• Nie Znaleziono Wyników

Elektrotechnika elektronika miernictwo

N/A
N/A
Protected

Academic year: 2021

Share "Elektrotechnika elektronika miernictwo"

Copied!
73
0
0

Pełen tekst

(1)

Elektrotechnika elektronika miernictwo

Franciszek Gołek

(golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl

Wykład 05

(2)

Schemat odbiornika radiowego Pionier (filtry p.cz. są w ekranach zaznaczonych przerywaną kreską).

Ilustracja drogi sygnału od anteny do głośnika

(3)

Radio na pojedynczym układzie scalonym

(4)

Decybel

Decybel to jednostka logarytmiczna. 1B = log

10

(P/Po), 1dB = 0,1B.

Decybele służą do porównania dwóch sygnałów (oczywiście o identycznych jednostkach) i wyrażają ich logarytmiczny stosunek.

Decybele stosujemy przede wszystkim w akustyce (tam gdzie reakcja układu biologicznego jest proporcjonalna do logarytmu natężenia

bodźca). Stosujemy je również w elektronice. W przypadku

porównywania amplitud mocy obowiązuje: k

P

[dB] = 10log

10

(P

2

/P

1

).

Dla napięciowych lub prądowych amplitud mamy: k

A

[dB] =

20log

10

(A

2

/A

1

)

bo 10log10(A22/A12) = 10log10(A2/A1)2 = 20log10(A2/A1).

Przy porównywaniu sygnałów o różnych przebiegach np. sygnału

sinusoidalnego i szumu bierzemy wartości RMS czyli wartości

skuteczne. Czasem wyrażamy daną wielkość odniesioną do wzorca lub wartości progowej np. 1V, lub w akustyce 20 µ P jako próg słyszalności (120dB oznacza 20 000 000 µ P). Jako wartości odniesienia można spotkać napięcia zapewniające wydzielanie mocy 1mW na standardowej oporności 50 Ω lub 600 Ω . Wartości skuteczne napięć wyrażone jako

“0 dBm” (m oznacza mW) wynoszą odpowiednio 0.22V dla obciążenia

50 Ω i 0.78V dla 600 Ω ).

(5)

Decybel

W komunikacji moc bywa wyrażana w jednostkach: dBW lub dBm:

100 W to 20 dBW, 1 W to 0 dBW, 0,5 W to -3 dBW, 1 W to 30 dBm.

Napięcie bywa wyrażane w jednostkach dBV, co należy rozumieć jako:

Przy określaniu zmian sygnałów pamiętajmy, że wartości ujemne

oznaczają zmniejszenie (straty) a wartości dodatnie oznaczają

zwiększenie (wzmocnienie).

(6)

Z poprzednich wykładów wiemy że:

indukcyjność i pojemność, w odróżnieniu od rezystancji, przyczyniają się do powstawania różnicy faz między

napięciem i prądem a ich impedancje zależą od

częstotliwości przebiegów elektrycznych X

L

= j ω L, X

C

= 1/j ω C.

W tym wykładzie pokażemy dalsze konsekwencje obecności pojemności i indukcyjności w obwodach elektrycznych.

Między innymi zbadamy jaki wpływ mają one na tzw. pasmo przenoszenia oraz kształtowanie impulsów elektrycznych.

Najprostszy dzielnik

napięcia zawierający

impedancję zależną

od częstotliwości

sygnału.

(7)

Pasmo częstotliwości

Pasmo częstotliwości jest ważną wielkością i podstawowym

pojęciem w systemach komunikacji. Pasmem częstotliwości dla danego sygnału nazywamy zakres częstotliwości jaki obejmuje spektrum tego sygnału.

Aby przesłać informację przy pomocy fali nośnej

o częstotliwości ω

o

trzeba

ją zmodulować (zdeformować) w takt informacji.

Taka modulacja oznacza zamianę sygnału nośnego o jednej częstości

na sumę pewnego spektrum sygnałów obejmującego pewne pasmo.

FM – modulacja częstotliwości

AM – modulacja amplitudy

(8)

Przyjmując że:

Fala nośna: N(t) = U

N

cos( Ω t),

Sygnał modulujący: M(t) = U

M

cos( ω t),

otrzymujemy sygnał AM (amplitudowo zmodulowanej fali):

U(t) = [U

N

+ M(t)]cos( Ω t) = [U

N

+ U

M

cos( ω t)]cos( Ω t)

= U

N

[1+ m·cos( ω t)]cos( Ω t),

gdzie m = UM/UN < 1 jest indeksem (głębokością) modulacji.

Zamieniając iloczyn kosinusów odpowiednią sumą mamy:

U(t) =

U

N

cos( Ω t) + (½)mU

N

cos[( Ω - ω )t] + (½)mU

N

cos[( Ω + ω )t]

Widać, że sygnał AM składa się z fali nośnej i wstęg

bocznych: dolnej Ω - ω oraz górnej: Ω + ω .

(9)

Filtrem nazywamy urządzenie, które przepuszczając

(transmitując) sygnał wejściowy może zmieniać przy tym jego spektralny rozkład energii. W praktyce filtry mają za zadanie przenosić sygnały o interesujących nas

częstotliwościach i tłumić sygnały o częstotliwościach niepożądanych.

Filtry, poprzez zmianę składowych harmonicznych, modelują impulsy elektryczne.

Ze względu na przenoszone pasmo filtry dzielimy na:

Dolno-przepustowe, Górno-przepustowe,

Środkowo-przepustowe (pasmowo-przepustowe), Środkowo-zaporowe (pasmowo-zaporowe),

Wielopasmowe.

(10)

Filtry dzielimy pod względem technologii wykonania:

a) Pasywne - dzielniki napięcia lub prądu z elementami pasywnymi: R, C i L.

b) Aktywne - zawierają, oprócz elementów R, C i L, tranzystory lub wzmacniacze operacyjne.

c) Cyfrowe, w których sygnał jest zamieniany na postać cyfrową a następnie szeregi liczb są przetwarzane,

filtrowane i ponownie zamieniane na sygnał.

d) Filtry z akustyczną falą powierzchniową AFP (SAW - surface acoustic wave).

e) Filtry grzebieniowe.

