• Nie Znaleziono Wyników

Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steels

N/A
N/A
Protected

Academic year: 2021

Share "Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steels"

Copied!
17
0
0

Pełen tekst

(1)

Delft University of Technology

Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium

micro-alloyed steels

Ioannidou, Chrysoula; Arechabaleta Guenechea, Zaloa; Navarro Lopez, Alfonso; Rijkenberg, Arjan;

Dalgliesh, Robert M.; Kölling, Sebastian; Bliznuk, Vitaliy; Pappas, Catherine; Sietsma, Jilt; van Well, Ad

DOI

10.1016/j.actamat.2019.09.046

Publication date

2019

Document Version

Final published version

Published in

Acta Materialia

Citation (APA)

Ioannidou, C., Arechabaleta Guenechea, Z., Navarro Lopez, A., Rijkenberg, A., Dalgliesh, R. M., Kölling, S.,

Bliznuk, V., Pappas, C., Sietsma, J., van Well, A., & Offerman, E. (2019). Interaction of precipitation with

austenite-to-ferrite phase transformation in vanadium micro-alloyed steels. Acta Materialia, 181, 10-24.

https://doi.org/10.1016/j.actamat.2019.09.046

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

(3)

ContentslistsavailableatScienceDirect

Acta

Materialia

journalhomepage:www.elsevier.com/locate/actamat

Full

length

article

Interaction

of

precipitation

with

austenite-to-ferrite

phase

transformation

in

vanadium

micro-alloyed

steels

Chrysoula

Ioannidou

a,∗

,

Zaloa

Arechabaleta

a,1

,

Alfonso

Navarro-López

a

,

Arjan

Rijkenberg

b

,

Robert

M.

Dalgliesh

c

,

Sebastian

Kölling

d

,

Vitaliy

Bliznuk

e

,

Catherine

Pappas

f

,

Jilt

Sietsma

a

,

Ad

A.

van

Well

f

,

S.

Erik

Offerman

a

a Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, the Netherlands b Tata Steel Europe, 1970 CA IJmuiden, the Netherlands

c STFC, ISIS, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, United Kingdom

d Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands

e Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University, Tech Lane Ghent Science Park – Campus A, Technologiepark 903, 9052 Zwijnaarde, Ghent, Belgium

f Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, the Netherlands

a

r

t

i

c

l

e

i

n

f

o

Article history: Received 13 June 2019 Revised 23 September 2019 Accepted 23 September 2019 Available online 26 September 2019 Keywords:

Micro-alloyed steel

Vanadium carbide interphase precipitation Austenite-to-ferrite phase transformation kinetics

Small-angle neutron scattering Atom Probe Tomography

a

b

s

t

r

a

c

t

The precipitationkinetics ofvanadium carbides and itsinteraction withthe austenite-to-ferritephase transformationisstudiedintwomicro-alloyedsteelsthatdifferinvanadiumandcarbonconcentrations byafactoroftwo,buthavethesamevanadium-to-carbonatomicratioof1:1.Dilatometryisusedfor heat-treatingthespecimensandstudyingthephasetransformationkineticsduringannealingat isother-malholdingtemperaturesof900,750and650°Cforupto10h.Small-AngleNeutronScattering(SANS) and AtomProbe Tomography(APT)measurements areperformedtostudy the vanadiumcarbide pre-cipitation kinetics.Vanadiumcarbideprecipitationisnotobservedafter annealingfor10hat900and 750°C,whichiscontrarytopredictionsfromthermodynamicequilibriumcalculations.Vanadiumcarbide precipitationisonlyobservedduringoraftertheaustenite-to-ferritephasetransformationat650°C.The precipitatevolumefractionandmeanradiuscontinuouslyincreaseasholdingtimeincreases,whilethe precipitatenumberdensitystartstodecreaseafter20min,whichcorrespondstothetimeatwhichthe austenite-to-ferritephasetransformationisfinished.Thisindicatesthatnucleationandgrowthare domi-nantduringthefirst20min,whilelaterprecipitategrowthwithsoftimpingement(overlappingdiffusion fields)and coarseningtakeplace.APT showsgradual changesintheprecipitate chemical composition duringannealingat650°C,whichfinallyreachesa1:1atomicratioofvanadium-to-carboninthecoreof theprecipitatesafter10h.

© 2019ActaMaterialiaInc.PublishedbyElsevierLtd.Allrightsreserved.

1. Introduction

The improvementoffueleconomy, thereductionofCO2

emis-sion, and the fulfilment of European Union initiatives [1] and

legislations[2]arekey driversfortheautomotive industry nowa-daysto reducethevehicleweight.Thisincludesweightreduction

in the chassis and suspension system, which requires that steel

offers high strength, ductility and stretch flange-ability for the

manufacturingofintricate andcomplexlight-weight components.

Micro-alloyedsteelscontainingnano-sizedprecipitatesinaferrite

Corresponding author.

E-mail address: c.ioannidou@tudelft.nl (C. Ioannidou).

1 Present address: Tecnalia Research & Innovation, Geldo, Building 700, 48160 Derio, Spain.

matrix are promising candidates to meet these requirements

simultaneously[3–6] andare alreadyusedinchassisand

suspen-sion parts[3,4,7–9].However, these alloyscontain aconsiderable

amount of micro-alloying additions [6]. Based on the above

de-mands, resource-efficient steels, which contain smaller amounts

of micro-alloying elements and critical raw materials [10] while

maintainingtheirgoodmechanicalproperties,areofgreatinterest.

Titanium(Ti),niobium (Nb), molybdenum(Mo)andvanadium

(V)arewidelyusedasmicro-alloyingelementstoimprovethe

per-formance of steelthrough their effect on themicrostructure and

consequently onthemechanicalproperties[3–6,11–22].These el-ementscontributetograinsizerefinement,recrystallization

retar-dation andprecipitate formation. The focus of the present work

is on vanadium,which is well known forproviding precipitation

strengtheningtosteelsandwhichhas,therefore,attractedalotof https://doi.org/10.1016/j.actamat.2019.09.046

(4)

interestinthelastdecades[4,6,13,15–20,23,24].Vanadiumcarbide (VC)precipitationcantakeplaceinthemigratingaustenite/ferrite interface during the austenite-to-ferritephase transformation, i.e. interphaseprecipitation,andinferrite.Thesolubilityofthe vana-dium carbides in austenite is high, higher than the solubilityof thecarbidesofTiandNb,andthereforevanadiumcarbidesdonot tend toform inaustenite. However, dueto thesolubilitydropof

vanadiumcarbidewhenaustenitetransformstoferrite,interphase

precipitation as well asprecipitation in ferrite are favoured [15]. Thisreducestherateofprecipitatecoarseningandleadstoafine precipitate distribution, whichis criticalforthe hardening ofthe steel[15].Duetothebeneficialcontributionofthevanadium car-bides totheoverallmechanicalpropertiesofsteelandthe

neces-sitytomakeoptimumuseofvanadium,moreresearchisrequired

to understandthevanadiumcarbideprecipitationandits interac-tionwiththeaustenite-to-ferritephasetransformation.

