• Nie Znaleziono Wyników

Neumann problems resonant at zero and infinity

N/A
N/A
Protected

Academic year: 2022

Share "Neumann problems resonant at zero and infinity"

Copied!
72
0
0

Pełen tekst

(1)

±∞

n

13

Annali di Matematica (2012) 191:395–430 DOI 10.1007/s10231-011-0188-z

Neumann problems resonant at zero and infinity

LeszekGasin´ski·NikolaosS.Papageorgiou

Received: 8 December 2010 / Accepted: 20 January 2011 / Published online: 16 February 2011

© The Author(s) 2011. This article is published with open access at Springerlink.com

AbstractWeconsider a semilinear Neumann problem with a reaction which is resonant at both zero and . Using a combination of methods from critical point theory, together withtruncationtechniques,theuseofupper–lowersolutionsandoftheMorsetheory(critical

groups),weshowthattheproblemhasatleastfivenontrivialsmoothsolutions,fourofwhich haveconstantsign(twopositiveandtwonegative).

KeywordsResonance at zero and infinity·Critical point theory·Morse theory·

Truncation techniques·Regularity theory·Multiple solutions·Solutions of constant sign Mathematics Subject Classification (2000)35J20·35J60·58E05

1 Introduction

LetQ RNbe a bounded domain with aC2-boundary∂Q.In this paper, westudythefollowing semilinear Neumannproblem:

−1'.u(z)=f(z,u(z))inQ,

∂u=0 on∂Q. (1.1)

This research has been partially supported by the Ministry of Science and Higher Education of Poland under Grant no. N201 542438.

L.Gasin´ski(

B

)

Institute of Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland e-mail:Leszek.Gasinski@ii.uj.edu.pl

N. S. Papageorgiou

Department of Mathematics, National Technical University, Zografou Campus, 15780 Athens, Greece

e-mail:npapg@math.ntua.gr r

(2)

±∞

1−

n

=

·

=

· ±∞ ·

= ·

{

39 L.Gasin´ski,N.S.Papageorgiou

Here,f (z,ζ)isameasurablefunctionwhichisC1intheζ-variable.Theaimofthisworkis to prove a multiplicity theorem when resonance occurs at both zero and. S u c h p r o b l e m s h a v e b e e n s t u d i e d e x t e n s i v e l y i n t h e c o n t e x t o f D i r i c h l e t

e q u a t i o n s . I n t h i s d i r e c t i o n , w e

m e n t i o n theworksofCostaandSilva[8],HiranoandNishimura[14],Landesmanetal.[20], Liang and Su [22], Liu [24], Li and Su [25], Li and Zou [26], Su andTang[34], Zou [37], andZouandLiu[38].ForthecorrespondingNeumannproblem,thebibliographyisnotthat rich. There have been some existence and multiplicity results for resonant semilinear Neu- mann problems.Wemention the works of Filippakis and Papageorgiou [10], Iannacci and Nkashama[15,16],Kuo[19],Li[21],LiandLi[23],Mawhin[27],Mawhinetal.[28],Qian [33], andTangandWu[35]. Iannacci and Nkashama [15] and Kuo [19] use variants of the well- knownLandesman–Lazercondition.IannacciandNkashama[16]useasigncondition, while Mawhin [27]

and Mawhin et al. [28] use a monotonicity condition on the functionζf(z,ζ).All the aforementioned works prove existence theorems, but do not address the question of multiplicity of the nontrivial solutions. Multiplicity results can be found in theworksofFilippakisandPapageorgiou[10],Li[21],LiandLi[23],Qian[33],andTangandWu[35].

InLi[21],LiandLi[23],andQian[33],theauthorsdealwithequationsofthe form

− 1'.u(z)+au(z)=f(z,u(z)) inQ,

∂u=0 on∂Q. (1.2)

In(1.2),thepresenceintheleft-handsideofthetermau(witha>0)facilitatestheanal-

ysisoftheequation,sinceinthiscasethedifferentialoperatorin(1.2)iscoercive.Whena0 , t h i s i s n o l o n g e r t r u e ( r e c a l l t h a t t h e P o i n c a r é i n e q u a l i t y f a i l s i n t h e S o b o l e v s p a c e1

H(Q)). Li [21] and Li and Li [23] produce an infinity of nodal (i.e., sign changing) solu- tions, by assuming an oscillatory behavior for the reactionf(z, ). Their approach uses critical point theory, Leray–Schauder degree on order intervals, and Morse theory. Qian [33] deals with equations which are superlinear at , using the so-called Jeanjean condi- tion. He produces a sequence of nodal solutions assuming a symmetry condition onf(z,) (namely thatf(z,)is odd). His arguments are based on the critical point theory. Finally, Filippakis and Papageorgiou [10] andTangandWu[35] assume thata0. Filippakis and Papageorgiou [10] permit the resonance at zero to be only with respect to the princi- pal eigenvalueλ00, impose a global sign condition onf(z,), and produce only three nontrivial smooth solutions.TangandWu[35] employ an anticoercivity condition on the potential

ζ

F(z,ζ)=

0 f(z,s)ds

and using the local linking theorem (see e.g., [12, p. 665]), they establish the existence of two nontrivial solutions.