Filtry grzebieniowe.

f) Filtry kwarcowe, ceramiczne i inne.

g) Filtry mikrofalowe.

(11)

Obrazkowa ilustracja działania filtru

(12)

Pasmo przenoszenia filtra

Jest to obszar częstotliwości o najlepszym przenoszeniu sygnału zawarty między granicami pasma. Granice pasma przenoszenia to takie

częstotliwości, przy których moc sygnału spada o 50% od swej największej wartości, co oznacza, że moduł napięciowego lub prądowego współczynnika przenoszenia sygnału -

k

U

= IU

wy

/U

we

I lub k

I

= II

wy

/I

we

I - jest √ 2 razy mniejszy od swej maksymalnej wartości.

W decybelach wygląda to następująco:

20log(1/ √ 2) = -3 dB, czyli stosunek k(f

g

)/k

max

wyrażony w decybelach wynosi -3 dB. Ponieważ moc jest proporcjonalna do kwadratu napięcia albo kwadratu natężenia prądu, P = U

2

/R = I

2

R graniczne częstotliwości spełniają równość:

|K(f

g

)/K

max

| = k(f

g

)/k

max

= 1/ √ 2

P(f

g

)/P

max

= U

2

(f

g

)/U

2max

= I

2

(f

g

)/I

2max

=1/2

(13)

Pasmo przenoszenia dowolnego układu

W zasadzi każdy układ, przez który następuje propagacja jakiegokolwiek sygnału ma jakieś ograniczenia dotyczące częstotliwości propagowanego sygnału.

Graficzna ilustracja granic pasma zgodnie z definicjami:

P(f

g

)/P

max

= U

2

(f

g

)/U

2max

= I

2

(f

g

)/I

2max

= 1/2

| K(f

g

)/K

max

| =

k(f

g

)/k

max

= 1/ √ 2

(14)

Filtry pasywne - dzielniki napięcia zależne od częstotliwości. Często są to filtry RC i

stanowią bardzo ważne zastosowanie

kondensatorów. Obliczenia parametrów tych

dzielników w dziedzinie częstotliwości wymagają stosowania uogólnionych praw Ohma i Kirchhoffa czyli praw w zapisie zespolonym (tj. przy pomocy liczb zespolonych i funkcji zespolonych).

Przy analizie filtrów warto też stosować

wykresy wskazowe bo mogą one stanowić

dogodną ilustrację relacji między sygnałem

wejściowym i wyjściowym danego filtra dla

wybranej częstotliwości.

(15)

Współczynnik przenoszenia k

U

i przesunięcie fazy ϕ .

Rysunek przedstawia dzielnik napięcia złożony z zespolonych impedancji Z1 i Z2, zasilany przez źródło o pomijalnie małej impedancji wewnętrznej Z0 ~ 0 Ω. Zatem Z0 ma pomijalny udział w podziale napięcia Thevenina. Ponadto dzielnik jest nieobciążony, gdyż obciążenie Z3 ~

∞ .

Aby obliczyć współczynnik

przenoszenia tego dzielnika, zwanego też czwórnikiem bo ma dwa zaciski wejściowe i dwa zaciski wyjściowe – razem cztery, stosujemy taką logikę

postępowania jak przy zwykłych opornikach ale z użyciem liczb zespolonych.

Zespolony stosunek Uwy/Uwe= KU = kUeiϕ zawiera współczynnik przenoszenia kU czyli stosunek wartości skutecznych lub amplitud - modułów napięcia

wyjściowego do napięcia wejściowego IUwyI/IUweI oraz względne przesunięcie fazy ϕ. Napięcie wyjściowe to spadek napięcia na Z2: Uwy= U2 = I1 Z2. Napięcie wejściowe to spadek na szeregowo połączonych Z1 i Z2 czyli Uwe= I1Z1+I1Z2. kU = IUwyI/IUweI = IZ2I/IZ1+Z2I, ϕ = arctg((Im(KU))/(Re(KU))).

(16)

Filtr dolnoprzepustowy, opis w dziedzinie częstotliwości.

Opis ten mówi jak, w funkcji częstotliwości, ma się stosunek amplitud napięcia wyjściowego do napięcia wejściowego - kU oraz względna różnica faz - ϕ

sygnału wyjściowego względem wejściowego. Obie te wielkości mamy w funkcji zespolonej przedstawiającej stosunek zespolonych wartości napięcia wyjściowego do wejściowego. Zakładamy, że źródło sygnału ma zerową a

obciążenie nieskończoną oporność wewnętrzną. Mamy jeden prąd I w R i w C:

(17)
(18)

Ważne

(19)
(20)

Bardzo często podczas łączenia układów elektronicznych powstają

pasożytnicze układy całkujące - filtry dolno-przepustowe (lub różniczkujące,

czyli filtry górno-przepustowe). Zwykle składają się one z rezystancji wyjściowej jednego układu i pojemności wejściowej następnego lub pojemności

przewodów łączących. Te pasożytnicze elementy mogą przyczyniać się do

zmniejszenia górnej częstotliwości granicznej danej aparatury oraz wpływać na kształt i czas trwania impulsów.

Przykład 5.3. Co pojawia się na nieobciążonym wyjściu

dolnoprzepustowego filtru RC gdy na jego wejściu wymuszamy skok napięcia o wartości U0 ?

Rozwiązania, jak na poprzedniej stronie: Dla skoku 0 do U0: uwy(t) = U0(1 - e-t/RC) Dla skoku U0 do 0: uwy(t) = U0e-t/RC. Iloczyn RC, zwany stałą czasową τ, określa czas, po którym uwy(t) zbliża się do swej asymptotycznej wartości na „odległość”

= 1/e wysokości skoku.