Extensive research hasbeencarriedout onvanadiumcarbides

and it is found that the precipitates’ characteristics andkinetics

are strongly dependent on the steel composition and treatment

conditions. The transformation temperatureand time are critical

factorsfortheprecipitation,determiningthetypeofprecipitation

(interphase or random) and the precipitate size, shape,

compo-sition, number density and volume fraction [15–29] . The

vana-dium carbidecrystalstructureisobserved tobe oftheNaCl-type ofstoichiometricVC[16,24],VC0.9 [20],V4 C3 [13,27],orV6 C5 [28],

in a range of transformation temperatures from 600 to 700°C.

The vanadium carbide precipitateshave a Baker Nutting

orienta-tion relationship with the BCC ferrite matrix [16,30], while their nucleation is favourable atnon-Kurdjumov-Sachs ferrite/austenite interfaces [31,32]. Their shape can be spherical [13,17–19,23,24], disk-like[13,20,24],ellipsoidal[19,20],rod-like[13],needle-likeor cuboid[27],dependingontheconditionsdescribedabove.

Further-more, different levels of alloying elements (like Mo, Ti, Nb and

N) are found to affect the vanadium carbide precipitates

com-position [13,15,16], shape [13,27]and preferablegrowth direction

[13,15,16,27]. For instance, in ref. [13], in low-carbon steels

con-taining vanadium and molybdenum, the latter is present in the

precipitates,formingdisk-shaped(V,Mo)Cgrowingalongthe(001)

ferrite plane, androd-shaped (V,Mo)4C3 growing along the (011)

ferriteplane.

Transmission Electron Microscopy (TEM) andAtom Probe

To-mography are mainly used for the precipitates characterization

[12–14,17–21,23–28,31–34].Detailedresearchonvanadiumcarbide

precipitation in low-Carbon steels has been done by Kamikawa

etal.[19]andZhangetal.[26,29],whohaveextensivelymeasured theprecipitate sizedistributionandnumberdensityandtheir ef-fectonthemechanicalpropertiesofthesteelasafunctionof tem-peratureandforvarioussteelcompositions.However,scarce litera-tureonthekineticsoftheprecipitationisreported.Moreover,APT and TEMare limitedin providing accurate statisticalinformation

on precipitatesize distribution,numberdensityandvolume

frac-tion,sincethemeasuredsamplevolumeisusuallyrelativelysmall (intheorderof∼106 nm3 ).

Small-Angle Neutron Scattering delivers statisticalinformation

regarding the average size, volume fraction,number density and

size distribution of precipitates over larger specimen volumes

[35] (e.g.10× 10× 1mm3 ). Previous SANSstudies havebeen

per-formed on Ti-Mo micro-alloyed steel [14], NbC precipitates in

austenite [22] andin ferrite [36], Fe-Cu alloys [37], Fe-Au alloys

[38],maragingsteels [39] andlow-carbonsteels [40].SANS mea-surementsonlow-carbonV-micro-alloyedsteelshaveonlyrecently beenreported[20,23,24].Theprecipitationkineticsofdisk-shaped andoblatevanadiumcarbidesat700°Cinalow-carbonsteel[20],

andofsphericalanddisk-shapedvanadiumcarbidesina

tempera-turerangefrom600to700°Cinamedium-carbonsteel,hasbeen

characterisedbySANSatroomtemperature[24].

Fig. 1. Schematic representation of the thermal cycles applied in the dilatometer.

Thepresentstudyaims toprovide quantitativeinformation on

the vanadium carbide precipitation kinetics in low-Carbon steels

differinginvanadiumandcarboncontentandheattreatedat dif-ferenttemperatures(900,750and650°C)thanpreviouslyreported intheliterature.Emphasisisgivenonthekineticsofprecipitation forup to 10 h of annealing,on the interaction of the precipita-tionkineticswiththeaustenite-to-ferritephasetransformation ki-neticsand on the time evolution of the precipitate chemical com-positionduringannealing.Small-AngleNeutronScattering is

com-binedwithdilatometry,AtomProbeTomographyandTransmission

ElectronMicroscopyforacomprehensivestudyoftheprecipitation andphasetransformationkinetics.

2. Experimental

Two Fe-C-Mn-V steels were produced by Tata Steel as 3mm

thick hot-rolled plates.The chemical composition of thealloys is listed inTable 1.The two steels havedifferentcarbon and vana-diumcontents,therefore,theyarereferredtoasLCLV(lowcarbon

-lowvanadiumalloy)andHCHV(highcarbon-highvanadium

al-loy)inthisstudy,whereas thecontentofotheralloyingelements iskeptaslowaspossible.TheHCHVsteelcontainstwicethe

frac-tion ofvanadium andcarbon withrespect to theLCLV steeland

theatomicratioofV:Cis1:1inbothsteels.

Rectangular dilatometry specimens with dimensions

14× 10× 1mm3 are machined fromthe centreofthe as-received

plates. These specimens are heat treated in a DIL-805 A/D

dilatometer in which inductive heating under a low pressure of

10−4 mbarisused,whilecooling isachievedbyaflow ofhelium

gas.An S-type thermocouple isspot-welded in the centreof the

specimensurfaceinordertocontrolandmonitorthetemperature

duringthethermalcycle. Thechangeinlengthofthespecimenis

recordedasa function oftemperatureandthe obtained

dilatom-etry data are used to study the phase transformation kinetics

in each treatment. Micro-segregation of alloying elements like

manganese and vanadium is considered not significant based

on Electron Probe Micro-Analysis (EPMA), therefore no prior

homogenisationtreatmentofthesteelsisperformed.

Theheattreatmentsperformedinthedilatometerare

schemat-icallyshowninFig.1.Thespecimensareheatedtoahigh temper-ature(1050°CfortheLCLVand1100°CfortheHCHVsteel)inthe austeniticregionfor15min.Thesetemperaturesarechosentobe 50°Cabovetheprecipitates’dissolutiontemperatureineachsteel as predictedby the Thermo-Calc software [41]. The precipitates’

dissolutiontemperaturesare 994°Cand1050°CfortheLCLV and

HCHVsteels,respectively(seeFig.2). Onespecimenofeachalloy

isquenched toroom temperatureafter soaking.These specimens

are usedto measure theprior austenitegrain size (PAGS)with a

KEYENCEVHX-5000DigitalOpticalMicroscope,whichiscalculated accordingtothe equivalentdiametercriterion inImageJ software

(5)

Table 1

Chemical composition of the steel samples in weight percent (wt%) and atomic percent (at%) with balance Fe.

Steel C Mn V Si P Mo Cu Nb S Cr Al N Ti

LCLV wt% .07 1.84 .29 .010 .0010 < 0.005 < 0.005 < 0.0010 .0016 .010 .004 < 0.001 .0001 at% .33 1.86 .32 .026 .0018 < 0.003 < 0.004 < 0.0006 .0028 .011 .008 < 0.004 .0001 HCHV wt% .14 1.83 .57 .013 .0010 < 0.005 < 0.005 < 0.0010 .0010 .007 .008 < 0.001 .0007 at% .62 1.85 .62 .026 .0018 < 0.003 < 0.004 < 0.0006 .0017 .007 .002 < 0.004 .0008

Fig. 2. Precipitate volume fraction versus temperature and the A 1 and A 3 transition temperatures for the LCLV and HCHV steels as predicted by ThermoCalc [41] .