In this paper, using a combination of variational methods based on the critical pointthe- ory,withMorsetheory(criticalgroups),weestablishtheexistenceofatleastfivenontrivial smooth solutions for problem (1.1), four of which have constant sign (two positive andtwo negative).

Inthenextsection,fortheconvenienceofthereader,werecallsomeofthemainmathe- maticaltoolsthatwewilluseintheanalysisofproblem(1.1).

r

(3)

(· ·⊕

Kϕc= u∈Kϕ:ϕ(u)=c.

ϕ

(

∈ −∞

2 Mathematicalbackground

LetXbe a Banach space and letXbe its topological dual. By,we denote the duality brackets for the pair(X,X). LetϕC1(X). We say thatϕsatisfies the Cerami condition if the following is true:

“Every sequence{xn}n�1⊆X, such that

|ϕ(xn)|M1and(1+xn)ϕ (xn)−→0 inX, for someM1>0, admits a strongly convergent subsequence.”

Using this compactness type condition, we can have the following minimax characteriza- tion of certain critical values of aC1-functional. The result is known in the literature asthe“mountain passtheorem”.

Theorem2.1I f XisaBanachspace,ϕ∈C1(X)satisfiestheCeramicondition,u0,u1∈Xaresuch thatu0−u1>r>0,

max{ϕ(u0), ϕ(u1)}<inf{ϕ(u):u−u0=r} =ηr, c=inf maxϕ (γ (t)) ,

wher e

γ∈0t1

= {γ∈C([0,1];X):γ (0)=u0, γ (1)=u1}, then cηrand c is a critical value ofϕ.

Throughoutthiswork,wewillusethefollowingnotation.Letϕ C1(X)andletc R.Weset ϕc=

{u∈X:ϕ(u)c},Kϕ=f fu∈

X:ϕ( u)=0,

Let(Y1,Y2)be a topological pair andY1Y2X. For everyk0, byHk(Y2,Y1), we denotethekthrelativesingularhomologygroupwithintegercoefficientsforthepair(Y1,Y2). Recall that for all integersk<0, we haveHk(Y2,Y1)=0. The critical groups ofϕat an isolated critical pointu∈Kcare definedby

Ck(ϕ,u)=Hkϕc∩U,ϕc∩U\{u}

∀k�0,whereUis a neighborhood ofx, suchthat Kϕ∩ϕc∩U= {u}

(see[7,29]).Theexcisionpropertyofsingularhomologytheoryimpliesthattheabovedefi- nitionofcriticalgroupsisindependentoftheparticularchoiceoftheneighborhoodU.

Supposethatϕ C1(X)satisfies the Cerami condition and infϕ(Kϕ)> .Choose c<infϕ(Kϕ). The critical groups ofϕat infinity are defined by

Ck(ϕ,∞)=Hk(X, ϕc)∀k�0

(4)

∈ ∈

∈ = ∈

=r

n

n

n n

2 2

n

n

f

f

(see[5]).Thedeformationtheorem(seee.g.,[12,p.636])impliesthattheabovedefinition isindependentofthechoiceoftheparticularlevelc<infϕ(Kϕ).IfKϕisfinite,thenweset

M(t,u)= rankCk(ϕ,u)tk∀t∈R,u∈Kϕ,

k�0

P(t,∞)= rankCk(ϕ,∞)tk∀t∈R.

k�0

Using these quantities, we have the Morse relation

M(t,u)=P(t,∞)+(1+t)Q(t), (2.1)

u∈Kϕ

where

Q(t)=

βktkk�0

is a formal series int∈Rwith nonnegative integer coefficients (see[7,29]). 2 LetX Hbe a Hilbert space,uH,Ua neighborhood ofuinH, andϕC(U).IfuKϕ, then the Morse index ofuis defined to be the supremum of the dimensions of the vector subspaces ofHon whichϕ(u)is negative definite.Wesay thatuKϕis nondegenerate, ifϕ(u)is invertible. Suppose thatuKϕis a nondegenerate critical point with Morse indexm.Then

where

Ck(ϕ,u)=δk,mZ∀k0, δk,m 1 ifk=m,

0 ifk/=m.