τ = RC

(21)

Oszacujmy ile wynosi czas narastania impulsu prostokątnego

zdeformowanego filtrem dolnoprzepustowym. Czyli w jakim czasie U

wy

(t) wzrośnie od 10% do 90% swej wartości maksymalnej?

0.9 U

0

= U

0

(1 - e

-t/RC

) -> t

90%

= -RCln0.1 (U

0

≈ wartość maksymalna) 0.1 = 1 - e

-t/RC

-> t

10%

= -RCln0.9

t

r

= t

90%

- t

10%

= RC(ln0.9 - ln0.1) = RCln9 ≈ 2.2RC.

Pamiętając, że f

g

= 1/(2 π RC) -> RC = 1/2 π f

g

otrzymamy związek:

t

r

≈ 2.2RC = 2.2/(2 π f

g

) ≈ 2.2/(6,28 f

g

). Zatem możemy napisać:

t

r

1/(3f

g

).

Rysunek przedstawia odpowiedź filtru dolnoprzepustowego na

ciąg impulsów prostokątnych o różnych częstotliwościach.

(22)
(23)

Filtr górno-przepustowy, opis w dziedzinie czasu.

(24)

Filtr pasmowo-przepustowy

tłumi jednocześnie sygnały o częstotliwościach niższych od fg. dolna oraz sygnały o częstotliwościach

wyższych od fg. górna. Przykładem takiego filtra może być kaskadowe połączenie filtrów: górno i dolno przepustowego o odpowiednio dobranych

częstotliwościach granicznych. Przykład z identycznymi fg poniżej.

(25)

Zastosowanie filtrów

Filtry są stosowane do kształtowania charakterystyk

częstotliwościowych układów elektronicznych i do kształtowania impulsów napięciowych.

Wybierania jednych i eliminowania innych sygnałów (zakłócających) np. tunery to po prostu przestrajalne filtry pasmowe. W zasadzie każde urządzenie elektroniczne zawiera filtry.

Filtry górno-przepustowe stosowane są często jako pojemnościowe sprzężenie między układami elektronicznymi (np. wzmacniaczami) celem zablokowania tzw. składowej stałej.

Sygnały w.cz. mogą nieoczekiwanie przeniknąć przez pojemności wyłączników, albo zbliżonych do siebie przewodów powodując wzajemne zakłócanie obwodów elektronicznych.

Warto pamiętać, że filtry typu RC lub RL wykazują raczej łagodne

stromości charakterystyk. Natomiast bardziej złożone filtry typu RLC

(zawierające obwody rezonansowe o dużej dobroci) mogą wykazywać

bardzo duże stromości na brzegach pasm!

(26)
(27)
(28)
(29)
(30)
(31)

Prosta zasada łączenia układów

mówi, że jeżeli układ A steruje układem B (B obciąża układ A) to warto zadbać o to aby Rwy układu A < 0,1RWE układu B. Wtedy wpływ B – układu obciążenia na A – układ sterujący będzie mało znaczący. A po obciążeniu go przez B działa z zaburzeniem nie przekraczającym 10% (A wystawia na swoim wyjściu o 10%

napięcie niższe niż w przypadku braku obciążenia). W sytuacji gdy takie 10%- we odchylenie możemy zaniedbać uzyskujemy prosty sposób na projektowanie wielostopniowych układów. Po prostu każdy podukład (stopień) projektujemy i obliczamy osobno, obliczenia wtedy są proste.

Łączenie pojedynczych filtrów w filtry wielostopniowe zmusza nas do przypomnienia co wiemy o twierdzeniu Thewenina i o dzielniku napięcia:

(32)

Poprawianie stromości charakterystyki przez

zastosowanie filtrów wyższego rzędu.

(33)

Dla poprawienia efektu filtracji stosowane są bardziej rozbudowane filtry, w tym filtry aktywne czy filtry

cyfrowe.

Filtry aktywne powstają poprzez zastosowanie układów aktywnych (tranzystorów, wzmacniaczy operacyjnych itp.) w obwodach filtrujących RLC. Elementy aktywne, dzięki dużej impedancji wejściowej i efektowi

wzmacniania sygnału, pozwalają na budowanie filtrów wielostopniowych o bardzo stromym przebiegu

charakterystyk na brzegach filtrowanych pasm.

(34)

Filtry cyfrowe to układy filtrujące i przetwarzające sygnały dyskretne (cyfrowe).

Filtry cyfrowe są coraz częściej i szerzej stosowane w wielu dziedzinach techniki bowiem każdy sygnał

analogowy (prosty jednowymiarowy jak i złożony

wielowymiarowy, fotografia, film itp.) można zamieniać na sygnał cyfrowy odpowiednimi przetwornikami

analogowo-cyfrowymi.

(Skrót „DSP” oznacza: digital signal processing) http://www.intersil.com/data/AN/an9603.pdf

FRED J. TAYLOR „DIGITAL FILTERS” Wiley 2012.

(35)

Aliasing Jest to efekt zbyt wolnego próbkowania sygnału i może mieć miejsce przy konwersji A/D.

Zgodnie z zasadą Nyquiata-Shannona próbkowanie musi być wykonywane z

częstotliwością większą niż podwojona maksymalna częstość w spektrum badanego sygnału: fpr>2fmax. Mając zadaną szybkość próbkowania mówimy o połowie

częstotliwości próbkowania fpr/2 nazywanej częstotliwością Nyquista fN = fpr/2 jest ona graniczną wartością dla badanych sygnałów. To znaczy sygnały o częstotliwości fsyg

wyższej niż fN będą rozpoznawane błędnie jako sygnały o częstotliwości aliasu.

Częstotliwość aliasu fA = | najbliższa sygnałowi całkowita wielokrotność częstotliwości próbkowania – częstotliwość sygnału |.

Przykładowo dla fpr = 100 Hz i fsyg = 520 Hz otrzymamy: falias= | 5100 – 520 | Hz = | -20 | Hz = 20 Hz (jest to wygenerowanie artefaktu – czegoś czego nie ma w badanym sygnale!). Zatem każdy złożony sygnał zawierający składniki o częstotliwościach wyższych niż fN dla danego przetwornika A/D będzie zapisany jako zniekształcony.