[42]. The specimens have been prepared by following the

stan-dardmetallographicpreparationprocedure,whichincludes

grind-ing,polishingto1μmandetchingwithpicricacid.Theother spec-imensarecooledatarateof15°C/sfromthesoakingtemperature

toalowertemperature(900,750or650°C),whereanisothermal

annealingis applied fordifferent holdingtimes (10s, 30s, 1min,

2min, 5min, 7min, 10min, 20min, 45min, 2h and 10h). The

isothermal holdingtemperatures have beenchosen based onthe

ThermoCalc[41] predictions presented inFig. 2, aiming to study the precipitation kinetics in austenite, during the austenite-to-ferritephasetransformationandinferrite.Analysisofthe dilatom-etrydataindicates thatthephasetransformationtakesplaceonly

duringthe isothermal holdings and not duringcooling fromthe

soaking temperature to the isothermal holding temperature. The

thermalcycleiscompletedbyarapidquenchtoroomtemperature. ThemicrostructuralevolutionoftheLCLVandHCHVsteels dur-ingannealingatthe threeisothermal holdingtemperaturesis

re-vealedbymeansofScanning-ElectronMicroscopy(SEM).TheSEM

measurements are performedat room temperature using a JEOL

JSM6500Fmicroscopeonthespecimenspreviously treatedinthe

dilatometer. The specimens are prepared for SEM following the

metallographicpreparationproceduredescribedabove andfinally

etchedwith2%Nital.

Rectangular specimens with dimensions 10× 10× 1mm3 are

machined fromthe dilatometry treatedspecimens andmeasured

atroomtemperatureby Small-AngleNeutron Scattering. The aim

isto studytheprecipitationkineticsofthe LCLVandHCHVsteels

atthethree isothermaltemperaturesmentioned above.TheSANS

measurements are performed on the Larmor Instrument at the

ISIS Neutron and Muon Source (STFC Rutherford Appleton

Labo-ratory). A 5× 5 mm2 neutron beam and a wavelength range of

0.42–1.33nm areused.Wavelengthssmallerthan 0.42nm arenot

consideredtoavoideffectsfrommultipleBraggscattering.A3473–

70GMWelectromagnetisusedtogenerateatransversalmagnetic

field of 1.65 T, perpendicular to the neutron beam. This strong

magneticfieldisnecessarytomagneticallysaturatethespecimens, avoidanycontributiontothescatteringsignalfrommagnetic

do-mains, and separate the nuclear and magnetic scattering

contri-bution fromthe SANS pattern. The SANS detector isa 600× 600

mm2 3 Hetubearraywithan8× 8mm2 pixelsizeatadistanceof

4.3mfromthesample.Eachspecimenisexposed totheneutron

beamfor35min.The SANS dataanalysisis performedusingthe

Mantidsoftware[43].

The type of precipitation (interphase/random) as well as the

precipitateshapeandsizeareidentifiedbyTEM.TheTEManalysis

isperformedontheLCLVandHCHVsamplesthatareisothermally

annealedatthetemperatureof650°C.AJEOLJEM-2200FS

Trans-missionElectronMicroscopewithanacceleratingvoltageof200kV andaresolutionof1.3˚Aisused.Thinfoilsarepreparedby

grind-ingthespecimensto100μmanddisksofadiameterof3mmare

punchedoutfromthesethinfoils.Theextracteddisksare electro-polishedinatwin-jetStruersTenupol-3,electro-polishingsetupat

19V anda pumpflow rate of 12 l/minat 20 °C. The electrolyte

solution consisted of 5% perchloric acid (HClO4 ) and 95% acetic acid(CH3 COOH).Theimagingiscarriedoutinthescanningmode

(STEM)oftheinstrumentduringthemeasurements.

Atom Probe Tomography is used for the dilatometry

heat-treated samples of LCLV and HCHV steels annealed at 650°C to

studytheevolution ofchemical composition,shapeand

morphol-ogyof precipitatesduringannealing.The specimens annealedfor

5min,45min and10h at 650°C for both compositionsare

anal-ysedbyAPTtocapturetheprecipitates’growthandcoarsening ki-netics.Morethan5tipsareextractedfromeachspecimento opti-mizethestatisticsoftheAPTclusteranalysis.

The specimens are prepared by the lift-out method using

Fo-cussed Ion Beam milling (FIB) [44]. A last sputtering with 5kV

and44 pAisapplied to reducethe effectthat theGalliumbeam

causesonthetips.After theFIBprocedure,thetipsarecoated

us-ing an electron-beaminduced Cobalt deposition [45] in order to

limitCarbondiffusionalongtheshank[46].TheAPTspecimensare

measuredinaLEAP4000X-HRsystemfromCAMECAInstruments.

Laser-assistedexcitationisusedwithapulseenergyof35-50pJ,

a pulserate of65–125kHz, and a specimenbase temperatureof

∼20K.

The IVAS3.8.0 softwarepackage fromCAMECAInstruments is

usedfortheAPTdatareconstructionandanalysis.Theentire anal-ysisisbasedonisotopedistribution(Mass-to-Charge-StateRatio -Da)[47].Thevanadiumpeaksaredetectedin17,25and25.5Dain

theMass-to-Charge-State Ratio Spectrum,whilecarbonpeaks are

detectedat6,6.5,12and13Da.Frequencydistributionanalysisfor

theelementsprovesthatvanadiumandcarbonareclustered.

3. Resultsanddiscussion 3.1. Phasetransformationkinetics

3.1.1. Phasetransformationkineticsat900and750°C

The PAGS is measured in the specimens directly quenched

from the austenitization temperature to room temperature and

(6)

Fig. 3. SEM micrographs of the a) LCLV and b) HCHV samples isothermally annealed at 750 °C for 10 h. The existent ferritic (F) and martensitic (M) areas are indicated.

Fig. 4. Austenite to ferrite and pearlite phase transformation kinetics of LCLV(  ) and HCHV( ) steels during isothermal annealing at 650 °C (from dilatometry). Ac- cording to SEM, the fraction of pearlite formed can be neglected.

the HCHV steel. Consequently, differences in the microstructural

evolution ofthetwosteelsduringannealingcannot be attributed

toPAGSeffects.

Analysis of thedilatometry datareveals nophase

transforma-tionintheLCLVandHCHVsteelsduringannealingat900°C.This temperatureisabovethetheoreticalA3 equilibriumtemperatures,

predictedbyThermoCalc[41]tobe830°Cand834°CintheLCLV

andHCHVsteels,respectively(Fig.2).At750°C,onlyaverysmall fractionofferrite isformed intheLCLVsteelafter10hof

anneal-ing, while almost no transformationis takingplace inthe HCHV

steel.Fig. 3a andbshows theSEM micrographs ofthe LCLV and

HCHVspecimensannealedat750°Cfor10h,respectively.Asseen in Fig.3a, asmall fractionof allotriomorphicferrite is formedin the LCLVsteel after10h,while themicrostructureis almost fully martensiticforthesameconditionsinHCHVsteelinFig.3b, con-firmingthedilatometrydatainterpretation.