In the analysis of problem (1.1), we will use the following two “natural” spaces:

C1(Q)=ru∈C1(Q):∂u

(z)=0 on∂Q (wheren(·)denotestheoutwardunitnormalon∂Q)and

H1(Q)=C1(Q)·, where·denotes the usual Sobolev norm ofH1(Q), i.e., u2=u2+ ∇u2∀u∈H1(Q).

The spaceC1(Q)is an ordered Banach space, with positive cone C+=u∈C1(Q):u(z)0 for allz∈Q . This cone has a nonempty interior, given by

intC+=u∈C+:u(z)>0 for allz∈Q .

For a large class ofC1-functionals, we can identify theC1(Q)andH1(Q)local minimizers.

n n

More precisely, letg0:Q×R−→Rbe a Carathéodory function, such that

|g0(z,ζ)|a0(z)+c0|ζ|r−1for almost allz∈Q,allζ∈R,

(5)

N−2

{

1 n

n Cn(Q)

n

0 0

n +∞

+

/=

r

n

�=� �

= f�

witha0∈L(Q)+,c0>0 and 1<r<

2=

r2 N ifN3, +∞ ifN=1,2 (subcriticalgrowthforg0(z,·)).Weset

ζ

G0(z,ζ)=

0 g0(z,s)ds and consider theC1-functionalψ0:H1(Q)−→R, defined by

ψ0(u)= ∇u2−{G0(z,u(z))dz∀u∈H1(Q).

2 2 Q n

Proposition 2.2If u0∈H1(Q)is a local C1(Q)-minimizer ofψ0, i.e., there exists r0>0,

n n

such that

ψ0(u0)ψ0(u0+h)∀h∈C1(Q),h1r0,

then u0∈C1(Q)and it is a local H1(Q)-minimizer ofψ0, i.e., there exists r1>0, such that

n n

ψ0(u0)ψ0(u0+h)∀h∈H1(Q),hr1.

Remark 2.3For the “Dirichlet” spaceH1(Q), this result was first proved by Brezisand Nirenberg [6] and was extended to the spacesW1,p(Q)(with 1<p<+∞) by Garcia Azoreroetal.[11](seealso[13]).Forthe“Neumann”spacesW1,p(Q)(1<p<) , the

resultcanbefoundinMotreanuetal.[30](forsmoothfunctionalsψ0)andinIannizzotto andPapageorgiou[17]

(fornonsmoothfunctionalsψ0).Asimplifiedproofoftheresultfor

more general operators than thep-Laplacian can be found in the recent work of Motreanu and Papageorgiou [31].

Next,werecallsomebasicfactsaboutthespectrumofthenegativeNeumannLaplacian. So, letmL(Q),m0 (a weight function), and consider the following weighted linear eigenvalueproblem:

−1'.u(z)=λm(z)u(z)inQ,

∂u=0 on∂Q. (2.2)

Evidently a necessary condition forλ∈Rto be an eigenvalue is thatλ0.Moreover,λ0λ0(m)0 is an eigenvalue of (2.2) with corresponding eigenspaceR(the space of constant functions). Using the spectral theorem for compact operators, we can show that problem (2.2) has a sequenceλk(m)k�0of distinct eigenvalues, such thatλk(m)

−→+∞ask→+∞.Ifm≡1,wewrite�λ(k(1)=�λkforallk�0.

Foreveryintegerk�0,byE �λk(m), wedenotetheeigenspacecorrespondingtothe eigenvalue�λk(m).Theregularity(theory(seee.g.,[12])impliesthatE(

�λk(m)C1(Q).

Moreover,weknowthateachE�λk(m)hasthe“uniquecontinuationproperty”,namelyif u∈E(

�λk(m)v

anishesonasetofpositivemeasure,thenu(z)=0forallz∈Q.Weset

Hi=E(

�λk(m)and

Hi=Hi=

i

(6)

k�i+1

E(

�λk(m).

(7)

r∇u

λk(m)=max r

Qmu

2dz2 :u∈Hk,u/=0

2

(

then

��

η

∈ � ∈

/=�

2

f� �

=

N

Neumann problems resonant at zero and infinity

401

Wehavethefollowingvariationalcharacterizationfortheeigenvalues�λk(m):

0=�λ0(m)=min 22 :u∈H(Q),u /=0l

1 n

(2.3)

and fork�1, wehave

r

Qmudz

r∇u 2 l

r∇�u2

l

=minr

mu2dz:�u∈Hk,�u/=0. (2.4)

In(2.3),theminimumisattainedonE(

�λk(m)=

R,whilein(2.4)themaximumand minimumarerealizedonE�λk(m),k1.

