gies for En hanced Geo ther mal Sys tems. Pro ceed ings World Geo ther mal Con gress 2010, April 25–29, 2010, Bali, In do ne sia. In ter na tional Geo ther - mal As so ci a tion Pub li ca tions, 3147: 1–5.

Narkiewicz M., Dadlez R. (2008) Geo log i cal re gional sub di vi sion of Po land: gen eral guide lines and pro posed schemes of sub-Ce no - zoic and sub-Perm ian (in Pol ish with Eng lish sum mary).

Przegl¹d Geologiczny, 56: 391–397.

Nawrocki J., Poprawa P. (2006) De vel op ment of Trans-Eu ro pean Su ture Zone in Po land: from Ediacaran rift ing to Early Pro tero - zoic ac cre tion. Geo log i cal Quar terly, 50 (1): 59–76.

Papiernik B., Machowski G., S³upczyñski K., Semyrka R. (2009) Geo log i cal model of the Lubiatów-Miêdzychód-Grotów (LMG) oil-gas ac cu mu la tion area (in Pol ish with Eng lish sum mary).

Geologia, 35 (2/1): 175–182.

Papiernik B., Górecki W., Pasternacki A. (2010) Pre lim i nary re - sults of 3D mod el ing of petrophysical pa ram e ters for tight gas

pros pect ing in the Pol ish Rotliegend Ba sin (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 58: 352–364.

Papiernik B., Kiersnowski H., Machowski G., Górecki W. (2012) Up per Rotliegend Res er voir and Fa cies Mod els of Geomorphological and Struc tural Gas Traps in Silesian Ba sin – South-West Po land. 74th EAGE Con fer ence & Ex hi bi tion in cor - po rat ing SPE EUROPEC, June 4–7, Co pen ha gen, ex tended ab - stracts, P245: 1–5. http://www.earthdoc.org/pub li ca - tion/publicationdetails/?pub li ca tion=59497

Peryt T.M., Geluk M.C., Mathiesen A., Paul J., Smith K. (2010) Zechstein. In: Pe tro leum Geo log i cal At las of the South ern Perm - ian Ba sin Area (eds. J.C. Doornenbal, A.G. Stevenson) EAGE Pub li ca tions b.v. (Houten): 123–147.

Pha raoh T.C., Dusar M., Geluk M.C., Kockel F., Krawczyk C.M., Krzywiec P., Scheck-Wenderoth M., Thybo H., Vejbak O.V., Wees J.D. van (2010) Tec tonic evo lu tion. In: Pe tro leum Geo log i - cal At las of the South ern Perm ian Ba sin Area. (eds. J.C.

Doornenbal and A.G. Stevenson): 25–57. EAGE Pub li ca tions b.v., Houten.

Pieñkowski G. (1991) Fa cies cri te ria for delimitating the Zechstein/Buntsandstein and the Perm ian/Tri as sic bound ary in Po land. Zentralblatt für Geologie und Paläontologie, 4: 893–912.

Plewa S. (1966) Regionalny obraz parametrów geotermicznych obszaru Polski. Prace Geofizyczne i Geologiczne. Wyd.

Geofizyka i Geologia Naftowa, Kraków.

Plewa S. (1994) Rozk³ad parametrów geotermalnych na obszarze Polski. Wyd. CPPGSMiE PAN, Kraków.

Po¿aryski W. (1977a) Ge ol ogy of Po land, IV (Tec ton ics).

Wydawnictwa Geologiczne, Warszawa.

Po¿aryski W. (1977b) The early Al pine Lara mide Ep och in the plat - form de vel op ment east of the Fore Sudetic and Silesian-Cracovian mono clines: Ge ol ogy of Po land: 351–416.

Wydawnictwa Geologiczne, Warszawa.

Po¿aryski W., Brochwicz-Lewiñski W. (1978) On the PolishTrough. Geologie en Mijnbouw, 57: 545–557.

Röhling H.G. (1991) A lithostratigraphic sub di vi sion of the Early Tri - as sic in the North west Ger man Low lands and the Ger man Sec tor of the North Sea, based on gamma-ray and sonic logs.

