• Nie Znaleziono Wyników

Dynamics of several ultra-cold particles in a double-well potential

N/A
N/A
Protected

Academic year: 2021

Share "Dynamics of several ultra-cold particles in a double-well potential"

Copied!
29
0
0

Pełen tekst

(1)

Dynamics of several

ultra-cold particles

in a double-well potential

Tomasz Sowinski

Institute of Physics of the Polish Academy of Sciences

References:

[1] T. Sowiński, M. Gajda, K. Rzążewski: EPL 113, 56003 (2016) [2] J. Dobrzyniecki, T. Sowiński: EPJ D 70, 83 (2016)

(2)
(3)

The question

0 a2/2

-2a -a 0 +a +2a

Position (osc. units)

N " N #

THE INITIAL STATE

What one can say about the evolution governed by the many-body Hamiltonian

without any approximations???

(4)

Double-well models

λ=0 λ=2 λ=4 λ=6

Position (osc. units)

Potential (osc. units)

0 2 4 6

-4 -2 0 2 4

Energy (osc. units)

Parameter λ

0 2 4 6 8 10

0 2 4 6 8 10

H ˆ

0

= ~

2

2m

d

2

dx

2

+ m⌦

2

2 x

2

+ exp

✓ m⌦

2 ~ x

2

shape of a potential spectrum

Position (osc. units)

2

0 x0/2

-2x0 -x0 0 +x0 +2x0

Energy (osc. units)

Parameter x

0

(osc. units)

0 1 2 3 4 5

0 1 2 3 4

(5)

Double-well models

Position (osc. units)

2

0 x0/2

-2x0 -x0 0 +x0 +2x0

Energy (osc. units)

Parameter x

0

(osc. units)

0 1 2 3 4 5

0 1 2 3 4

H ˆ

0

= ~

2

2m

d

2

dx

2

+ m⌦

2

2 ( |x| x

0

)

2

shape of a potential spectrum

(6)

The question

0 a2/2

-2a -a 0 +a +2a

Position (osc. units)

N " N #

THE INITIAL STATE

What one can say about the evolution governed by the many-body Hamiltonian

without any approximations???

(7)

The question

0 a2/2

-2a -a 0 +a +2a

Position (osc. units)

N " N #

THE INITIAL STATE

What one can say about the evolution governed by the many-body Hamiltonian

without any approximations???

MANY-BODY PROBLEM

(8)

standard commutation relations

BOSONS

MANY-BODY PROBLEM

(9)

FERMIONS

anticommutation relations

H = ˆ X Z

dx ˆ

(x) H

0

(x) + g ˆ

Z

dx ˆ

#

(x) ˆ

"

(x) ˆ

"

(x) ˆ

#

(x)

MANY-BODY PROBLEM

(10)

standard commutation relations

BOSONS

MANY-BODY PROBLEM

(11)

standard commutation relations

BOSONS

MANY-BODY PROBLEM

(12)

λ=0 λ=2 λ=4 λ=6

Position (osc. units)

Potential (osc. units)

0 2 4 6

-4 -2 0 2 4

Energy (osc. units)

Parameter λ

0 2 4 6 8 10

0 2 4 6 8 10

NEGLEC

TED

Two-mode models

(13)

λ=0 λ=2 λ=4 λ=6

Position (osc. units)

Potential (osc. units)

0 2 4 6

-4 -2 0 2 4

Energy (osc. units)

Parameter λ

0 2 4 6 8 10

0 2 4 6 8 10

NEGLEC

TED

Two-mode models

(14)

λ=0 λ=2 λ=4 λ=6

Position (osc. units)

Potential (osc. units)

0 2 4 6

-4 -2 0 2 4

Energy (osc. units)

Parameter λ

0 2 4 6 8 10

0 2 4 6 8 10

• Two-mode model appears in consequence of neglecting higher single-particle levels

NEGLEC

TED

• Then for TWO bosons only three states are relevant:

Two-mode models

• The Hamiltonian

(15)

Two-mode models

For short-range interactions one can anticipate that some terms can be neglected

Then we obtain two-site version

of the standard Bose-Hubbard model

(16)

Two-mode models

• Exact model

• Two-mode approximation

• Hubbard-like description

(17)

Very high barrier

exact model

complete two-mode model

Simple

Bose-Hubbard model

Shallow barrier

(18)

Shallow barrier

exact model

complete two-mode model

Simple

Bose-Hubbard model

Very high barrier

(19)

Inter-particle correlations

probability that bosons occupy different wells

Two-mode description is insufficient

to describe inter-particle correlations correctly!