As a consequence of these variational characterizations and of the unique continuation property, we have the following useful facts (see e.g., [10]).

Proposition2.4Ifm,m∈L(Q)+\{0},m(z)�m�(z)foralmostallz∈Qandm/=m�, λk(m) < λk(m)∀k0.

Proposition 2.5(a)If k−1is aninteger,η∈L(Q)+,η(z)λk+1for almostallz ∈Qandη/=�λk+1,thenthereexistsξ0>0,suchthat

∇�u2−{ u2d

z�ξ0�u2�u∈H�k.

Q

(b)If k0is aninteger,η L(Q)+,η(z)�λkforalmostallz Qandη λk,thenthereexistsξ1>0,suchthat

∇u2−{ηu2dz−ξ1u2∀u∈Hk.

Q

From the eigenvaluesλk(m)k�0only the firstoneλ0(m) 0 hasc o n s t a n t s i g n eigenfunction. All the other eigenvalues have nodal (i.e., sign changing) eigenfunctions.In

what followsu0denotes theL2-normalized, positive principal eigenfunction, i.e.,u0=11

(hereafter,by�| ·|NwedenotetheLebesguemeasureonRN).

|Q|2

Thenextresult,duetoLiangandSu[22](seealso[18]foranextensiontoBanachspaces),

ishelpfulincomputingcriticalgroups.ItisageneralizationofanearlierresultofPereraandSchechter[32].

2

Q

2

(8)

{ }∈[ ]

400 L.Gasin´ski,N.S.Papageorgiou

Proposition 2.6If H is a Hilbert space, ht t0,1C1(H)is a family of functionals, suchthat(ht)and∂thtare both locally Lipschitz, h0and h1satisfy the Cerami condition andthere exist a∈Randδ >0, such that

ht(u)a⊆⇒(

(1+u)ht(u)δfor all t∈ [0,1 ], (2.5) the

n Ck(h0,∞)=Ck(h1,∞)∀k0.

(9)

p p

+|| ∈ ∈ ∈

+

ζ ζ→0 ζ

Remark 2.7Note that, if there existsR>0, such that inff

(1+u)ht(u):t∈[0,1],u>R>0 and

inf{ht(u):t∈ [0,1],uR}>−∞, then (2.5) holds.

In the sequel, we will use the notationr±=max{±r,0}for allr∈R. Also, by·we denote the norm of the Sobolev spaceH1(Q)and by|·|Nthe Lebesgue measure onRN. Finally by·p(1<p<∞), we denote the norm ofLp(Q)ofLp(Q;R)andp>1 is

the conjugate exponent ofp>1, i.e.,1+1=1.

3 The Ceramicondition

The hypotheses on the reaction termfare the following:

Hf:f:Q×R−→Ris a measurable function, such that for almost allz∈Q, we have f(z,0)=0,f(z,·)∈C1(R)and

(i) fζ(z,ζ)�a(z) r−2for

almostallz Q,allζ Rwitha L(Q),c>0and2r�2;

(ii) thereexistintegeri�1,α∈(0,1),andη∈L(Q)withη(z)�0foralmostall z∈Q, η/=0, such that

lim

|ζ|→+∞

f(z,ζ)

ζ =�λi

uniformlyforalmostallz∈Qand,iff(z, ζ )=f(z, ζ )−�λiζ,then lim f( z ,ζ)

=0 and lim supf( z ,ζ)ζ η(z)

|ζ|→+∞ |ζ|α |ζ|→+∞ |ζ|

uniformly for almost allz∈Q;

(iii) there exist integerm1,m/=i,β>1, andη0∈L allz∈Q, η0/=0, such that

(Q)withη0(z)�0 for almost f ( z ,ζ)

f(z,0)=lim =�λm

uniformlyforalmostallz∈Qandiff0(z, ζ )=f(z, ζ )−�λmζ,then limf0( z ,ζ)

=0 and lim supf0( z ,ζ)ζ

η0(z)

ζ→0 |ζ|β ζ→0 |ζ|

uniformly for almost allz∈Q;

(iv) thereexistnumbersa<0<a+,suchthat

f(z,a+)�0�f(z,a)for almost allz∈Q andf(·,a)/=0,f(·,a+)/=0.

(10)

40 L.Gasin´ski,N.S.Papageorgiou

=r q−2

( ( �

α

q−1,2q ,β∈ r,

2r−1 ,a= −1, anda+=1.

n

1

ϕ (u)=A(u)−Nf(u)∀u∈H1(Q),

n

n

n

n

n n

n n

n

� �

Remark3.1H y p o t h e s i s Hf(ii)impliesthattheproblemisresonantatinfinity,whilehypoth-

esisHf(iii)implies that the problem is resonant at zero. So, we have a kind of “double resonance”.