Wynika z tego, że powinniśmy próbkować maksymalnie szybko (często) ale wtedy olbrzymia ilość próbek wymaga olbrzymiego zapasu pamięci.

(36)

Symulacja

w TINA

(37)

Rezonans

Obwody rezonansowe to szczególna grupa obwodów, które w zasadzie możemy zaliczyć do filtrów. Zasługują one jednak na odrębne potraktowanie co najmniej z dwu powodów:

1) Wykorzystywane są przy wymuszaniu oscylacji o ściśle określonej częstotliwości fali nośnej stacji nadawczych

(emitujących fale elektromagnetyczne).

2) Jako przestrajane obwody rezonansowe wykorzystywane są w odbiornikach radio, TV itp. do wybierania pożądanych sygnałów (tj. pożądanych stacji nadawczych).

Przykładowa krzywa rezonansowa pokazana jest na rys. obok.

Widać tu reakcję o dużej amplitudzie tylko dla pewnego zakresu częstości w otoczeniu częstotliwości

rezonansowej f

r

Dla sygnałów

o bardziej oddalonych częstościach

reakcja jest znikoma.

(38)

Rezonans szeregowo połączonych elementów R, L i C.

Indukcyjność L i pojemność C są tu konieczne natomiast rezystancja R zwykle pojawia się

jako oporność wewnętrzna źródła wymuszania i jako rezystancja przewodu uzwojenia solenoidu stanowiącego indukcyjność L. Czasem należy uwzględnić nawet rezystancję połączeń

elementów ze sobą.

Zawadą (impedancją) szeregowego układu rezonansowego RLC jest

Z = R + XL + XC = R + j(ωL – 1/ωC)

Rezonans wystąpi dla pulsacji ω = ω0, przy której Z = R i (ω0L – 1/ω0C) = 0.

Dla rezonansu zawada Z = R ma najmniejszą wartość co skutkuje największym prądem:

I = UT/(ZT + Z) ≈ UT/R – gdy ZT jest do

zaniedbania. Poza rezonansem, dla ω > ω0 lub ω < ω0, moduł Z ma wartość większą co

zmniejsza prąd I a UC i UL mają różne moduły.

(39)

Czasem mówi się, że rezonans szeregowo połączonych elementów R, L i C jest

rezonansem napięć.

Łatwo to zrozumieć gdy w rezonansie

Impedancje XL = XC >> R. Wówczas spadki napięcia na Indukcyjności i pojemności są wielokrotnie większe od napięcia

wymuszającego UT, a UR = UT.

Dla zadanych wartości L i C pulsacja rezonansowa spełnia równość:

ω0L = 1/ω0C, ω0 = 1/√(LC) a wartość częstotliwości rezonansowej wynosi:

Z czego wynika, że chcąc dostroić obwód rezonansowy do częstotliwości

wybranego sygnału należy zmieniać wartość L lub C, w praktyce zwykle zmieniamy

pojemność.

(40)

Rezonans równolegle połączonych

elementów R, L i C - rezonans prądów.

Dla zadanych wartości L i C pulsacja rezonansowa spełnia równość

susceptancji (przewodności zespolonych) B

L

i B

C

: 1/ ω

0

L = ω

0

C,

ω

0

= 1/ √ (LC) a wartość częstotliwości rezonansowej wynosi:

Mamy tu rezonans prądów, gdyż przy

małym G = 1/R (dużym R) i jednocześnie dużych B

L

i B

C

(czyli małych

XL i XC) mamy

olbrzymi prąd w L i C wielokrotnie większy od prądu wymuszenia, który płynie przez rezystor R.

Niestety w praktyce nie

możemy pomijać rezystancji przewodów cewki stanowiącej Indukcyjność i otrzymany tu wzór na częstotliwość

rezonansową jest tylko przybliżeniem.

(41)

Rzeczywisty równoległy obwód rezonansowy.

Aby wyznaczyć f

rez

szeregowy układ

X

L

i R

L

zastąpimy równoważnym mu

obwodem równoległym X

LP

i R

P

:

(42)

Dla tak przekształconego ale równoważnego układu mamy:

Zerowanie się części urojonej (rezonans) oznacza: XLp = XC

(43)

Chcąc zwiększać częstotliwość rezonansową (w obszar wielu GHz) musimy zmniejszać L i C.

Zmniejszając L i C niemal do granic możliwości

osiągamy tzw.

rezonatory wnękowe:

(44)

Filtry mikrofalowe

(tu zamiast zwoi i okładek mamy wnęki rezonansowe!)

(45)

Współczynnik dobroci Q, dobroć Q, Q factor (quality factor)

Dobroć Q dotyczy tracenia energii przez układ, który może oscylować (elektryczny lub elektroniczny obwód rezonansowy RLC, huśtawka, struna itp.)

i wyraża się stosunkiem posiadanej energii do względnej szybkości jej tracenia.

Dobroć układu decyduje o kształcie (ostrości) jego krzywej rezonansowej.

DEFINICJA

Po prostym

przekształceniu:

widzimy, że Q jest stosunkiem posiadanej energii do jej porcji traconej w ciągu jednostkowej części cyklu (w rezonansie) jaką jest 1 radian!

Dla dowolnego układu elektrycznego to część rzeczywista R jego impedancji Z jest tym czynnikiem, który odpowiada za straty (rozpraszanie) energii.

(46)

Współczynnik Q zależy oczywiście od budowy elementów składowych.

Dla idealnych indukcyjności L i pojemności C przyjmujemy, że gromadząc energię nie rozpraszają jej (dla rzeczywistych L i C

rozpraszanie energii nie jest zerowe ale może być małe a czasem

pomijalnie małe).