3.1.2. Phasetransformationkineticsat650°C

At650°C,austenitetransformsintoferriteinbothsteels accord-ing to the dilatometrycurves.Fig. 4 showsthe fractionof

trans-formedphaseduringannealingat650°CforLCLVandHCHVsteels

asafunction ofannealingtime. Inboth steels,morethan 97%of the initial austeniteis transformed after20min isothermal hold-ingat650°C,sothefinalmicrostructure ofthesamplesannealed forlonger timesmainly consistsof ferrite. Forshortertimes, the microstructureconsistsofamixtureofferriteandmartensite.The

martensiteformsfromtheuntransformedausteniteduringthe

fi-nal quenchingto room temperature. According to Fig.4, the

on-set of the austenite-to-ferrite phase transformation is delayed in theHCHVsteelcomparedtotheLCLVsteel.Thiscanbeattributed

tothe higher carboncontent ofthe HCHV steel, which stabilizes

theausteniteanddelaystheonsetofphasetransformation.In ad-dition,vanadium can retard ferrite nucleation dueto segregation

of micro-alloying elements at the grain boundaries of austenite

[48]. Based on theoretical TTT (time-temperature-transformation)

diagram calculations usingthe program MUCG83 [49], the effect

of carbon on the delay of the onset of phase transformation is

strongerthantheeffectofvanadiuminthesesteels.

RepresentativeSEMimagesshowingthemicrostructural

evolu-tion during annealing at 650°C for both steels are presented in

Fig.5.Fig. 5a,cande isrelatedto theLCLV steelspecimens an-nealed for2min, 10min and 10h, respectively, while the micro-graphsinFig.5b,dandfcorrespondtoHCHVspecimensannealed for 1min, 7min and 10h, respectively. The existent ferritic (F), martensitic(M)andpearlitic (P)areasare indicated ineach con-dition.TheSEManalysisshowsthelocalformationofasmall frac-tion ofpearlite in both steels. The cementite precipitationis ob-servedafter2minofannealingintheLCLVsteelandafter1minin theHCHVsteel,asshowninFig.5aandb.

3.2.Precipitationkinetics

3.2.1. Analysismethodofthesmall-angleneutronscatteringdata

The Small-Angle Neutron Scattering intensity is a 2D pattern

that reflects the macroscopic differential scattering cross-section, (d



/d



)(Q). This is a function of the scattering vector, Q, and

is obtained from the SANS intensity after background correction

and calibration of the neutron flux considering the detector

efficiency and sample transmission [50]. The (d



/d



)(Q) may

have two components because of the two different interactions

ofneutronswithmatter. Neutronsinteractwiththe nucleiofthe

atoms via nuclear forces, leading to the nuclear cross-section,

(d



/d



)NUC (Q),andwiththe magneticmoments ofthe unpaired electrons through the dipole-dipole interaction [35], leading to the magnetic cross-section, (d



/d



)MAG (Q). The selection rules forthemagneticscatteringare such thatneutrons “see” only the

(7)

Fig. 5. SEM micrographs of the LCLV and HCHV steels isothermally annealed at 650 °C for different times and subsequently quenched to room temperature. Microstructure of LCLV specimens annealed for a) 2 min, c) 10 min and e) 10 h and of HCHV specimens annealed for b) 1 min, d) 7 min and f) 10 h. The existent ferritic (F), martensitic (M) and pearlitic (P) areas in each condition are indicated.

magnetization components that are perpendicular to the

scatter-ing vector, Q. Thus, if an external magnetic field is highenough

to saturate the magnetization and is applied along a direction

contained in the detector plane, the macroscopic differential

scatteringcross-sectioncanbewrittenas[35]:



d



d





(

Q

)

=



d



d





NUC

(

Q

)

+



d



d





MAG

(

Q

)

· sin2

α

, (1)

where

α

is the angle between the magnetic field direction and

Q. In this way it is possible to distinguish between the nuclear andmagnetic contributiontothe scattering.Forthispurpose,we

considersectorsof30°,parallelandperpendiculartothemagnetic field, leading to (d



/d



)NUC and (d



/d



)NUC +(d



/d



)MAG , re-spectively,andto(d



/d



)MAG asthedifferencebetweenthese re-sults.Wethenobtainquantitativeinformationontheprecipitation kinetics inthe steel matrix by a detailed analysisof the nuclear differential scattering cross-section, which for a dilute system of precipitateswithinahomogeneousmatrixisgivenby[50]:



d



d





NUC

(

Q

)

=

(



ρ

NUC

)

2  DN

(

R

)

· V2

(

R

)

· P2

(

Q,R

)

dR, (2)

(8)

with R and V the precipitate radius and volume (for spherical precipitatesitisV=4/3

π

R3 )respectively. Thelog-normalnumber distribution,DN (R),isassumedtobegivenby:

DN

(

R

)

= Np R

σ

√2

π

exp



−[ln

(

R

)

− ln

(

Rm

)

] 2 2

σ

2



(3)

where Np is the precipitate number density, Rm is the mean

precipitate radius and

σ

is the standard deviation of the size

distribution. The precipitate volume distribution is the product

DV (R)=DN (R). V.

P(Q,R)istheformfactordescribingtheprecipitateshape,which for spherical precipitates is P(Q,R)=3[sin(QR)−(QR)cos(QR)]/(QR)3

[50,51].

Finally,



ρ

NUC is the difference in nuclear scattering length densitybetweenthematrixandtheprecipitates(nuclearcontrast) and isgiven by



ρ

NUC =

ρ

Fe -

ρ

VC ≈ No Fe bc Fe - No VC bc VC . The

term No is the number density calculated for Fe and VC

con-sidering their bulk density,

ρ

m , and their molecular weight, M, using No =NA

ρ

m /M, yielding the number density of Fe atoms

No Fe =84.9 nm−3 and of VC, with the stoichiometric ratio of V/C=1,No VC =55.1nm−3 .NA isAvogadro’snumber andbc isthe

coherentscatteringlength.Thescatteringlengthofthematrixand the precipitates isbc Fe =9.45× 10−15 m andbc VC =6.26× 10−15 m,

respectively, resulting in

ρ

Fe = 8.02× 10−4 nm−2 for iron and

ρ

VC =3.46× 10−4 nm−2 forthevanadiumcarbides,andeventually

in



ρ

NUC 2 =20.8× 10−8 nm−4 .