Example 3.2The following functionfsatisfies hypothesesHf(for the sake of simplicity we drop thez-dependence):

f(ζ) λmζ−ξ|ζ|r−2ζ if|ζ|�1,

�λiζ−�ξ|ζ| ζ if|ζ|>1,

with1<q< 2<r<+∞,ξ>�λmand�ξ= ξ+�λi−�λm>0.Forthisexample,wetake

Letϕ:H1(Q)−→Rbe the energy functional for problem (1.1), defined by ϕ(u)= ∇u2−{F(z,u(z))dz∀u∈H1(Q).

2 2 Q n

We know thatϕ∈C2(

H1(Q). Moreover whereA∈L( n

H1(Q),H1(Q)is defined by

n n

(A(u),y⊕={(∇u,∇y)RNdz∀u,y∈H1(Q)

Q

andNf(y)(·)=f( ·,y(·))forally∈H1(Q).Also

(ϕ (u)y, v={(∇y,∇v)RNdz−{fζ(z,u(z))yvdz∀u,y,v∈H1(Q).

Q Q

Note thatϕ (u)∈L(

H1(Q),H1(Q)is a Fredholm operator.

Usingtheeigenvalueλi>0,wecanhavethefollowingorthogonaldirectsumdecompo- sitionoftheSobolevspaceH1(Q):

H1(Q)=Hi−1⊕E(�λi)⊕H�i+1, where

i−1

Hi−1= E(λk)and

k=0

Then for everyu∈H1(Q), we have

Hi+1=

k�i+

1

E(�λk).

withu∈Hi−1,u0 u=u+u0+�u,

∈E(�λi),�u∈H�i+1.Thisdecompositionis unique.

Proposition 3.3If{un}n�1⊆H1(Q)is a sequence, such that

n u n + u n 1

(11)

Neumann problems resonant at zero and

infinity 40

un−→+∞and�

un −→0in Hn(Q),

(12)

{

� f

2

0 n

0 n

n

un

the n

lim sup

n→+∞Q

f( z , u n) u n

dz<0.

un

ProofFromBartoloetal.

[3],weknowthatforagivenε>0,wecanfindm1(ε)>0smallenoughandm2(ε)>0largeenough,suchthat fz∈Q:u0(z)<m1u0N< ε∀u0E(�λi) (3.1)

an d

|{z∈Q:|�u(z)+u(z)|>m2�u+u}|N 2

α 1 1

<m1−αε1−αε∀u∈Hi+1,u∈Hi−1. (3.2) For everyn�1, we introduce the followingsets

D1n=z∈Q:u0(z)�m1u0,

D2n= {z∈Q: |u(z)+u(z)|m2u+u}.

From (3.1) and (3.2), it follows that

|Q\D1n|N< ε,|Q\D2n|N an

d

|D1n∩D2n|N|Q1|N−|Q\D2n|N|Q|N−2ε. (3.3) Choosingε∈(

0,1|Q|N, we see that

|D1n∩D2n|>0 and soD1n∩D2n/= ∅. Letz∈D1n∩D2n. Then

| u n ( z ) | 0

=|un(z)+�un(z)+un(z)|

�|u(z)|

−|� u n ( z ) + u n ( z ) |

un un

m1u0

−m 2 u n+u n un un n

un

Next letz∈D2n\D1n. Then

un . (3.4)

| u n ( z ) | 0

=|un(z)+�un(z)+un(z)|

�|u(z)|

−|� u n ( z ) + u n ( z ) | un

m1u0 un

m 2 u n+u n

un

un un

un

<. (3.5)

(13)

1

By virtue of hypothesesHf(i)and(ii), we can findc1=c1(ε) >0, such that f(z,ζ)ζ�(

η(z)+mε|ζ|+c1for almost allz∈Q,allζ∈R. (3.6)

(14)

{

{ I \

+ ||N

1

I u\ {

{ I \

+ ||N

{

{ I \

+ ||N

1

Iu\

2

I� \

I \

+ ||N

{ α

{ 2 �2 {

Then, using (3.6), wehave

D1n∩D2n

f( z , u n) u n

un dz

D1n∩D2n (z)+ε) | u n| un

dz c1

Q un

m 0n

un η(z)dz

D1n∩D2n

I u n+u n\ {

−m2 un η(z)dz

D1n∩D2n

D1n∩D2n | u n| un

dz c1

Q (3.7)

un

(sinceη0; seeHf(ii)). Also, hypothesesHf(i)and(ii), imply that

|f(z,ζ)ζ|c2

(|ζ|+1for almost allz∈Q,allζ∈R, (3.8)

withc2>0. Hence, using (3.8), wehave

D2n\D1n

f( z , u n) u n

un dz

c2

D2n\D1n

| u n| un

dz c2

Q un

c2m 0 n

un

ε+c2m un+ u n

un |Q|N+ c 2

un |Q|N (3.9)

