ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXV (1985) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO
Séria I: PRACE MATEMATYCZNE XXV (1985)
S. St o in s k i (Poznan)
1. Let F be an T7-operation in R + = <0, oo), i.e., let F be a mapping F : R + x R+ -*■ R +, satisfying the following conditions (see [1], [2]):
(a) F (и, v) = F(v, и),
(b) F (u , F( v, w) ) = F(F(u, v),w), (c) F(u, 0) = u, F{0, v) = v,
(d) F(u, v) is non-decreasing in each variable separately, (e) F is continuous.
If F is an F-operation, then:
(a) F (m1s i^) < F (u2, v2) for 0 ^ ux ^ u2, 0 ^ vx ^ v2, (b) F(u, v) ^ 0, F ( 0, 0) = 0.
we can extend F to a function F: R+ x R+ -> R+, where R+ = <0, oo).
Let X be a real linear space and let F be an F-operation. A functional
q: X -+<0, o o ) is called an F-pseudomodular, if for every x, y e X:
( a ) e(0) = 0, (b) e ( - x ) = e(x),
(c) e(ax + py) ^ F(g(x), p(y)) for a, £ ^ 0, a + j8 = 1.
In case when q satisfies conditions (b), (c) and, in place of (a), it satisfies (a') g(x) = 0 o x = 0,
Q is called an F-modular. Let
X Q is called an F-modular space (see [1], [2]). In the following we shall assume that X e contains elements Ф 0, i.e., there exists an x e l such that x Ф 0 and g (Дх) —► 0 as Д -> 0 + .
An application of modular spaces to approximation problems, III
If we set
X Q = {x = X: q(Xx) -> 0 as Д -* 0 + } .
— Roczniki PTM — Prace Matemàtyczne XXV
Let h be a homeomorphism R + -►/?+. For any F-operation F we define the function G = h* F by
G {и, v) = ft_1(F(fi(u), /i(r)))
for u, v ^ 0, where /i_1 is the function inverse to h for и ^ 0. If there exists an h such that G = h* F, we say that G is equivalent to F (see [1], [2]).
Let к : /?+ -» /?+ be a mapping such that k{u) > 0 for и > 0 and let F be an F-operation. We say that к is F -super additive if
F(k(u), k(v)) ^ k(u + v) for u, v ^ 0.
If g is an F-pseudomodular in X, к is F-superadditive, then
|x|e>fc = inf {u > 0: q(x/u) ^ k(u)}
is an F-pseudonorm in X Q (see [1], [2]).
If q is an F-modular in X, к is F-superadditive, lim k(u) = 0, then | • |e>k u-»0 +
is an F-norm in X Q ([1], [2]).
The following theorem is true (see [1], [2]):
Theorem 1. Let q be an F-modular in X and h be a homeomorphism R + -+R+, G = h* F, к is F-superadditive. Then h xoq is a G-modular, where h( + oo) = + oo, and
for every x e X Q.
2. Let (G, X, p) denote a space with a finite and complete measure p, defined on S, a c-algebra of subsets of the set Q Ф 0 , p(Q) > 0, g„{t, x):
Q x X -*■ <0, oo) for n = 1, 2, ... and x e X — a space of functions x: Q oo, oo) which are F-measurable and almost everywhere finite, where x
= у iff x(f) = y(f) almost everywhere.
We define the following operator
F^iu^v) = (p~x((p{u) + <p{vj), u , v ^ 0,
for a ^-function (p (see [2]). F v is an F-operation in R + . In the special case for (p (u) = up, p > 0, и ^ 0, let us denote
F p(u, v) = (up + vp)1/p for u, v ^ 0.
If u, v ^ 0, then
FPl(u, v) ^ F P2(u, v)^ F ^ i u , v) = max(u, r) for 0 < pj ^ p2 < °o.