(20)

FERMIONS

anticommutation relations

H = ˆ X Z

dx ˆ

(x) H

0

(x) + g ˆ

Z

dx ˆ

#

(x) ˆ

"

(x) ˆ

"

(x) ˆ

#

(x)

MANY-BODY PROBLEM

(21)

two distinguishable particles

(22)

Evolution of the densities

0 0.5 1

0 20 40 60 80 100

g = +0.0010

0 0.5 1

0 200 400 600 800 1000

g = +0.0010

0 0.5 1

0 20 40 60 80 100

g = +1.0000

0 0.5 1

0 200 400 600 800 1000

g = +1.0000

0 0.5 1

0 20 40 60 80 100

g = +2.0000

0 0.5 1

0 200 400 600 800 1000

g = +2.0000

(23)

Evolution of the densities

0 0.5 1

0 20 40 60 80 100

g = +0.0010

0 0.5 1

0 200 400 600 800 1000

g = +0.0010

0 0.5 1

0 20 40 60 80 100

g = +1.0000

0 0.5 1

0 200 400 600 800 1000

g = +1.0000

0 0.5 1

0 20 40 60 80 100

g = +2.0000

0 0.5 1

0 200 400 600 800 1000

g = +2.0000

0 0.5 1

0 20 40 60 80 100

g = -2.5000

0 0.5 1

0 200 400 600 800 1000

g = -2.5000

0 0.5 1

0 20 40 60 80 100

g = -1.0000

0 0.5 1

0 200 400 600 800 1000

g = -1.0000

(24)

Evolution of the densities

0 0.5 1

0 20 40 60 80 100

g = -2.5000

0 0.5 1

0 200 400 600 800 1000

g = -2.5000

0 0.5 1

0 20 40 60 80 100

g = -1.8000

0 0.5 1

0 200 400 600 800 1000

g = -1.8000

0 0.5 1

0 20 40 60 80 100

g = -1.0000

0 0.5 1

0 200 400 600 800 1000

g = -1.0000 0

0.5 1

0 20 40 60 80 100

g = +0.0010

0 0.5 1

0 200 400 600 800 1000

g = +0.0010

0 0.5 1

0 20 40 60 80 100

g = +1.0000

0 0.5 1

0 200 400 600 800 1000

g = +1.0000

0 0.5 1

0 20 40 60 80 100

g = +2.0000

0 0.5 1

0 200 400 600 800 1000

g = +2.0000

(25)

Many-body spectrum

-2 -1 0 1 2 3

-4 -3 -2 -1 0 1 2 3 4

Energy (osc. units)

Interaction

Many-body spectrum (N=N=1)

(26)

Many-body spectrum

-2 -1 0 1 2 3

-4 -3 -2 -1 0 1 2 3 4

Energy (osc. units)

Interaction

Many-body spectrum (N=N=1)

0 0.5 1

0 20 40 60 80 100

g = -2.9000

0 0.5 1

0 200 400 600 800 1000

g = -2.9000

0 0.5 1

0 20 40 60 80 100

g = -1.8000

0 0.5 1

0 200 400 600 800 1000

g = -1.8000

0 0.5 1

0 20 40 60 80 100

g = -2.5000

0 0.5 1

0 200 400 600 800 1000

g = -2.5000

(27)

two fermionic cloudlets

(28)

Spectrum of the Hamiltonian

3 3.5 4 4.5 5

-3 -2 -1 0 1 2 3

Many-body spectrum (N=N=2)

Energy (osc. units)

Interaction

(29)

Dynamics of several

ultra-cold particles

in a double-well potential

Tomasz Sowinski

Institute of Physics of the Polish Academy of Sciences

References:

[1] T. Sowiński, M. Gajda, K. Rzążewski: EPL 113, 56003 (2016) [2] J. Dobrzyniecki, T. Sowiński: EPJ D 70, 83 (2016)

Cytaty

Powiązane dokumenty

quency, is investigated. The loss factor dependence on temperature, for different film thicknesses is presented in figure 7.2. The samples analyzed have thicknesses in a range between 4

In this case, whenever an external magnetic field B is switched off, particles are equally distributed between spin components, i.e., each of the N/2 the lowest single-particle

When describing the low-energy physics of bosons in a double-well potential with a high barrier between the wells and sufficiently weak atom-atom interactions, one can, to a

In consequence, we have shown that for systems of interacting bosons in a double-well potential, the resulting effective two-mode model significantly increases accuracy of the

Figure from S. Jochim’s group paper.. FEW-BODY PROBLEMS THEORY GROUP. equal

was born in Torun (Poland) 9650 km North from Cape Town.. units). N "

to prepare experiments with a few ultra-cold atoms effectively confined in a one-dimensional harmonic trap..

Simulating Quantum Many-Body Systems.. in