Geologisches Jahrbuch, A119: 3–23.

Šafanda J., Kubik J. (1992) Ev i dence of ground sur face tem per a - ture changes from two bore holes in the Bo he mian Mas sif. Global and Plan e tary Change, 6: 199–208.

Šafanda J., Rajver D. (2001) Sig na ture of the last ice age in the pres ent subsurface tem per a tures in the Czech Re pub lic and Slovenia. Global and Plan e tary Change, 29: 241–257.

Sausse J., Dezayes C., Genter A. (2007) From geo log i cal in ter pre - ta tion and 3D mod el ling to the char ac ter iza tion of the deep seated EGS res er voir of Soultz (France). Pro ceed ings Eu ro pean Geo ther mal Con gress 2007, May 30–June 1, 2007, Unterhaching, Ger many. In ter na tional Geo ther mal As so ci a tion – Eu ro pean Branch Pub li ca tions: 1–7. https://pangea.stan - ford.edu/ERE/pdf/IGAstandard/EGC/2007/059.pdf

Sliaupa S., Motuza G., Karabliova L., Motuza V., Zauludiene G.

(2005) Hot gran ites of south west west ern Lith u a nia: new geo - ther mal pros pects. Technika Poszukiwañ Geologicznych, Geosynoptyka i Geotermia, 3: 26–34.

Stephenson R.A., Narkiewicz M., Dadlez R., Wees J.D. van , Andriessen P.A.M. (2003) Tec tonic sub si dence mod el ling of the Pol ish Ba sin in the light of new data on crustal struc ture and mag - ni tude of in ver sion. Sed i men tary Ge ol ogy, 159: 59–70.

Szewczyk J. (2002) Wp³yw czynników paleoklimatycznych oraz hydrogeologicznych na strumieñ cieplny. Posiedzenia Naukowe Pañstwowego Instytutu Geologicznego, 58: 31–33.

Szewczyk J., Gientka D. (2009) Ter res trial heat flow den sity in Po - land – a new ap proach. Geo log i cal Quar terly, 53 (1): 125–140.

Szewczyk J., Hajto M. (2006) Strumieñ cieplny a temperatury wg³êbne na obszarze Ni¿u Polskiego. In: At las of Geo ther mal Re sources of Me so zoic For ma tions in the Pol ish Low lands (ed.

W. Górecki ): 143–148. AGH-UST, Kraków.

Szewczyk J., Nowicki Z., Gientka D. (2007) Wystêpowanie g³êbokiej zmarzliny w okresie zlodowacenia Wis³y na obszarze Ni¿u 742 Anna Sowi¿d¿a³, Bartosz Papiernik, Grzegorz Machowski and Marek Hajto

(15)

Polskiego – implikacje paleohydrologiczne oraz geotermiczne.

Wspó³czesne Problemy Hydrogeologii, 13: 203–211.

Szulc J. (2000) Mid dle Tri as sic evo lu tion of the North ern Peri-Tethys Area as in flu enced by early open ing of the Tethys Ocean.

Annales Societatis Geologorum Poloniae, 70: 1–48.

Szyperko-Teller A. (1997) Trias dolny (pstry piaskowiec).

Litostratygrafia i litofacje. Sedymentacja, paleografia i paleotektonika. Prace Pañstwowego Instytutu Geologicznego, 153: 121–132.

Szyperko-Teller A. (2008) Wyniki badañ litologicznych i stratygraficznych w utworach pstrego piaskowca. Pro file g³êbokich otworów wiertniczych Pañstwowego Instytutu Geologicznego, 125: 130.

Szyperko-Teller A., Moryc, W. (1988) Evo lu tion of the Buntsand - stein sed i men tary ba sin in Po land. Kwartalnik Geologi czny, 32 (1): 53–72.

Szyperko-Teller A., Szulc J. (2008) Szczegó³owy profil litologiczno-stratygraficzny otworu wiertniczego Brzeœæ Kujawski IG-1. Pro file g³êbokich otworów wiertniczych Pañstwowego Instytutu Geologicznego, 125: 45–59.