(see (3.5) and (3.3)). Moreover, we have f ( z , u n ) u n

d z c

u | u n|

un

dz c2

un Q

Q\D2n Q\D2n

(see(3.8)).Notethat(u

n (·)2α∈L1(Q).So,byvirtueofHölderinequalityand(3.3),we hav

e

Q\D2n un

(15)

I \

{

I \

| un|

un

dz=

Q

χQ\D2n | u n| un

Iun2\

1−α

un |Q\D2n|Nm1ε . (3.10) d

(16)

{

{ {

+ {

1

I u\ {

1n

2

I� \

1

{ I \

+ |Q|N

1

Iu\

2

I� \

2 α

{

n

un

un 1

u n + n u 1 1 r

to finish theproof. un n

c+1 Q

n f u

13

therefore, finally we have f( z , u n) u n

un dz

Q

=

D1n∩D2n

+

Q\D2n

f( z , u n) u n

dzun2

α

D2n\D1n

f( z , u n) u n un dz

f( z , u n) u n

un dz

m 0n

un D∩D η(z)dz+m

un+ u n

un η∞1

+mε

D1n∩D2n

| u n|

un dz c1

un

+c2m 0 n

un

ε+c2m un+ u n

un |Q|N

c 2

+ |Q|N+mε (3.11)

un2 α 1

(see (3.7), (3.9) and (3.10)). Note that

χD1n∩D2n(z)−→χQ(z)=1 almost everywhere onQasε\.0 (see (3.3)).

So, if in (3.11) we pass to the limit asn→ +∞, wehave f( z , u n) u n

un dz

Iu0\{ I

u n+� u n\ un

c 1

I u n+u n\

c 2

+un|Q|N+c2m2 so

un |Q|N+

un|Q|N, limsup{

n→+∞ f ( z , u n ) u n

dz�m2α⎛

{ η(z)dz+ε(�c+1)

Q Q

for somec>0. (recallthat −→0 inH(Q)). Let us chooseε<− η(z)dz ForR>0 andϑ∈(0,1), we introduce the set

Q

m1 η(z)dz+m

2

η∞1 Q

(17)

13

C(R, ϑ, α)=u∈Hn 1(Q):uR,u+uϑuα.

Proposition 3.4If hypotheses Hf(i)and(ii)hold, then there exist R>0,ϑ∈(0,1)and

�δ>0,suchthat

(ϕ(

u0),u0�δ∀u∈C(R,ϑ,α).

(18)

n

u

{

f(z,un)u

Q un

{ �

dz+c4

u

un ∀n�1, (3.17)

I \

ProofWe argue indirectly. So, suppose that the proposition is not true. Then for anyϑ=

1 1

�δ=n,

n�1,wecanfindun∈Hn(Q),suchthat unn,un+un

From (3.12), we see that

unαand(

ϕ (un),u0< ∀n�1. (3.12)

an d

un−→+∞, �u n+u n −→0 (3.13)

(ϕ (un),u0= −{f(z,un)u0dz< (3.14)

n Q n n

02 02

(since∇un2=�λiun2foralln1).From(3.14),itfollowsthat

lim inf

n�+∞

0ndz�0. (3.15)

un Q

On the other hand, by virtue of hypothesesHf(i)and(ii), for a givenε >0, we can find c3=c3(ε) >0, such that

|f(z,ζ)|�ε|ζ|α+c3for almost allz∈Q,allζ∈R. (3.16) Then, using (3.16), wehave

{ f ( z , u n)( � u n+u n ) dz

(ε|un|α+cun3)|un+un|dz {I| u n|\α|

� u + u |

Q un

u n+u n

Q un

for somec4>0. Note that u n ( · ) α

un

2

∈Lα(Q)and I 2\

α 2

=2−α2

2 N

=N−2ifN3.