Modular spaces and approximation problems, III 163
For x, y e L v(Q, I , ц) and for an F-operation Fp, 0 < p ^ 1, the next inequality
(♦) {J П(М01, \ y ( t ) Ш 11” « F ,{[f M t T d t i ] 1» , [J \ m v d n ] 4 ° } ,
q a n
where v ^ p, holds.
J u s t i f i c a t i o n . Applying Minkowski inequality for \x\p, \y\p e L vlp(Q, I , ц) we have
[J ( м ^ М 'Г '^м Г « (J
\x\vd t f lv+(SI
y\vdnYlv,n n n
and hence follows ( * ).
For 0 < p ^ 1, un, vn ^ 0, an F-operation Fp satisfies the condition
oo 00 00
(î) Z
an F p ( u „ , v n) < F p ( Y , anutp Z
QnVn)>
where an are non-negative constants.
J u s t i f i c a t i o n . Using the Minkowski inequality for series we have
00 00 00
[ Z an(Mn + fn)1/p] p ^ ( Z anUn)p + { Z anVn)p,
n= 1 л= 1 Л= 1
and hence follows (*).
Let us assume:
1° gn(t, x) is an F p-pseudo modular in X for all t e Q and for every n = 1, 2, ... for 0 < p < 1,
2° Q„{', x) eL (Q, Z, p) for n = 1, 2, ... and x e X ,
3° if for n = 1, 2, ..., Q„(t, x) = 0 for almost all te Q, then x = 0.
Let us denote for x e X
Qns(x) = j 6n(t, x)dp, n
QS(X) =
z
2" l+Qmix)*1 £>«(*)— { x e £ : gs(/lx) -^ 0 as 1 -» 0 + } . X s is an F p-modular space, because:
(af ^s(x) = O o x = 0.
(b) gs( — x) = gs(x) for x e X .
(c) For x, yeJE, a, /? ^ 0, a -F >5 = 1, we have for an F-operation F p, 0 < p < 1, using ( *),
Qs(<xx + Py
К Z 4
n= 1 Z
Fp(ûns(x), 6ns(y))
£«(>>))’
Because an F-operation Fp, 0 < p ^ 1, satisfies condition (*), so for un, v„ ^ 0 we have
00 1 / и V \ / 00 t и 00 1 и
(I)
For p > 0, u, v ^ 0 there holds the inequality
(2) (up + vp)1/p
1 + (up + vp)1/p Using (1) and (2), we have
< 1 + и ~ь 1 + v
lip
00 j Qs(zx + [ jy ) ^ X — Fp
n= 1 £
g n s ( * ) g M ( ^ ) \
1+ £ « (* )’ 1 +Qns(y)J
< Fp(qs(x), Qs(y))-
In the following we shall suppose that besides conditions l°-3° the following condition is satisfied:
4° if x, ye.T, |x(r)j < |y(f)| ^-almost everywhere in Q, then for n — 1, 2, g„(t, x) ^ gn(t, y) ju-almost everywhere in Q.
We say that a sequence (£„) preservs constants, if g„{t, с) = c for every ' t e Q and for every c ^ 0, for n = 1 , 2 , . . .
Theorem 2. I f the sequence (g„) preservs constants, x e X , x ^ 0, then for every Я > 0, a, /1 > 0, a + j8 = 1, we have
Qns U [g M(-. * )-* (• )]}
^ Р А д „ , [ 2 Х - x(-) 1, e J 2Я max rr , *(•) H n I --- , Qt
H P \ gm(-, x), g„
x - x ( - ) P x - x ( - )
p for m, n = 1 , 2 , . . . , where H p(u, v) = Fp(u, v) — u, 0 < p ^ 1.
P ro o f. Let xe X, x ^ 0, a, /? > 0, a + /? = 1, Я > 0. Because the sequence (g„) preservs constants, so for t e A = {teQ: x(t)-finite}
Qm(t, x{t)) = x{t).