Rozważmy układ równoległy RLC, którego admitancja (przewodność zespolona) wyraża się przez:

(47)

Zatem dla obwodu równoległego RLC (L i C idealne) jak na rysunku mamy Q-faktor wyrażony przez:

Widać, że rezystancja równolegle włączona

do równoległego układu

LC powinna być jak największa dla największego Q (najlepiej ten rezystor usunąć). Opornik R tak włączony osłabia dobroć Q. W praktyce jednak należy uwzględniać przynajmniej

nieidealność L czyli niezerową oporność drutu z jakiego wykonana jest indukcyjność.

Wtedy obowiązuje schemat jak obok:

(48)

Dobroć Q jest również miarą ostrości krzywych rezonansowych wyrażanej jako:

Dla sprawdzenia równoważności tego wyrażenia na Q, przydatnego do analizy

filtrów RLC, z innymi wyrażeniami policzmy

ω

rez

i ∆ω

3dB.

Niech np. UWY = UR to ku = |UR/URLC| i kumax = 1.

Dla

ω

3dB: ku/kumax =

Zatem dla szeregowego układu RLC mamy cały szereg wyrażeń na Q!

(49)

Dodajmy, że w elektronice poza dobrocią układów rezonansowych można mówić o dobroci innych układów czy elementów.

Przykładowo straty energii w cewkach lub kondensatorach można wyrażać przy pomocy współczynnika dobroci Q.

Dobroć cewki zdefiniowana jest jako stosunek: ωL/R Q = ωoL/R albo R = ωoL/Q

(gdzie L-indukcyjność cewki, R oporność cewki).

Traktując kondensator jako równoległe połączenie idealnej pojemności i rezystancji R (reprezentującej straty dielektryczne) definiujemy dobroć kondensatora jako stosunek prądów

Q = IC/IR = (U/XC)/(U/R) = R/XC= ωCR.

Wynika z tego, że układy o dużej dobroci to takie, które „marnotrawią” mało energii na straty w rezystancjach przewodów cewki, ewentualnego rezystora R oraz w materiale kondensatora.

(50)
(51)

Przykład 5.5. Układ równoległy RLC

jak na rysunku obok ma dobroć Q = 100.

W rezonansie natężenie prądu źródła

wynosi 1 A. Jaki prąd cyrkuluje wtedy w L i C?

Rozw.

Z definicji Q dla układu równolegle połączonych R L i C mamy: Q = Y

c

/G = Y

L

/G (są to stosunki modułów Y

C

i G) czyli Y

C

/G = Y

L

/G = 100 -> Y

C

= Y

L

=100G,

Napięcia na R L i C są tu identyczne i niech wynoszą jakieś U.

Z danych mamy, że I

R

= I

źródła

= 1A = UG.

Prądy w L i C mają przeciwne fazy a w rezonansie ich moduły są równe podobnie jak moduły ich konduktancji.

Zatem moduły prądów to: I

C

= UY

C

= U • 100 • G = 100 • UG=

100 • 1 A =100 A.

Podobnie I

L

= 100 A.

To zwielokrotnienie prądu możemy nazywać przetężeniem,

podobnie jak w szeregowych układach RLC zwielokrotnienie

napięcia nazywamy przepięciem.

(52)

Filtry kwarcowe, Rezonatory kwarcowe

(53)

Współczynniki dobroci Q

A.Pillonnet i inni,

Optics Express, Vol. 20, Issue 3, pp. 3200-3208 (2012)

Frank Vollmer, thesis, Rockefeller University

(54)

Inne zastosowania C i L

d – odległość między okładkami kondensatora, w – szerokość okładek kondensatora,

h0 – wysokość ponad paliwem,

hpaliwa – głębokość zanurzenia w paliwie.

ε0 – przenikalność powietrza i par paliwa.

εpaliwa – przenikalność paliwa

Detektory ruchu i wibracji

(55)

Akcelerometry (częste zastosowanie pojemności)

MEMS (ang. Micro Electro-Mechanical Systems) czyli Mikrosystemy, są to zintegrowane układy elektro-mechaniczne, u których co najmniej jeden wymiar szczególny znajduje się w skali mikro (0,1 - 100 μm).

Akcelerometr piezoelektryczny

.

(56)

Przykładowe ekstra zastosowanie pojemności:

Trzy-osiowy akcelerometr:

MMA7260Q, MMA7261QT,

LIS3L06AL i inne. MMA7260Q

LIS3L06AL

Inne ekstra zastosowanie pojemności to czujniki pojemnościowe w ekranach dotykowych.

LIS3L06AL

Pomiar różnicy pojemności daje sygnał n.p. do odpalenia poduszki powietrznej.

(57)

Przykład.5.6. Narysuj wykres wskazowy dla układu równolegle połączonych L = 10mH i C = 50µF, zasilanych z generatora napięcia sinusoidalnego o pulsacji ω

= 1000 rad/s i amplitudzie 1V. Impedancja wewnętrzna generatora wynosi Rwe

= 1Ω. Powtórzyć obliczenia dla ω = 1414rad/s, 10rad/s i 10000rad/s.

Rozw. Zaczniemy od narysowania schematu układu:

Indukcyjność L = 10mH stanowi XL = jωL

=j1000·0,01 Ω = j10 Ω, YL=1/XL= -j0,1 S.

Pojemność: XC= -j/(ωC) = -j/(1000·5·10-5) Ω = -j20 Ω,

YC=1/XC = j0,05 S. YLC = YL + YC = -j0,1 +j0,05 = -j0,05 S, ZLC = 1/YLC = j20 Ω. Źródło napięcia określone jest przez:

UT = cos(1000·t) V, RT = Rwe = 1Ω.

Wykres wskazowy to geometryczna ilustracja napięć i prądów w analizowanym układzie.

Przed wykonaniem wykresu musimy obliczyć moduły poszczególnych prądów i napięć oraz ich fazy względem fazy podanego napięcia zasilania, którego fazę przyjmiemy możemy wybrać dowolnie. Niech UT = cos(1000·t + 0°), możemy też zapisać: UT = 1∠0 V.

Policzmy prąd I, I = UT/Z = 1/(RT + ZLC) = 1/(1 + j20) = 1/[(12 + 202)0,5·ejarctg(20/1)] = 1/(20,025ej87°) ≅ 0,05e-j87° A dla chwili t = 0, a w pełni I = 0,05ej(1000t - 87°) A.