Theprecipitate volumefraction,fV ,iscalculatedby integrating the area underthe [Q,Q2(d



/d



)

NUC ] curve, which is commonly

knownasKratkyPlot.Foradual-phasesystem,theareaQo,NUC be-lowtheKratkyPlotis[35]:

Qo ,NUC = ∞ 0



d



d





NUC Q2 dQ=2

π

2

(



ρ

NUC

)

2 fV

(

1− fV

)

(4)

When the precipitate volume fractionis low,the above

equa-tionissimplifiedto:

fV ∼= Qo ,NUC 2

π

2

(



ρ

NUC

)

2

(5)

The precipitation kinetics of both steels during annealing at

900, 750 and 650°C is discussed below based on the resulting

SANSmeasurements.

3.2.2. Precipitationkineticsat900and750°C

TheSANSintensityoftheLCLV andHCHVsteelsthathave

un-dergonean isothermal annealingtreatmentat900 and750°C for

10h is compared to the corresponding intensityof the specimen

of each steelthat is directly quenchedfromthe soaking

temper-aturetoroom temperatureanddoesnot containanyprecipitates.

No significant differencesare observed, leadingtothe conclusion that precipitatesare not detected inanyin theseconditions.The

SANS intensitycurvesofthe samplesannealedat900 and750°C

arenotpresentedinthemaintextbutcanbefoundinthe supple-mentarymaterialofthismanuscript.

Theabsence ofprecipitatesat900and750°Cinbothsteelsis closelyrelatedtothe(near)non-occurrenceoftheausteniteto fer-ritephasetransformationasdiscussedduringtheinterpretationof the dilatometryandSEMdata insection A.1.Sincethe austenite-to-ferritephasetransformationdoesnottakeplaceat900°Cinany ofthesteelsnorat750°CintheHCHVsteel,andduetothehigh solubility of the vanadium carbide precipitates in austenite, pre-cipitatesarenotformedintheseconditions,whichisinagreement withref.[15].PrecipitatesarealsonotdetectedintheLCLVsteelat 750°Cafter10h ofisothermal holdingdespitethetransformation ofasmallfractionofausteniteintoferriteinthissteel.Nucleation of precipitatesmighthavestarted inthiscondition, however,the

precipitatessizeandvolumefractionareexpectedtobeextremely small,i.e.below1nmand0.1%,respectively,and,therefore,not de-tectablebytheSANStechnique.

Moreover, it is worth mentioning here that ThermoCalc

[41]equilibriumcalculationsarenot inagreementwithour

stud-ies, since ThermoCalc predicts precipitation and phase

transfor-mation at 750°C in both steels and precipitation at 900°C for

theHCHValloy(Fig.2). Thedifference betweenourexperimental

results and ThermoCalc could be attributed either to the

Gibbs-Thomson effect, which could be significant for small nano-sized

precipitates,ortothe fact thatthe systemhasnot reached equi-libriumafter10hofannealing.

Theequilibriumconcentrationofvanadiuminthematrixtaking intoaccounttheGibbs-Thomsoneffectisgivenby[52]

Xeq,r=Xeq,∞ exp



2

γ υ

VC at XprkT



(6) Intheequationabove,Xeq,∞ isthesolubilitylimitofvanadium

inferriteaccordingtoThermoCalc,

γ

theinterfaceenergybetween theprecipitates andthe ferritic matrix,

υ

at VC theaverage atomic volumeofthevanadiumcarbides,Xp theequilibriummolefraction ofvanadiumintheVC-precipitatescalculatedbyThermoCalc,rthe precipitateradius, kB theBoltzmannconstantandT the tempera-ture.Forprecipitateswithanaverageradiusintherange1.1–2nm andfortypicalprecipitate-ferriticmatrixinterfaceenergyvaluesin therange0.2–0.8J/m2 [53],theresultedXeq,r at750andat900°C isveryclosetotheXeq, ∞ andalwayssmallerthanthetotalamount ofvanadiuminbothsteels.Thismeansthattheincreaseinthe sol-ubilitylimitofvanadiuminthematrixduetotheincreaseinGibbs

free energyof the precipitates (attributed to theGibbs Thomson

effect)is verysmallandnot sufficientto prevent precipitationin thesteels.Based onthe abovecalculations, we concludethat the GibbsThomsoneffectcannot– onitsown-explainthedifference

betweentheexperimentalresultsandequilibriumThermoCalc

cal-culations,andotherkineticsfactorsmayalsoplayarole.

The most possible explanation is that the system is far from

equilibriumafter 10h at 750and 900°C for both alloys.

Accord-ingtoThermoCalc,themaximumferritefractionthatcanformat

750°Cis86%and87%fortheLCLVandtheHCHV,respectively.As

a result, amaximum precipitate volume fractionthat could form

wouldbe0.42and0.95%intheLCLVandtheHCHVsteels,

respec-tively.At 900°C,ferriteformationisnot predictedbyThermoCalc

in either of the steels, however, precipitation of a maximum of

0.3%wouldbe possibleintheHCHVsteel.Theequilibrium

condi-tionspredictedbyThermoCalccouldbereachedbyapplyinglonger annealingtimesat750and900°C.

3.2.3. Precipitationkineticsat650°C

The SANS nuclear differential scattering cross sections of the LCLVandHCHVsteelsannealedat650°CareshowninFig.6aand

b,respectively. The corresponding magnetic components are

pre-sentedinFig. 6candd. Forthe sakeof simplicitywe onlyshow

thescattering curvesobtainedat themost informative annealing

times(30s,2min,5min,20min,45min,2handfor10hat650°C). The nuclearand magneticscattering crosssections ofthe

direct-quenchedspecimensarealsoprovided.

SANSisusedtostudytheprecipitationkineticsintheLCLVand HCHVsteels,inwhichitshouldbekept inmindthat the

disloca-tionsfromthe martensitephase alsocontribute tothe SANS

pat-tern.Theanalysisoftheprecipitationkineticsthatisexplained be-lowreferstobothLCLVandHCHVsteelsastheirnuclearscattering crosssectionsfollowthesametrendduringannealing.

Forthespecimens ofboth steels annealed forlessthan 2min

at 650°C, the SANS intensity follows a Q− 4 power law (Porod’s Law),indicatingthat scatteringoriginatesfromlarge-scaleobjects likegrain boundariesand interfaces[37,50,54].In theabsence of

(9)

Fig. 6. Nuclear differential scattering cross section of a) LCLV and b) HCHV steel as a function of Q measured at room temperature after annealing at 650 °C for up to 10 h. The corresponding magnetic differential scattering cross sections are plotted in c) and d) for LCLV and HCHV steel, respectively. The scattering curves of the samples heat-treated at the most representative conditions are shown.

deviationsfromtheQ− 4 powerlaw,weconcludethatneither pre-cipitationnorphasetransformationhavestarted.

Between 2 and 20min of annealing, a decrease in the

nu-clear intensity is observed in the low-Q area (Q < 0.2 nm−1 ). The (d



/d



)NUC at low-Q values originates from large objects likegrainboundaries,dislocationsandlargeprecipitates[37,50,54]. Therefore,thedecreaseinthe(d



/d



)NUC inthelow-Qareaofthe 2-20mincurvesisattributedtothephasetransformationthrough

the decrease of the fraction of martensite (which forms directly

afterthe quench from 650°C to room temperature and contains

highdislocationandgrainboundarydensities)inagreementtothe phasetransformationkineticscurve inFig.2.ForhigherQvalues, in the 2–20min curves, an increase in (d



/d



)NUC is observed, originatingfrom the scattering of small precipitates. For

anneal-ing times longer than 20min, when the phase transformation is

almostcomplete,additionalscatteringisobservedoverthewhole

Qrange.Inthe low-Qrange,the majorcontributionto thesignal

comes fromcementite as well asfrom the large VC precipitates.