Therefore for t e A r \ B , where В = [feO : gm{t, 2x//l)-finite}, we have Qm(t, x) = gm , , a ^ + p
a
x —x(t)
~ ~ P ~ t, x — X ( f )
~ T ~ and
gm{t, x ) - x ( r ) ^ Fp x{t) ---, Qm
0L
x — x(t) P
x(t) 0L
+ - x{t).В
Modular spaces and approximation problems
,
III 165For t e A n B n C , where C = { teQ\ Qm(t, x)-fmite}, we have ax(t) — <xx
<*x(t) = Qm(t, ocx(t)) = ax + p P
^ F A Qm(t, X), t, x — x(r) and
x ( t ) - Q m(t, x) = ax(t) + P x( t )- Qm(t, x)
^ Fp \ Qm(F -*-)? Qm( t•> p QmiF “b ^ x{t).
Let us denote
y m{t) = \Qm(t, x ) - x ( t ) \ for t e A n C . Then for t e A n В n C
Ут (t) < max 'x(t) ( x - x ( t ) H A ---, gm t,
H A Qm(t, X), 0W t, x — x(t)
+ - x(r).
a Using condition 4°, we obtain for almost all t
Qn(t, k y m) < Qn L Л max H T x( - )
Qn x — x( •) p
Hp ( Qm ( ? -X)5 Qn _ _ _ _ _x — x ( ) + Я — x ( ■ ) (X and
Qn(t, k y m)< Fp<q„ r, 2 1 -P * ( • ) ,
£?„ t, 2Л max H A --- , Qp \ > \ 9 ' a
x - x ( - ) \ ) „ ( ( л ( X -x (* ) b H p\ Qm( -, X), Q
P P
almost everywhere in Ü. Hence, using (*), we have the thesis of Theorem 2.
For an F-operation Fp, 0 < p ^ 1, the function k(u) = ul,p, u ^ 0, is Fp-superadditive. The homeomorphism h is of the form h(u) = u1/p. Therefore for the sequence (g„) of F p-pseudomodulars, where 0 < p ^ 1, such that q„, n
= 1, 2, satisfy conditions l°-4°, we have
For x e X ^ , x ne X eS, n = 1, 2,
1вп(-> х)-х(-)1^р ->0*> V (gy{A[g„('> * ) - * ( • ) ] } ->o w ' ’ A>0
(see [2]). We shall give conditions, under which
(qY U Cg, (% * ) - * ( •) ] } - * 0 with n -+ 00 for every A > 0.
From Theorem 2 it follows
1 Co r o l l a r y. I f the sequence (q„) of Fp-pseudomodulars preservs constants,
then for every A > 0, e > 0, x e X^s, x ^ 0, there exists f > 0 such that for every m = 1 , 2 , . . .
(gs {A lQm ( -, x) - x ( • )]} Y < ( V 1 2A max H r *(•) 1 -/?» 0л
x (-)
Qm ( "> •*-)> Qm
where H p(u, v) — Fp(u, v) — u, 0 < p ^ 1.
P ro o f. Let us denote for a, j6 > 0, ct + f} — 1,
/ x - x ( ' )
V P .
I
p+ e,Л(х, p, m, a, j3) max Hr x (-)
Qm
X — x ( - )
______ ? ^ p l Qmi ’
x — x ( )
From Theorem 2 it follows e « U [g m (s * )- * ( •) ] } 1 + g w { ^[g « ('. * )-* (* )]}
< Fp ^&ns [2/W a ) * ( ’)]> [2ЛЛ (x, p, m, a, /?)]}
^ 1 + Fp {Qnsl 2 A { P M x ( f ] , Q^l lAAi x, p, m, а, Д)]} ' Using inequality (2) and inequality (J ), we have
* ) - * ( * ) ] } < FpiQ 2A — x( •) qs[2AA(x, p, m, a, /?)]
and
(e"U [&»(*» * ) - * ( - ) ] } ) p ^ 2A — x ( ) a
+ (es[2U4(x, Pi a> 0)])p.