Mamy wskaz (wektor) prądu: I = 0,05∠-87°A przy wskazie napięcia UT =1∠0 V.

(58)

Ten sam prąd możemy oczywiście otrzymać bardziej okrężną drogą, np.:

I = UT/Z = 1/[1 + (XC·XL)/(XC + XL)] = 1/[1 +(jωL/j ωC)/(j ωL + 1/j ωC)] = 1/[1+(L/C)/(jωL – j/ ωC)]

= 1/[1 + (10-2/5·10-5)/(j10 – j/5·10-2)] = 1/[1 + 200/(j10 – j20)] = 1/[1+ 200/(-j10)] = 1/[1 + j20]

= 1/[(12 + 202)0,5·ejarctg(20/1)] = ≅ 0,05e-j87° A.

Mając prąd I, możemy policzyć UR oraz ULC stosując prawo Ohma:

UR ≅ I·R = 0,05∠-87° A · 1 Ω = 0,05∠-87° V

ULC ≅ I·ZLC = 0,05∠-87° A · j20 Ω = 0,05∠-87° A · 20∠90° Ω = 1∠3° V.

Mając ULC obliczamy IL oraz IC:

IL = UL·YL = ULC·YL ≅ 1∠3° V · -j0,1 S = 1∠3° V · 0,1∠-90° S = 0,1∠-87° A IC = UC·YC = ULC·YC ≅ 1∠3° V · j0,05 S = 1∠3° V · 0,05∠90° S = 0,05∠93° A

(59)

b) Rozw. dla pulsacji ω =1414rad/s.

Indukcyjność L = 10mH stanowi XL = jωL

=j1414·0,01 Ω = j14,14 Ω, YL=1/XL= -j0,07 S.

XC= -j/(ωC) = -j/(1414·5·10-5) Ω = -j14,14 Ω,

YC=1/XC = j0,07 S. YLC = YL + YC = 0 więc mamy pulsację rezonansową.

ZLC = 1/YLC = ∞ Ω.

Wynika z tego, że ULC = UT, UR = 0,

IL = ULC·YL = UT ·( -j0,07 S) = 1∠0 ·0,07∠-90° = 0,07∠-90° A IC = ULC·YC = UT ·(j0,07 S) = 1∠0 ·0,07∠90° = 0,07∠90° A

.

Komentarz: założenie, że równolegle połączone są idealne L i C, czyli mamy połączenie bezstratnej

indukcyjność i pojemność, doprowadziło do rezultatu:

w stanie stacjonarnym mamy zerowy prąd z zasilacza podczas gdy prąd w L i C

jest niezerowy. Daje to w efekcie nieskończony stosunek IL/I = IC/I = 0,07/0, zwany przetężeniem.

Oczywiście w chwili włączenia zasilania, w czasie trwania stanu nieustalonego, gdy gromadzona jest energia w układzie LC, trochę ładunku popłynie z

zasilania dając krótkotrwały prąd uruchomienia.

W obwodach rzeczywistych (nieidealnych) mamy pobór energii na pokrycie strat.

(60)

c) Rozw. dla pulsacji ω =10rad/s.

XL = jωL = j10·0,01 Ω = j0,1 Ω, YL=1/XL= -j10 S.

XC= -j/(ωC) = -j/(10·5·10-5) Ω = -j2000 Ω, YC=1/XC = j0,0005 S. YLC = YL + YC ≅ -j10 S.

ZLC = 1/YLC ≅ j0,1 Ω. = 0,1∠90° Ω

I = UT/Z = 1/(RT + ZLC) = 1/(1 + j0,1) = 1/[(12 + 0,12)0,5·ejarctg(0,1)] = 1/(1,005ej5,7°) ≅ 1e-j5,7° A = 1∠-5,7° A dla chwili t = 0, a w pełni I = 1ej(10t – 5,7°) A

Mamy więc wskaz prądu I: I = 1∠-5,7° A przy wskazie napięcia UT = 1∠0 V.

UR= I·R = 1∠-5,7° A · 1 Ω = 1∠-5,7° V,

ULC= IZLC = 1∠-5,7° A · 0,1∠90° Ω = 0,1∠84,3° V

IL = ULC·YL = 0,1∠84,3° V · ( -j10 S) = 0,1∠84,3° V · 10∠-90° S = 1∠-5,7° A IC = ULC·YC = 0,1∠84,3° V · ( j0,0005 S) = 0,1∠84,3° V · 0,0005∠90° S

= 0,00005∠174,3° A,

(61)

c) Rozw. dla pulsacji ω =10000rad/s.

XL = jωL = j10000·0,01 Ω = j100 Ω, YL=1/XL= -j0,01 S.

XC= -j/(ωC) = -j/(10000·5·10-5) Ω = -j2 Ω, YC=1/XC = j0,5 S. YLC = YL + YC = j0,49 S.

ZLC = 1/YLC = -j2,04 Ω. = 2,04∠-90° Ω I = UT/Z = 1/(RT + ZLC) = 1/(1 - j2,04)

= 1/[(12 + 2.042)0,5·ejarctg(-2,04)] =

1/(2,27e-j64°) ≅ 0,44ej64° A = 0,44∠64° A dla chwili t = 0, I = 1ej(10000t+64°) A,

I = 0,44∠64° A przy UT = 1∠0 V.

UR= I·R = 0,44∠64° A · 1 Ω = 0,44∠64° V,

ULC= IZLC = 0,44∠64° A · 2,04∠-90° Ω ≅ 0,9∠-26° V IL = ULC·YL = 0,9∠-26° V · ( -j0,01 S)

= 0,9∠-26° V · 0,01∠-90° S = 0,009∠-116° A IC = ULC·YC = 0,9∠-26° V · ( j0,5 S)

= 0,9∠-26° V · 0,5∠90° S = 0,45∠64° A,

(62)

Wnioski.