2

Hence,un+un∈L2−α(Q)and we can apply Hölder inequality and obtain

1 1

1

ε

n n

Q

(19)

dzc5

unα

unα ∀n�1, (3.18)

un unα

{I| u n|\α|

� u n+u n| u n+u n

for somec5>0. Using (3.18) in (3.17), we have { f ( z , u n)( � u n+u n )

dz c6� u n+u n ∀nn0,

Q un

Q un

Q

(20)

{

−{

{

=

⎛⎝{

⎞⎠

ndz {

=

13

for somen01 andc6>0, so lim

n→+∞

(see (3.13)). Therefore

f ( z , u n )( u n+ u n )

d z 0 (3.19)

un

li m su p

n

+

Q

f

( z , u

n

) u

0

u

n 2 α

lim

su p

n

+

Q

f( z , u n) u n

d z un

f( z , u n)( u n+ u n) un dz

� l i m s u p

n→+∞Q

f ( z , u n ) u n dz<0 (3.20)

un

(see(3.19)andProposition3.3).Comparing(3.15)and(3.26),w ereachacontradiction.Thisprovestheproposition.

nu

Using this proposition, we can now establish the Cerami condition for the energy func-tionalϕ.

(21)

13

{

2

dzε, 1+un n

{}

→ +∞

n

n n

Proposition 3.5If hypotheses Hf(i)and(ii)hold, thenϕsatisfies the Cerami condition.

ProofLet{un}n�1⊆H1(Q)be a

sequence, such

that{ϕ(un)}n�1⊆Ris bounded and

(1+un (un)−→0 inH1(Q).

(3.21)

Weshow that the

sequenceunn�1H1(Q)is

bounded.Weargue indirectly.

So, suppose that by passing to a suitable subsequence if necessary, wehaveun

.Notethat(3.21)implies (ϕ (un),hε

nh

∀h∈H1 (Q), (3.22)

withεn\ .0.In(3.22),wechooseh=

�un∈Hn(Q)andexploitingtheorth ogonalityofthe

component spaces, we have (ϕ(

un),�un

=∇�un 2−�λi�un2{f(z,un)�un n

2 2

Q

so

ξ0�un�εn+ {

εn+

Q

f(z,un)�un

(ε|un|α+c3

|�un| dz∀n�1 (3.23)

(see Proposition2.5(a) and (3.16)). Since

α 2

I2\ 2

d

1

(22)

13

|un|

∈Lα(Q)a n d

α

=2−α2,

(23)

∀n�1. (3.24)

ε +

unα un2 α

n

un+c7

{

n n n�

1 un

2

then from (3.23) and Hölder inequality, we have ξ0�un�εn+c7(

εun+1

un∀ n1, for somec7>0, so

I� u n\ 2

εn I�

u n � u n\

WeclaimthatthesequenceJ μn=�un

α

1 isbounded.Indeed,ifμn→+∞(atleast for a subsequence), then dividing (3.24) withμ2, we obtain

c7 1

ξ0ε+ ε +c7 ,

n μn μn

withεn\.0.Passingtothelimitasn→+∞,weobtainξ0�0,acontradiction.Hence,

the sequence{μn}n�1is bounded and we may assume thatμn−→μ�0. Passing to the limit asn→ +∞in (3.24), we obtain

ξ0μ2εc7μ so

ξ0μεc7.

Sinceε >0 was arbitrary, we letε\.0, to conclude thatμ=0. Therefore, un

unα −→0 inH1(Q). (3.25)

Next in (3.22), we chooseh= −un∈Hi−1. Then reasoning as above, we obtain

−( ϕ(

un),un

=−∇un2+�λiun2+{f(z,un)undzεn,

2 2

Q

so using Proposition2.5(b), we have ξ1un2εn+

Q |f(z,un)| |un|dz∀n1.

Using also (3.16) and (3.24), we have Iun\2

εn

Iu

n u n \ +

andso

ξ u

un+c7

εu un2 α ∀n�1

un

unα −→0 inH1(Q) (3.26)

(as before). LetR>0,ϑ∈(0,1)andδ >0 be as postulated in Proposition3.4. Then from (3.25), (3.26) and sinceun−→ +∞, we have thatun∈C(R, ϑ, α)for allnn0and

u

ξ0

(24)

n

so

so (

ϕ(

un),u0�δ∀n�n0 (3.27)

(25)

(ϕ (un),u0εn, (3.28)

n

n

un−→uinH1(Q) (3.29)

n

2 2

w

n

n

n n

n

� �

Hf(iii), we can have a result analogous to Proposition3.3.