Thesmallincreasein(d



/d



)NUC inthehigh-Qareaiscausedby smallerprecipitates.

The magnetic scatteringcross sectionsof theLCLV andHCHV

steels,depictedinFig.6candd, donotshow thesameQ

depen-denceandtimeevolution asthecorresponding nuclearscattering

crosssections,indicatingdifferentnuclearandmagneticstructures in oursteels. A decreasein (d



/d



)MAG curvesis observed over

the entire Q range in both steels up to 2h of annealing while

an increase is observed forlonger annealing times. The

marten-siticphasehavingahighdislocationdensity,largenumberof Low-AngleGrainBoundaries(LAGB)andironcarbidesmaypinthewalls

betweenthemagnetic domainsandhinder their alignment along

themagneticfield. Theprecipitation ofcementiteandthe

forma-tion of pearlite also affect the magnetic SANS intensity, butthis featureisnotfurtheranalysedinthispaper.

Quantitative information on the precipitation kinetics is

ob-tained fromKratky plots, Q2 (d



/d



)NUC plotted asa function of

Q.Fig.7aandbshowssuch plotsfordifferentannealingtimesat

650°CofLCLV andHCHV forsome representativeconditions.For

anaccurateanalysisoftheVCprecipitationkineticsbySANS,only thescatteringfromtheprecipitatesisconsideredwhereasallother contributionsaresubtracted.

(10)

Fig. 7. Time evolution of Q 2 (d / d )

NUC vs Q for the a) LCLV and the b) HCHV steel during holding at 650 °C for up to 10 h (data points), after background subtraction. The thinner dotted lines represent the theoretical Q 2 (d / d )

NUC curves originating from the fitting.

During isothermal annealing, a progressive increase in the

Q2 (d



/d



)NUC intensityinbothLCLVandHCHVsteelsisobserved.

As the holding time increases, the peak position of the curves

graduallymovestowardsthelowerQarea,reflectingtheincreasing precipitatesize(growthorcoarsening).

The experimentally derived Kratky plots are fitted to the

the-oretical Kratky-plotequation(Eq.(2)multipliedby Q2 ) leadingto thefittingparameters Rm ,Np and

σ

foreach curve.Thefittingis

performedforthespecimensofLCLVandHCHVsteelsannealedfor

timeslongerthan5minat650°C.Forshorterannealingtimes,the experimental Q2 (d



/d



)NUC curvescannot be fittedasthey have acompletelyflatprofile(precipitatesarenotdetectedbefore2min asexplainedbefore).

The evolutionoftheprecipitate meanradius,Rm ,andnumber density,Np ,duringannealingfrom5minto10hisshowninFig.8a and b, respectively. The precipitates’growth during annealing in bothsteelsisreflected intheincrease oftheprecipitate mean ra-dius (Fig. 8a). Amaximumprecipitate radius of1.5and1.8nmis reachedafter10hofannealingforLCLVandHCHVsteels, respec-tively.

Like the meanprecipitate radius, theprecipitate number

den-sity follows the sametrend for both steels.The gradual increase inthe precipitatenumberdensity(Fig. 8b)fromthebeginning of annealing andforthefirst 10minat650°Csuggestsintense

pre-Fig. 8. Precipitate a) mean radius, R m , b) number density, N p , c) volume fraction, f V , and, d) amount of vanadium in solid solution, f vanadium,ss , evolution during annealing at 650 °C for the LCLV(  ) and HCHV( ) steels. During time period 1, phase transfor- mation takes place and precipitate nucleation and growth are dominant. In period 2, phase transformation is almost complete ( > 97% of austenite transformed) and precipitate growth (with overlapping diffusion fields) and coarsening take place. The dashed lines indicate the equilibrium values calculated by ThermoCalc [41] .

(11)

cipitatenucleation.Between10and20minofannealing,the pre-cipitatenumberdensityremainsconstantwhiletheirradiusis in-creasing, indicatingthat precipitate growthis thedominant

phe-nomenon.Wedefineastimeperiod1thefirst20minofannealing

andperiod2 from20min totheendofannealing.During period

2,the precipitate number density continuously decreases dueto

precipitatecoarsening.

At the beginning of annealing the precipitates are small and

theirsizeiscomparabletotheresolutionoftheSANSinstrument, leadingtolargererrorbarsintheprecipitatemeanradius(Fig.8a) andnumber density (Fig. 8b). Additionally,the background

con-tribution from dislocations decreases with time and fitting the

Kratky-plotcurvesresultsinlowererrorvaluesforlonger anneal-ingtimes.

As shown inthe (d



/d



)NUC (Q) curvesof Fig.6a andb, the

Qrangeof thenuclear differentialscatteringcross sectionsis re-strictedto0.04≤ Q≤ 1.05nm−1 ,limitingtheQrangeofthe Kratky-plotcurves (Fig. 7a and b) and, consequently, leadingto an un-derestimation of the precipitate volume fraction, fV , if only this

Q-rangeis usedfor theintegration. Foran accurate volume frac-tiondetermination,firsttheareabelowtheQ2 (d



/d



)NUC curves,

Qo,NUC , is calculated as the sum of Qo,1,NUC +Qo,2,NUC , and then the precipitate volume fraction is derived from Eq. (5). Qo,1,NUC

is the area below the curve determined by the data in the Q

range 0.04 - 1.05 nm−1 . These data are calculated by multiply-ing (d



/d



)NUC(Q) (corrected after backgroundsubtraction) with

Q2 , as described above. Qo,2,NUC is the area below each dotted Kratky plot for Q values between 1.05 and 2 nm−1 (Fig. 7a and b).ThedottedcurveisthetheoreticalcalculatedKratkyplotcurve inthe Q range 1.05 - 2 nm−1 . It is calculated foreach annealed specimenusing the Rm , Np and

σ

values obtained from the

fit-ting of the experimental Kratky plot in the Q range 0.04 - 1.05

nm−1 . Deviations between experimentsand theory in the low Q

rangeare mostprobably relatedto difficultiesin the background

subtraction.