Wyniki i wykresy wskazowe pokazały, że dla pulsacji rezonansowej

ULC= UT - napięcie na cewce i kondensatorze jest równe napięciu zasilania i prąd z zasilania nie jest czerpany. UR = 0 - Brak spadku napięcia na rezystancji Rwew. Natomiast przy oddalaniu częstotliwości wymuszania od wartości

rezonansowej pojawia się spadek napięcia UR i napięcie na L i C maleje.

Zmiany są jednak małe bo wartość rezystancji RT = 1 Ω (jedyna rezystancja, szeregowo włączona między źródłem napięcia a obwodem równoległym LC) jest mała. Prąd cyrkulujący w rezonansie w obwodzie LC też jest mały bo w rezonansie impedancje XL = -XC = j14,14 Ω a amplituda napięcia to tylko 1 V.

(63)

Przykład nieskończenie długiej „drabiny” L/C jako linii transmisyjnej Zbadamy co dzieje się w bardzo długim, załóżmy nieskończonym łańcuchu („drabinie”) złożonym z połączonych ze sobą tak jak pokazuje rysunek 7.19 elementów L i C pobudzanym wymuszeniami sinusoidalnymi.

Rys. 7.19. a) Schemat nieskończonej drabiny elementów LC i b) sugestia do wyliczenia jej impedancji zastępczej Z0.

Chcąc wyliczyć impedancje takiej nieskończonej drabiny wykorzystamy tu proste

spostrzeżenie, że dodanie do nieskończonej drabiny LC jednego sektora LC tak jak na rys. 7.19b nie zmienia wartości impedancji całości (przedłużenie nieskończonej drabiny niczego nie zmienia). Zatem dla układu z rysunku 7.19b możemy napisać równość:

(64)

Podstawiając Z

L

= j ω L oraz Z

C

= 1/j ω C otrzymujemy:

Dostrzegamy że człon: jωL/2 w tym wyrażeniu to połowa pierwszej

indukcyjności L w naszej drabince. To oznacza, że impedancja całej reszty patrząc od środka pierwszej indukcyjności w prawo może być wyrażona przez:

(65)

Interesującym w tych rozwiązaniach jest to,

że dla niskich częstości ω < √(4/LC), czyli kiedy ωL/2 = XL/2 < (L/C)1/2

w rozwiązaniu 7.22 pojawia się część rzeczywista, i 7.23 jest składową rzeczywistą co oznacza pochłanianie energii przez nasz układ!

Powstaje pytanie jak drabina zbudowana z idealnych elementów o czysto urojonych impedancjach wykazuje impedancję nie

urojoną?

Wyjaśnienie polega na tym, że drabina jest nieskończona i źródło sygnału dostarcza energię do coraz bardziej oddalonych L i C

i proces ten trwa nieprzerwanie.

Oznacza to propagację fali i energii wzdłuż naszej linii elementów LC. Gdy jednak częstość jest większa ω > √ (4/LC) impedancja Z

0

jest czysto urojoną wielkością, wówczas takiej propagacji energii nie ma! Krytyczną wartość częstotliwości ω

0

= √ (4/LC), od której począwszy propagacja energii znika nazywamy częstością

odcięcia.

(66)

Sprawdźmy teraz jak szybko słabnie napięcie wzdłuż naszej drabinki dla ω >

√(4/LC). W tym celu porównamy dwa napięcia na dwu kolejnych

pojemnościach naszej drabiny przedstawionej ponownie na rysunku 7.20.

Rys. 7.20.

Aby otrzymać stosunek kolejnych napięć: Un+1/Un napiszmy wyrażenie na różnicę tych napięć i przekształćmy:

U

n

– U

n+1

= I

n

j ω L U

n

– U

n+1

= (U

n

/Z

0

)j ω L

U

n+1

/U

n

= 1 - j ω L/Z

0

Jest to współczynnik propagacji α, który jak widać jest mniejszy od 1 i ze wzrostem ω szybko maleje do zera (bo ze wzrostem ω rośnie jωL i Z0).

(67)

Uwzględniając wyrażenie 7.22 otrzymujemy:

Gdy częstotliwość sinusoidalnego wymuszenia ω jest niska, mniejsza od wartości odcięcia: ω < ω0 = √(4/LC) to pierwiastki są rzeczywiste i moduł licznika jest taki sam jak moduł mianownika (licznik to jak widać sprężenie mianownika). Moduł tego ilorazu będącego współczynnikiem propagacji jest równy 1! Oznacza to, że napięcie nie maleje wzdłuż naszej drabiny a współczynnik propagacji możemy zapisać:

(68)

Gdy częstotliwość sinusoidalnego wymuszenia ω będzie wysoka, wyższa od wartości odcięcia: ω > ω

0

= √ (4/LC) to pierwiastki są urojone. Wyciągając „j” czyli √ -1 z obu pierwiastków a następnie uproszczając (dzieląc licznik i mianownik przez j) otrzymamy:

Widać, że współczynnik propagacji α teraz jest ułamkiem rzeczywistym i mniejszym od 1, co oznacza obniżanie się napięcia z każdym kolejnym elementem drabinki. Zależność modułu współczynnika propagacji α od ω ilustruje wykres:

Cienką linią zaznaczono efekt działania kilku ogniw.

(69)

Analizując wykres dostrzegamy, że

nasza drabina L-C zachowuje się jak filtr, który propaguje sygnały o niskich

częstotliwościach a blokuje sygnały o wyższych wartościach ω .

W praktyce nie zbudujemy

nieskończonej drabiny LC, możemy natomiast po połączeniu kilku stopni zakończyć konstrukcje rezystorem o odpowiednio dobranej rezystancji R np. R = √ (L/C). Tak powstały układ będzie działał w sposób bardzo zbliżony do powyżej opisanego.

Gdy w naszej drabinie zamienimy miejscami między sobą pojemności z indukcyjnościami to jednocześnie w naszych powyższych formułach na impedancje wszędzie zostaną

zamienione miejscami „j ω ” z „1/j ω ” a tym samym pojawi się dobra

propagacja sygnałów o wyższych częstotliwościach i blokowanie

pozostałych czyli tzw. filtr górno-przepustowy.