(see Proposition3.4). If in (3.22), we chooseh=u0∈E(λi), then

n

withεn\.0. Comparing (3.27) and (3.28), we reach a contradiction. This proves that the sequence{un}n�1⊆H1(Q)is bounded. So, we may assume that

w

n

un−→ui n L2(Q). (3.30)

In (3.22), we chooseh=un−u∈H1(Q). We have

(A(un),un−u⊕−{f(z,un)(un−u)dzεnu n−u ,

Q

so

lim

r→+∞(A(un),un−u⊕=0

1+un

(see (3.29)),so

∇un2 −→ ∇u2

(sinceA(un)−→A(u)inH1(Q); see (3.29)). From the Kadec–Klee property of Hilbert spaces, wehave

so

∇un−→∇uinL2(Q;RN),

un−→uinH1(Q)

(see(3.29)).Therefore,ϕsatisfiestheCeramicondition. nu

4 Criticalgroups

Usingtheeigenvalueλm>0fromhypothesisHf(iii),wecanhavethefollowingorthogonal directsumdecompositionofH1(Q):

where

H1(Q)=Hm−1⊕E(�λm)⊕H�m+1,

m−1

Hm−1= E(λk)and

k=0

Then for everyu∈H1(Q), we have

Hm+1=

k�m+

1

E(�λk).

withu∈Hm−1,u0 u=u+u0+

�u,

∈E(�λm),�u∈H�m+1andthedecompositionisunique.Usinghypothesis

(26)

n

{

n n

2

0 n

u

0

n

n

un

(

410 L.Gasin´ski,N.S.Papageorgiou

Proposition 4.1If{un}n�1⊆H1(Q)is a sequence, such that u n + u n 1

then

un−→0and�

un −→0in Hn(Q),

lim sup

n→+∞Q

f0( z , u n) u n

dz<0.

un

ProofI t isclearfromhypothesisHf(iii)thatwecantakeβ>1small,suchthat2∗>2β.AsintheproofofProp osition3.3,fromBartoloetal.[3],weknowthatforagivenε>0,

wecanfindm1(ε)>0smallenoughandm2(ε)>0largeenough,suchthat fz∈Q:u0(z)<m1u0N< ε∀u0

E(�λm) (4.1)

and

|{z∈Q:|�u(z)+u(z)|>m2�u+u}|N 2∗

2∗−2 β

2β

<m1 εε∀u∈Hm+1,u∈ Hm−1. (4.2)

For everyn�1, we introduce the followingsets:

Q1n=f

z∈Q:u0(z)m1u0,

Q2n= {z∈Q: |un(z)+un(z)|m2un+un}.

From (4.1) and (4.2), we have

|Q\Q1n|N< ε,|Q\Q2n|N< ε (4.3) and

|Q1n∩Q1n|N|Q1n|N− |Q\Q2n|N�|Q|N−2ε. (4.4) Choosingε∈(0,1|Q|N), we see that|Q1n∩Q2n|>0, henceQ1n∩Q2n/=0. Let

z∈Q1n∩Q2n. Then

| u n ( z ) | 0

=|un(z)+�un(z)+un(z)|

�|u(z)|

−|� u n ( z ) − u n ( z ) |

un un un un

m1 0 n

un m2un+ u n

un .

(4.5) Next, letz∈Q2n\Q1n. Then

| u n ( z ) |

=|un(z)+�un(z)+un(z)|

�|u0(z)|

+| u n ( z ) + u n ( z ) | un

u0 un

u n+u n

un

un un

HypothesisHf(iii)implies that we can findδ=δ(ε)>0, such that

<m1 +m

2

. (4.6)

(27)

1 Neumann problems resonant at zero and infinity

411 f0(z,ζ)ζη0(z)+mε|ζ|for almost allz∈Q,all|ζ|δ. (4.7) On the other hand, by virtue of hypothesisHf(i), we have

f0(z,ζ)ζc8|ζ|μfor almost allz∈Q,all|ζ|> δ (4.8)

Cytaty

Powiązane dokumenty

The proof of existence of higher energy solutions in Barbu, Lasiecka and Rammaha (2005) is technical and in- volves rather special fixed point argument along with a barrier method

Smith,An existence theorem for weak solution of differential equations in Banach spaces, Nonlinear Equation in Abstract Spaces (V. Papageorgiou, Weak solutions of differential

lytic in the entire space except the origin... since it is a particular case of

Key words and phrases: existence of solution, measure of noncompactness, nonlinear Fredholm integral equation, Henstock-Kurzweil integral, HL

Abstract We consider a nonlinear nonparametric elliptic Dirichlet problem driven by the p-Laplacian and reaction containing a singular term and a p − 1-superlinear perturbation..

In this paper, using a combination of variational methods based on the critical point theory, with Morse theory critical groups, we establish the existence of at least five

In final section, we give our main result concerning with the solvability of the integral equation (1) by applying Darbo fixed point theorem associated with the measure

In [4, 7] the authors studied the existence and uniqueness of solutions of classes of initial value problems for functional differential equations with infinite delay and