• Nie Znaleziono Wyników

FEM for bar structures (statics)

N/A
N/A
Protected

Academic year: 2021

Share "FEM for bar structures (statics)"

Copied!
12
0
0

Pełen tekst

(1)

FEM for bar structures (statics)

Jerzy Pamin e-mail: jpamin@L5.pk.edu.pl

Piotr Pluciński

e-mail: pplucin@L5.pk.edu.pl

(2)

Theory - equilibrium equations

Virtual work principle

δW int = δW ext ∀δu Disassembly into finite elements

δW int = X

e

δW int e , δW ext = X

e

δW ext e

Equivalent to requirement of minimum of total potential energy functional in the space of admissible displacements

l

e

x

e

, u 1

2

u

e1

u

e2

l

e

x

e

y

e

, v

1 2

v

e1

ϕ

e1

v

e2

ϕ

e2

l

e

x

e

, u y

e

, v

1

2

u

e1

v

e1

ϕ

e1

u

e2

v

2e

ϕ

e2

truss FE beam FE frame FE

(3)

Theory - equilibrium equations

Variables for frame structures

u =

 u v



- displacement vector (fundamental unknown) e =

  0 κ



- generalized strain vector (e = Lu) s =

 N M



- generalized stress vector p =

 p x p y



- distributed load intensity vector

Galerkin interpolation within element

u(x e ) = N(x e )q e , δu = N(x e )δq e

q e - degrees of freedom (dofs), i.e. nodal displacements

e(x e ) = B(x e )q e , B = LN , δe = B(x e )δq e

s(x e ) = D e(x e ) = DB(x e )q e

(4)

Theory - equilibrium equations

Virtual work principle

δW int e = Z l e

0

δe T s dx e

δW ext e = Z l e

0

δu T p dx e + δq eT f e

f e - nodal force vector (forces acting on the considered element, which come from elements connected to it at nodes)

l e x e y e

f 1 e

f 2 e f 3 e

f 4 e f 5 e

f 6 e

p y

p x

(5)

Theory - equilibrium equations

Substitute discretization

δW int e = δq eT Z l e

0

B T DB dx e q e = δq eT k e q e k e - element stiffness matrix

δW ext e = δq eT Z l e

0

N T p dx e + δq eT f e = δq eT (z e + f e ) z e - equivalent joint loads (substitute nodal forces)

Invoke δW int = δW ext ∀δu

Element balance equations

k e q e = z e + f e

(6)

Beam element description

Bending representation

Definitions of displacement, generalized strain and generalized stress u(x) = [v(x)], e(x) = [κ(x)], s(x) = [M (x)]

Kinematic and constitutive relations at point P (x, y, z) = P (x, 0, 0) = P (x) on beam axis

κ(x)=− d 2 v(x)

dx 2 → e = Lu, L =



− d 2 dx 2



M (x)=EI(x) κ(x) → s = De, D = 

EI(x) 

(7)

Beam element description

Approximation of deflection

l e x e y e , v

1 2

v e 1 ϕ e 1

v 2 e ϕ e 2

N DOF n = 2, N DOF e = 4 q w

[2×1]

= {v w , ϕ w } q e

[4×1]

= {v e 1 , ϕ e 1 , v e 2 , ϕ e 2 } u(x e )

[1×1]

= [v(x e )] = N(x e )

[1×4]

q e

[4×1]

, N = [N 1 e N 2 e N 3 e N 4 e ]

0 l e

1

x e N 1 e (x e ) = 1 − 3

 x e l e

 2

+ 2

 x e l e

 3

0 l e

1

x e N 3 e (x e ) = 3

 x e l e

 2

− 2 

x e l e

 3

0 l e x e

N 2 e (x e ) = x e h 1 − 

x e l e

i 2

0 l e x e

N 4 e (x e ) = x e

 

x e l e

 2

− 

x e l e

 

(8)

Beam element description

Approximation of curvature, bending moment and stiffness

e(x e )

[1×1]

= [κ(x e )] = LN(x e ) · q e = B(x e )

[1×4]

· q e

[4×1]

s(x e )

[1×1]

= [M (x e )] = D

[1×1] · B(x e )

[1×4]

· q e

[4×1]

k e

[4×4] =

l e

Z

0

B T DB dx e

k e = E e I e l e3

12 6l e −12 6l e 6l e 4l e2 −6l e 2l e2

−12 −6l e 12 −6l e 6l e 2l e2 −6l e 4l e2

(9)

Beam element description

Computation of substitute nodal forces for constant distributed loading

l e x e y e

z 1 e

z e 2 z e 3

z 4 e p y

p y l e 2 p y l e2

12

p y l e 2

p y l e2 12

z e =

l e

Z

0

N T 

p y  dx e

z e =

 p y l e

2 p y l e2

12 p y l e

2

− p y l e2 12

(10)

Global balance

Transformation and assembly

T e : global → local

q e = T e Q e , Z e = T eT z e , K e = T eT k e T e K = X

e

K e , Q = X

e

Q e , Z = X

e

Z e , F = X

e

F e

Equilibrium of discretized system (of nodes)

F = KQ − Z = P + R P - external point load vector

R - support reaction vector

KQ = P + Z + R

plus essential boundary conditions

(11)

Algorithm of FE computations for a bar structure

Statics

1. Discretize (set numbers, axes, topology), prepare input data 2. Compute element matrices k e , K e , assemble global matrix K 3. Compute element vectors z e , Z e , assemble global vector Z,

set up point load vector P

4. Solve equation set KQ = P + Z + R taking into account kinematic

boundary conditions, i.e. compute unknown nodal displacements in

Q and reactions in R

(12)

Algorithm of FE computations for a bar structure

Statics (cont’d)

Divide matrices into blocks

 K 11 K 12 K 21 K 22

  Q 1 Q 2



=

 P 1 + Z 1 P 2 + Z 2

 +

 R 1 R 2



Q 2 = ˆ Q , R 1 = 0 , K 11 Q 1 = P 1 + Z 1 − K 12 Q → Q ˆ 1 → Q R = KQ − Z − P

5. Compute nodal forces in elements

Q → Q e → q e → f e = k e q e − z e

or Q → Q e → F e = K e Q e − Z e → f e

6. Plot diagrams of section forces, check equilibrium

Cytaty

Powiązane dokumenty

● during instantiation of a template with a specific type, the compiler replaces each instance of a parametric type with the specified type and compiles the data structure

(1) set the pred pointer on the node preceding the deleted node, and succ on the node to be removed (if there is no node we are looking for, throw an exception or abort the

(1) create two auxiliary pointers: set pred to an empty address, and succ on to the address of the first node (head) and pass the auxiliary pointers towards the end of the list

(1) by comparing values, go from root to children and set the pred pointer on the parent node to be removed, and succ on the node to be removed (if there is no node we are looking

(1) invoke two auxiliary pointers set on the adjacent nodes pred and succ (assume that the pointers next in the preceding nodes pointed to by succ are already inverted, succ is

● sequence container – double-ended queue, dynamic array using non- contiguous storage, a list of arrays. ● fast addition/removal at the beginning and at the end of

This lecture was prepared within project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction”, co-financed by the

Pore pressure at the lower part of the porous column: FEM results for different numbers of time steps for a fine spatial discretization, the dotted line represents very few elements