(70)

W bieżącym paragrafie skupimy się jeszcze na pewnym

podobieństwie naszej drabinki do kabla dwużyłowego lub kabla koncentrycznego lub jeszcze innej linii transmisyjnej. Każdy

dowolnie mały odcinek ∆ l takiego kabla możemy postrzegać jako jednostkę drabinki ∆ L z ∆ C. ∆ L i ∆ C są proporcjonalne do

długości odcinka kabla ∆ l. Gdy w tym kablu mamy prąd to indukowane jest pole magnetyczne pochodzące od każdego

kawałka kabla zatem istnieje tu indukcyjność ∆ L proporcjonalna do ∆ l. Gdy w tym kablu umieszczamy ładunek elektryczny to dla danego napięcia ilość ładunku potrzebna do naładowania jest też proporcjonalna do ∆ l zatem mamy też pojemność ∆ C

proporcjonalną do ∆ l. Wynika z powyższego, że stosunek ∆ L/ ∆ C jest stały – niezależny od długości kabla.

Gdy nasz kabel podzielimy (do obliczeń) na nieskończenie krótkie

odcinki to przy zmierzaniu z ∆ l do zera ∆ L i ∆ C też maleją do zera

natomiast impedancja wyrażona przez 7.22:

(71)

gdy ∆l maleje do zera to również ∆L i ∆C maleją do zera jedynie stosunek

∆L/∆C = L/C jest stały i powstaje ciągły kabel, staje się:

To wyrażenie możemy ostatecznie zapisać w postaci:

gdzie L0 i C0 to indukcyjność i pojemność kabla o jednostkowej długości.

Zauważmy dodatkowo, że dla idealnej linii transmisyjnej (o zerowej rezystancji R) częstotliwość odcięcia ω0 = √(4/∆L∆C) jest nieskończona, brak

częstotliwości odcięcia – transmitowane są wszystkie sygnały (pod warunkiem, że przestrzeń, w której znajduje się linia transmisyjna jest wypełniona próżnią a nie materiałem reagującym na prowadzony sygnał).

(72)

E-E-M. Lista-05

1*. Narysuj wykres wskazowy dla układu równolegle połączonych L = 10mH i C

= 50µF, zasilanych z generatora napięcia sinusoidalnego o pulsacji ω = 1000 rad/s i amplitudzie 1V. Impedancja wewnętrzna generatora wynosi Rwew = 1Ω.

Powtórzyć obliczenia dla ω = 1414rad/s, 10rad/s i 10000rad/s.

2. Na zaciski układu RC podano sygnał o złożonym (prostokątnym) przebiegu.

Naszkicuj przebiegi napięć UR i UC.

3. Szeregowy obwód rezonansowy zawiera: R = 1Ω, L = 1mH, C = 1µF. Oblicz dobroć układu i stosunki: UR/UWe, UC/UWe i UL/UWe w rezonansie (UWe - napięcie zasilające o częstotliwości rezonansowej).

4. Wylicz częstotliwości graniczne i określ pasma przenoszenia układów:

5. Zaprojektuj filtr pasmowy dla pasma 1 kHz-10kHz wykorzystując prostą zasadę ułatwiającą obliczenia: Zwy/Zwe ≤1/10 (strona 30).

*rozwiązanie w tekście.

(73)

Ze względu na optymalizację charakterystyki amplitudowej można wyróżnić filtry aktywne:

● Butterwortha – płaska ch-ka w paśmie przenoszenia i strome zbocza.

● Bessela – liniowa ch-ka fazowa w paśmie przepustowym, ch-ka amplitudowa ma mniej ostre załamania, optymalna odpowiedź

impulsowa

● Czebyszewa – najbardziej strome załamania charakterystyki, duże oscylacje po stronie pasma przenoszenia.

● Eliptyczne (Cauera)

Nachylenie charakterystyki wynika z tego jakiego rzędu jest dany filtr.

Filtr I rzędu posiada nachylenie charakterystyki 6 dB/okt lub 20 dB/dek.

Nachylenie określa rząd filtru pomnożony przez 6 dB/okt.

Przykładowo: filtr 2-rzedu posiada nachylenie 12 dB/okt , filtr 3-rzędu 18dB/okt, itd.

Cytaty

Powiązane dokumenty

Przypomnijmy, że w cienkiej bazie prawdopodobieństwo rekombinacji i rozproszenia nośników jest małe co powoduje, że około 99% prądu emitera przechwytuje kolektor.. Pozostałe

Dla wartości funkcji 1 wyróżniony jest iloczyn logiczny (daje 1 tylko dla jednej kombinacji zmiennych – samych jedynek).. Dla wartości funkcji 0 wyróżnioną jest suma logiczna

Gdy natężenie światła jest duże i impulsy ładunku na anodzie przestają być dobrze rozdzielone, wtedy zamiast zliczania impulsów mierzy się prąd anody (do pomiaru takiego

przesuwu X lub Y przesunięto obraz poza obszar ekranu; b) przy stałonapięciowym sprzężeniu podano na wejście Y (lub X) sygnał o zbyt dużej wartości składowej stałej; c)

elementy pozwalające na wymuszony ruch ładunku elektrycznego oraz przynajmniej jedno źródło energii elektrycznej wymuszające ten ruch (czyli jakąś pompę ładunku elektrycznego).

natężeniu w dołączonym obwodzie, niezależnie od wartości napięcia na jego zaciskach. Rzeczywiste źródło prądowe charakteryzuje się pewną graniczną wartością

Chociaż i tu nie występuje proporcjonalność między chwilowymi wartościami napięcia i prądu to zachodzi jednak proporcjonalność między wartościami skutecznymi jak

Czy można korygować współczynnik mocy cos ϕ poprzez monitorowanie natężenia prądu i jego minimalizację?... Generalnie współczynnik mocy definiowany jest jako stosunek