Modular spaces and approximation problems, III 167
Because x e X s, so gs [2Я(/?/ос)х( •)] -^ 0 for /? ->0, e.a. for e > 0 there exists P = P(e) > 0 such that qs[ 2 A ( P /ol)x(•)] < e1/p. From this follows the thesis.
The sequence (g„) of F p-pseudomodulars, 0 < p ^ 1, is called singular at the point xeX^s, x ^ 0, if for every a! > 0, b' > 1 and for n = 1 , 2 , . . .
■/«W = J a' max
n
H p ( y i 7 l &»('’ b ' ( x - x ( - ) ) ) J ,
H @m( 9 Ь (x x( )))) dfl~+ 0
with т —>со.
Theorem 3. I f the sequence {q„) of Fp-pseudomodulars, 0 < p ^ 1, preservs constants and is singular at the point x e X ^ s, x ^ 0, then for every Я > 0
É?s U[@m(‘9 *) — * ( ’)]} -*0 w i t h m - * c c .
P ro o f. By Corollary of Theorem 2 it follows that for every Я > 0, s > 0, x e X ^ s, x ^ 0, there exists f > 0 such that for every m = 1 , 2 , . . .
(es * )-* (* )]} )p < (qs<2A max Hr *(•) l - P ’ Qn
x — x( •) p
hi n I Qmi. 9 7C), Qn *(•) P + e,
where H p(u, v) — F p(u, v) — u, 0 < p ^ 1. Because (q„) is singular at the point
x eI jS, so, putting a' = 2Я, b' = 1/f, we obtain the thesis.
3. In the sequel we are going to consider the following special case. Let Q = <a, b >, F-d-algebra of Lebesgue measurable sets in (a, b>, ^ — the Lebesgue measure. Let X denote the set of Г -measuraoie and almost every
where finite functions in <a, b), extended periodically, with period b — a, outside {a, b). Let K n, n = 1, 2, ..., be functions Г -measurable and positive almost everywhere in (a, b) such that
b
j K n(u)du = 1 for n = 1, 2, ...
(и = 1, 2, ...) is a concave (^-function and (p~ 1 is the function inverse to (p„ for t O 0.
We define the following sequence of functionals b
gn(t, x) = (p~x {J K H(u)<p„(\x{u + t)\)du}
with n = 1 , 2 , . . . , t e {a, b), x e X . For n = 1 , 2 , . . . and a, /? ^ 0, a + /? = 1, we have
6 b
Qn(t, ocx + py) ^ <p„-1 {J X„(w)^„(a|x(w + OI)dM+ j K„(u)<pn(£|y(t + u)|)du}
a a
= F<p„(Qn(t, ocx), g„(t, py)) < F Vn(Qn(t, x), Qn(t, y ) ) .
Therefore q„ is an F^-pseudom odular.
We shall now investigate the next sequence
Qn(t, x) = {j K n(u)\x(u + t)\pdu}1/p,
n = 1 ,2 , with fe < a , ft), x e L « e , ft), Z, p), 0 < p ^ 1. For n — 1, 2, p„(f, x) satisfy conditions l°-4° and the sequence (q„) preservs constants.
We say that (K „) is a singular kernel, if
b - 0
lim j K„ (w) du = 0
n-»oo a + 0
for every <5e(0, j ( b — aj).
Th e o r e m 4. I f is the F p-modular space generated by the sequence (gm)
of the form
b
Qmit, x ) = {{ K m(u)[x(u + t )Y du }1/p, m = 1, 2,
where (K m) is f/ie singular kernel, 0 < p < 1, x e L9((a, ft), Z, p), x ^ 0, where q = 2/Д/ + l) + e, / is the natural number such that 1/(1 + 1) ^ p < 1//, ee(0, 2 Д /+ 1)), fften
le « (’. x ) - x ( - ) le*fk -*0 with m ^ go, where k(u) = u 1Jp for и ^ 0.