Tenzer H. (2001) De vel op ment of Hot Dry Rock Tech nol ogy, GHC Bul le tin, De cem ber: 1–9.

Tester J.W., An der son B.J., Bat che lor A.S., Blackwell D.D., Dipippo R., Drake E.M., Gar nish J., Livesay B., Moore M.C., Nichols K., Petty S., Toksoz M.N., Veatch R.W. (2006) The Fu - ture of Geo ther mal En ergy. Im pact of En hanced Geo ther mal

Sys tems (EGS) on the United States in the 21st Cen tury. Mas sa - chu setts In sti tute of Tech nol ogy, http://geo ther mal.inel.gov.

Warrington G. (1974) Trias. In: The Ge ol ogy and Min eral Re sources of York shire (eds. D.H. Rayner and J.E. Hem ing way), York shire Geo log i cal So ci ety: 145–160.

Wees J.-D. van, Beekman F. (2000) Litho sphere rhe ol ogy dur ing intraplate ba sin ex ten sion and in ver sion; in fer ences from au to - mated mod el ing of four bas ins in West ern Eu rope.

Tectonophysics, 320: 219–242.

Wójcicki A., ed. (2012) Iden ti fi ca tion of for ma tions and struc tures for safe geo log i cal CO2 stor age with the pro gram of their mon i tor ing (in Pol ish). The Na tional Fund for En vi ron men tal Pro tec tion and Wa ter Man age ment, https://skladowanie.pgi.gov.pl.

Zakrevsky K.E. (2011) Geo log i cal 3D mod el ing. EAGE Pub li ca tions, 3990. DB Houten, Neth er lands.

¯elaŸniewicz A., Aleksandrowski P., Bu³a Z., Karnkowski P.H., Konon A., Oszczypko N., Œl¹czka A., ¯aba J., ¯ytko K. (2011) Regionalizacja tektoniczna Polski. Komitet Nauk Geologicz nych PAN.

Ziegler P.A. (1990a) Geo log i cal At las of West ern and Cen tral Eu rope (2nd edi tion). Shell Internationale Pe tro leum Maatschappij B.V.;

Geo log i cal So ci ety Pub lish ing House, Bath.

Ziegler P.A. (1990b) Tec tonic and palaeogeographic de vel op ment of the North Sea rift sys tem. In:Tec tonic evo lu tion of the North Sea rifts (eds. D.J. Blundell and A.D. Gibbs), Ox ford Sci ence Pub li ca - tions: 1–36.

Cytaty

Powiązane dokumenty

The pre lim i nary palynofacies pat tern for the Lower Cre ta ceous of cen tral Po land is given in Ta ble 1, which pres ents the re la tion ships be tween depositional sys tems

The study in cluded also re la tion ships be tween re sults of the com pre hen sive in ter pre ta tion: po ros ity (PHI), wa ter sat u ra tion in flushed zone (SWXO) and un in

At the beginning of Upper Buntersandstein there was again a,connection of the Central ' European Basin with the open sea what resulted in a change into a

In the investigated borehole sections of the LoWer Carboniferous of the Lublin Upland, · the lowest ca~OOnate beds comprise seVeral reef structures lacking at all

ABSTRACT: Recognition of the Lower Triassic sedimentary environment of the Tumlin Sandstone (Holy Cross Mts, Central. Poland) has been based mainly on sedimenJtary

This may consideralbly bias the analysis because, for example, the Lower Calliovian faunule from Wielun (exposure 4 in Text-fig. 1) represents the macrocephalus

sverdrupi (Tozer), that is close to the index species of the sverdrupi Zone of the Upper Dienerian, is reported from the Lower Triassic (Vardebukta Formation)

Still farthcr south (KrosnolSanok-Baligrbd) geophysicnf evidcnce suggests it lics at about 17-20 km depth. Key words: Carpathian Foreland, Tam6w-PmmySl are&