Thetimeevolutionoftheprecipitatevolumefractionduring an-nealingat650°Cisillustrated inFig.8cforbothLCLV andHCHV steels.Before2min,noprecipitatesaredetectedandthemeasured precipitate volume fraction curve is practically zero. After 2min,

thevolume fraction increasescontinuously,reaching a maximum

0.37± 0.09%fortheLCLVsteeland0.93± 0.16%fortheHCHVsteel after10h ofannealing. Precipitation takesplaceduring andafter

the phase transformation and precipitates are measured in both

steels when a certain volume fraction of ferrite is formed after

5min. This is illustrated in Fig. 9a and b, in which the precipi-tationandphasetransformation kineticsareplotted fortheLCLV

andHCHV steels,respectively. The enhanced precipitation during

phasetransformationisaresultofsolubilitydropofthevanadium whenaustenitetransformstoferrite,givingrise toa highdriving force forprecipitation. The precipitates formed during the

trans-formationare alignedin rows(interphase precipitation, see TEM

image,Fig.11,andAPTmaps,Fig.12aandd),whilethose nucleat-ingafterthecompletionofthephasetransformationarerandomly

dispersedandhavea smallerdiameter. Thesmallincrease inthe

nuclearscatteringintensityinthehigh-Qarea after20minof an-nealingat650°C,asshowninFig.6aandb,originatesfromthese smallprecipitates.

The continuous increase in volume fraction after 20min

(Fig. 8c), combined to the increase in precipitate size (Fig. 8a) andthedecreaseinprecipitatenumberdensity(Fig.8b),indicates

combined precipitate growth and coarsening. Fig. 8d shows the

evolutionoftheamountofvanadiuminsolidsolution,fvanadium,ss , in both alloys. It decreases rapidly during precipitate nucleation

andgrowth (during time period 1) andcontinues decreasing till

theendof theannealing treatment dueto thecombined growth

andcoarsening(period2).

Fig. 9. Vanadium carbide precipitation and austenite-to-ferrite phase transforma- tion kinetics (see Fig. 4 ) during isothermal annealing at 650 °C in the a) LCLV and b) HCHV steels. In both steels, precipitation takes place during and after the phase transformation. During time period 1, phase transformation takes place and pre- cipitate nucleation and growth are dominant. In 2, phase transformation is almost complete ( > 97% of austenite transformed) and precipitate growth and coarsening take place.

The measured volume fraction, average precipitate size and

numberdensityoftheprecipitatesare comparedtothe SANS

re-sultsofpreviousstudiesofasteelwithasimilar thatisannealed at700°C(instead of650°C) [20].Weobservesimilaritiesand

im-portantdifferencesbetweenannealingat700and650°C.We

ob-serve anincrease inprecipitate volume fractionintheLCLV steel from0.13to0.37%from5minto10hofannealingat650°C,which issimilartothefindingsreportedinRef.[20],whichreportsan in-creasefrom0.09to0.28%duringannealinginthesametimerange

at700°C in a steelwithsimilar vanadium content. However, we

measure small(<2nm)spherical/ slightlyellipsoidalprecipitates withnumberdensityof∼1023 m−3 ,while inref.[20],∼10times

larger disk-shape andoblate precipitatesare detected with

num-berdensity∼1021 m−3 ,suggestingthatsmallchanges,likea50°C

change in the annealing temperature, lead to very different

(12)

fromour SANSdataare comparableto previousstudies on

vana-dium carbidesatthe sametemperatures formedium [18,24] and

low-Carbonsteels[19].

Thermodynamic calculations performed with the ThermoCalc

software[41]givean equilibriumvolumefractionforVCof0.56% in the LCLV steeland 1.09%in the HCHV steelat 650°C (Fig.2),

which is slightlyhigher than the values deduced by SANS. From

theseresults,itisconcludedthat after10hofisothermalholding

mostofthevanadiumisinthe precipitates,butthevolume

frac-tionhasnotreacheditsmaximumvalue.

Theprecipitationkineticsarefoundtohavethesamebehavior

intheLCLV andHCHVsteels duringannealingfrom5minto10h

at 650°C due to the same phase transformation kinetics in this

time range. Due to the delay in the onset of austenite-to-ferrite

phase transformation in HCHV steel compared to LCLV steel at

650°C(Fig.2),andconsideringthefactthat precipitationof

vana-dium carbidesis morefavoured after thebeginning ofthe phase

transformation,adelayinprecipitationkineticsintheHCHVsteel

isexpectedinorderto followthetrendofthephase

transforma-tion curve.According to thephase transformationkineticscurves

of Fig. 2,the delay should be observed during the first 5min of

annealing. However, becauseofthe limitationsof theSANS

tech-nique, precipitates are only detected after 5min of annealing in both steels.Thereforepossible differencesinthestart ofthe pre-cipitationkineticsbetweenbothsteelsinthefirst5minof

anneal-ingcannotbeobserved.

Moreover, according to the dilatometry results in Fig. 2,after

5min, the phase transformation kinetics forthe LCLV andHCHV

steelsshowsimilarbehaviour.Thisisreflectedintheprecipitation kineticswhichfollowsthesametrendinbothsteelsafter5minas showninFig.8a,bandc.

Asalaststepintheprecipitationkineticsanalysis,Fig.10aand

b showsthetime evolutionof thelog-normalprecipitate volume

distribution of the VC precipitates in the LCLV andHCHV steels,

respectively.The averageprecipitatesizedetermines thepeak po-sitionofthevolumedistributioncurvewhiletheareabeloweach curve istheprecipitatevolumefractionatthattime ofannealing.

For both steels, the peak area of the distribution increases with

time until20minofannealing,without anyshiftinthepeak po-sition,indicating pronouncednucleationofsmallsized nuclei. Af-ter20min,thevolumedistributioncurvesbroadenwithincreasing

holding time,coupled witha decreasein peakheight anda shift

inthepeakpositiontolargerRvalues.Wethusconcludethatthe growthandcoarseningeffectisdominantinthistimerangeandis

becomingstrongerwithholdingtime.

3.2.4. Precipitationcharacterizationbytemandaptat650°C

Fig. 11 shows a representative bright-field TEM image of the

HCHV specimen annealed at 650°C for 20min andsubsequently

quenched to room temperature. The precipitates are represented

inblack whiletheferritic matrixis representedingrey. The pre-cipitatesare arrangedinrows,showingthat interphase precipita-tion takesplace duringtheaustenite-to-ferrite phase transforma-tionduringthefirst20minofannealing.Theaveragedistance be-tween the rows(inter-sheet spacing) in thisconditionis approx-imately 12nm. Theprecipitates’averageradius ismeasured tobe

around 1.1nm, in agreement with the value 1.3± 0.6nm derived

fromtheSANSmeasurements.Inaddition,spherical(orslightly el-lipsoidal)precipitatesareobserved,whichaposteriorijustifiesour SANSdataanalysisbasedonthemodelingofsphericalprecipitates. The fact that the precipitates’shape is spherical isin agreement topreviousstudies[18,19,24],inwhichspherical/ellipsoidal[18,19]

andspherical/disk-shaped[24]vanadiumcarbideprecipitateswere

formedduringisothermalannealingatthesametemperature.

Representative 3DvanadiumatommapsobtainedbyAPT from

samples of the LCLV and HCHV steels heat treated at 650°C for

Fig. 10. Log-normal volume distribution, D V , of the VC precipitates in the a) LCLV and b) HCHV steels during annealing at 650 °C for up to 10 h. The curves are based on the R m , N p and σ values resulted from the fitting of the experimental Q 2 (d / d )

NUC results.