P ro o f. Let x e L q, x ^ 0, where g .= 21/(1+1) + £, 1Д /+ 1) ^ p < 1//, .
def '
/ = 1 , 2 , . . . , ее(0, 2Д/+1)), <р(м) = wp for и ^ 0, 0 < p < 1, <p( + oo) = + oo.
1 We shall estimate the next expression
ь b
Jm(x) = j <P_ 1 {J i C „ ( u ) < p [ a ' f F xw ( u , tf\du}dt,
a a
where
И^"(м, t) — m axj cp 1 <И ^ггу x(w + t) ) +
+ Xm(r)(p(b'|x(r + w + r)-x(M4-t)|)di;
bt - т гb — 1- 7 +
Modular spaces and approximation problems, III 169
Ф- 1
о
K m(v)(p(x{v + u + t))dv+ J K m{v)(p(b'\x{v + u + t ) -
a b
Ф_ 1 ( ] K m(v)(p(x(v + u + t))dv^j
— x(u + t)\)dv m, n = 1 , 2 , . . . , a' > 0, b' > 1.
Let us write
b' b
Ui x{u + t), u2 = (p K m(v)(p(x(v + u + t))dv],
О l a
b
vo — K m(v)(p(b'\x{v + u + t) — x(u + t)\)dv~\.
a
In the sequel, for p we choose the natural number / such that 1/(1+1) ^ p < 1 //. Then
W?(u, t) = max {(ttf + rg)1/p — ut}
i = 1,2
^ max {(ull{l+i)+ vll{l+l))l+i— щ}
i = 1,2
= max |у 0+ X Г ! 1)"?
i=l,2 ( fc=l \ f t J
k/(l+ 1) . j.(l + 1 — k)/{l + 1)
v0 and
(p(a' W™(u, t)) ^ a'p max jüg + Y u\km+1))p-v(^l+1 k)/(l+ 1))p|,
b b
i = 1 КЛи) yo +
+ 1 ( l *1) l' “!w+1),'’‘"8,+1' ‘>,<,+1,>' ) ‘,1(
1/P
dt.
In the following we shall apply the generalized Minkowski inequality of the form
b d d b
(3) j ( j IF (x, y) I dy)v dx ^ [ j ( j IF (x, y)\v dx)i/v dy]v
a c c a
for measurable function F in the rectangle <a, b> x <c, d}, v ^ 1.
Since (p 1 is a convex function, so for / = 1 ,2 we have
a a
« (/+1)1,P_1 | j [ | K„(u)t>s*/.]1"’dt+
( a a
+ £ K n(u)u?l<l + l '>r-vÿ+1- t>l<‘ + "» d uy i''d t\.
k = 1 V к / a a )
Using inequality (3), we obtain
ь ь ь b
J [J K n(u)v%du]1/pdt < b' {J /Cm(^)[f |x(*;-l-s)-.x(s)|ds]pdü}1/p
a a a a
and
L x = Щ K n(u)uflil+1))p- v ÿ +1- k)lil + 1))pdu]llpdt
a a
b b
^ b ' { b ' - i y kl(l+1) J [x(s)]k/(f+1)[{ K m(v)\x{v + s ) -x (s )\ pd v Y +l~kml+1>p)ds.
a a
Next, we apply Holder inequality with exponents P = p{\ + l)(\+co), Q = P / { P - 1), where (1 + y)/p(l +y + yl) < co + 1 < (1 + y)/lp for ( / - l ) / ( / + l )
< y < 1. Then
L i ^ b '( b '- l ) ~ k/(l+1) {J [ x ( s ) T Kl+1))Qds}llQ x
a
X {J [J + — x(s)\p dv\({l+1 ~k)l(l+ l)p)P ds}llP.
a a
Since (k/(l+ 1))Q < 1 + y for к = 1, x e L 1 + ?((a, Ь>, I , p), so there exists a constant M such that for к = 1, /
(4) {{ [x(s)](k/(,+ 1))Qds}llQ ^ M.
a
Using inequalities (3) and (4), we have
ь b
L y ^ b ’ib’- l ) - m +1)M { $ K m(v) Q \x(v + s)~
a a
~ * ( 5)|((l+1 l))PdsJll+ l)pm +1 “ *)P) dvyl+1~kmi* l)pK
Modular spaces and approximation problems, III 171
In an analogous manner we obtain
L 2 = j ( j K M u {i (l+1))p ■v($ +x~mi+1))p d u f lp dt
a a
< b'(f+1- fc)/(,+ 1) {J [em(s, x)-]W(l + 1))Qd s Ÿ IQ x
a b b
x {J[J K m(v)\x(v + s) — x(s)\pdv~\i(-l+1~k)lil+1)p)pds}1/p.
a a
Applying the generalized Minkowski inequality we obtain for к = 1, / and со ^ ( 1 /((/ + l)p — 1)) — 1 for p > 1/(1+1)
{j[J K m(v)(x(v + s))p dv~\kQli(l+ 1)p) ds}1/Q ^ M
a a
and
L 2 ^ b ,(l+1~kWl+1)M { j K m(v)x
a b
x [ J \x(v + s ) - x ( s ) f +1- kWl+1))Pd s f l+l)p)m+1~k)P)dvYl+1- km+l)p).
a
Therefore
J m(x) « a' b' [2 (/+ 1 ) ] 1 {2 [J K m(t>)(f \x [v+ s)- x (s)| d s f dv] "* +
a a
+ M У ( l + 1 ) [ ( b ’ - i r ^ + b ' - ^ ‘ > ] x
k = l v к )
x [ J (r)(j" Ix(v + s).
— x(s)|((i + 1 -*)/(*+ 1))p ^s)«l+ l)P)/(('+ 1 -k)P) dvy + 1 -k)/W+ l)p)J where
P = p ( /+ l) ( m + l) , 1 + y
p ( l + y + yt) < со + 1 < min 1 Ч~ у 1
Ip ’ p(l + 1)— 1 for p >
l + l for (/— ! ) /( /+ 1) < у < 1.
For <5e(0, j ( b — a)) and к = 1, / we can write { K » [ f \x(v + s ) - x ( s t l+l~k)^ l))Pd s f l+1)pm+1- k)P)dv
a + ô b — ô b
= I + J + I = T 3 + l4 + l5.
a a + ô b —ô
Then
L 3 ^ [ sup ] \ x (v + s ) - x ( s ) \ {{l+1- km + 1))Pd s f l+l)pmi+l- k)P)->0 a^v<a + ô a
with ô -> 0 (see [3]),
La ^ 2(p,l,k,P) J K m{v) {J [ x (v + s)]((/+1 -k)l{l + 1))Pds +
a + ô a
a
with m -> oo, where
/ 7+ 1 — к \ . " " ( ‘ ■ т г т : because x e L 1 + y(<a, b}, I , p). Similarly, L s ->0 with <5 ->0.
In an analogous manner we can estimate the integral (p, l, к, P) = (/+ 1)P
(,l + l - k ) P
ь b
j iCm(i/)(j |x(p + s) —x(s)| ds)pdv.
a a
Therefore for x e L q({a, b), I , p), where q = 27/(7+l) + e, when 7 is the natural number such that l/( /+ l) ^ p < 1/7, 0 < e < 2/(7+1), we have J m{x)
—► 0 with m —► oo. Using Theorem 3, we obtain
le«(% * ) - * ( • )le»tk->0 for m -» oo, where к (и) = u1,p for и ^ 0.
References
[1] J. M u s ie la k , J. P e e tr e , F-modular spaces, Functiones et Approximate I (1974), 67-73.
[2] J. M u s ie la k , Orlicz spaces and modular spaces, Springer, Berlin 1983.
[3] R. T a b e r s k i, Aproksymacja funkcji wielomianami trygonometrycznymi, Poznan 1979.
INSTITUTE O F MATHEMATICS A. MICKIEWICZ UNIVERSITY Poznan, Matejki 48/49