Fig. 11. Bright field TEM image illustrating interphase precipitation in the HCHV steel. It belongs to the specimen annealed for 20 min at 650 °C.

(13)

Fig. 12. 3D APT atom maps of V of a)-c) LCLV steel and d)-f) HCHV steel speci- mens previously treated in different conditions. The maps are superimposed with isoconcentration surfaces of 2at%V. The arrangement of the precipitates and their evolution during annealing is shown.

holdingtimesof 5min,45min,and10h are showninFig. 12a–c andd–f,respectively.TheV-richregionscan beclearlyseeninall

maps,whicharesuperimposedwith2at.%Visoconcentration

sur-faces.This threshold ofvanadium concentration is setto a value

muchlargerthanthesteelnominalcompositioninordertoavoid

localvanadiumconcentrationfluctuations.The3Dmapscanbe

ro-tatedinanyorientation,providinginformationregardingthe

pre-cipitates’shape andarrangement. Inall these mapsandforboth

steels, spherical and ellipsoidal precipitates are observed. Small

precipitateswith a highnumber densitycan be seen inFig. 12a

andd after 5min of annealing at 650°C of a LCLV anda HCHV

specimen,respectively.Theirsizeincreaseswithannealingtimeas aresultofgrowthand/orcoarseningasshowninFig.12b,c,eand

f,while their number continuously decreases. Moreover,

precipi-tatesalignedinparallelrowsareobservedinbothsteels(Fig.12a

and d), denoting interphase precipitation. Randomly distributed

precipitatesin the ferritic matrix are also present, as shown for instanceinFig.12c.

From thevanadiummaps,we deducedtheinter-sheet spacing

ofinterphaseprecipitation,determined bythevelocity ofthe mi-grating

α

/

γ

interfaceduringtheaustenite-to-ferritephase transfor-mation.Theinter-sheetspacingismeasuredinthe5minannealing conditioninbothsteels,wherecoarseninghasnotstartedyetand theprecipitatesarrangementisrelativelyclear.Itisfoundtobein therangeof12-17nminbothsteels,inagreementwithourTEM measurements.

A quantitative characterization of vanadium carbide

precipi-tatesis obtained through a detailed cluster analysis. The cluster

analysisisperformedfollowingthe maximumseparationmethod

[55] based on solute vanadium atoms. Carbon enrichment is

ob-servedintheV-rich regions,indicatingthepresence ofvanadium

carbideprecipitates. The maximum distance betweentwo solute

atoms that belong to the same cluster, dmax , and the minimum

numberof atoms in a cluster, Nmin , are chosen as1nm and 20, respectively,afteratrialanderrorprocedure.Thesamedmax and

Nmin parameters are selected for all the measured specimens of

LCLVandHCHValloys.ClusterscontainingfeweratomsthanNmin

arenotconsideredintheanalysistoavoidthecontributionof

pos-siblelocalfluctuationsofvanadiumconcentration within the

ma-trix. Thedmax isdetermined basedon thenearest neighbour dis-tance(NN)distributionof3nearestneighbours.

Theclusteranalysisprovidesinformationregardingthe precipi-tate sizedistribution, numberdensityandvolumefraction inthe

analysed tips. The precipitate number density is the number of

precipitates divided by the analysed volume (volume of the tip),

andtheprecipitatevolumefractionisthetotalprecipitatevolume

divided bythe analysed volume.The precipitate volumeis

calcu-latedfromthenumberofvanadiumatomsineachprecipitate

tak-ing intoaccount the unit cell volume ofthe VC andthenumber

ofvanadiumatomsperunitcell.Fourvanadiumatomsareinone

VCunit cell andits latticeparameter is0.415nm [31]. Theradius of each precipitate is then calculated by assuming spherical pre-cipitates. Thedetectionefficiencyof theinstrumentis36% andit isconsidered intheabove calculationsto obtaintherealnumber ofthedetectedatoms.

Table2summarizestheprecipitateradius,numberdensityand

volume fractionderived fromAPT measurements.The results

ob-tainedfromthespecimensofbothsteels,heattreatedforthethree

annealing conditions, are compared to the corresponding values

obtained fromthe SANS dataanalysis. The number of tips

mea-suredper conditionby APTisgivenandRm ,Np andfV presented arethecalculatedaveragevaluesofalltheanalysedtipsper con-dition.Precipitatesaredetectedinalltheanalysedtipsofboth

al-loys, exceptfor 3 tips ofthe LCLV specimenannealed for5min.

This is attributed to the low precipitate volume fraction (0.13%) inthe LCLVsteelafter 5minofannealing at650°C, andsuggests

non- homogeneous precipitate distribution overthe entire

speci-menvolume.

Theprecipitate meanradius,numberdensityandvolume

frac-tion values obtained from the APT cluster analysis are in good

agreement withthecorresponding values derived fromthe SANS

analysisasshowninFig.8a,bandc.Theprecipitatemeanradius andvolumefractionarecontinuouslyincreasinginbothsteels

dur-ing annealing at 650°C, while the precipitate number density is

decreasingfrom45minto10hduetoprecipitatecoarsening. Thefractionofvanadiumatomsinsolidsolutioninferrite dur-ing annealingcanbe alsoobtainedfromtheAPT clusteranalysis. Thefractionofvanadiuminsolidsolution,fvanadium,ss ,iscalculated foreachtipas:

fvanadium ,ss =



NV ,total − NV ,precip



/NV ,total

=NV ,α−Fe /

(

NV ,α−Fe +NV ,precip

)

(7) In Eq.(7),NV,total is the total numberof vanadiumatoms de-tected, NV,precip isthe numberof vanadiumatoms inprecipitates andNV, α-Fe isthecalculatednumberofvanadiumatomsinferrite (NV,total -NV,precip ).Thefractionofvanadiuminsolidsolutionis av-eragedoverthetipsofthesamespecimenandispresentedinthe

lastcolumnofTable2.The3D-APTmeasurementsreveal thatthe

totalfractionofsolutevanadiumatomsinferritedecreasesduring

isothermal annealing in both steels due to continuous

precipita-tion. However, it is not completely eliminated even after 10h of

annealing inanyof thesteels, indicatingthat the maximum

vol-umefraction of precipitatesis not reached. Thisis in agreement withtheSANS results(see Fig.8d)andtheThermoCalc[41] pre-dictionsfortheequilibriumprecipitatevolumefractionstated ear-lier.

Note that APT allows for a local precipitation analysis over

an average tip volume in the order of ∼106 nm3 while SANS

measurements are performed in large samples with dimensions

10× 10× 1mm3 (= 1020 nm3 ), leading to better statistics. Addi-tionally,thedetectionefficiencyoftheAPTinstrumentaffectsthe

(14)

Table 2

Precipitate mean Radius, R m (nm), number density, N p (10 23 m −3 ) and volume fraction, f V (%), comparison between SANS and APT. The tip volume analysed by APT and the vanadium in solid solution measured in each condition are presented as well.

Steel Holding time

R m (nm) N p (10 23 m −3 ) f V (%) no. of tips and total tips volume analysed by APT

f vanadium,ss (%) by APT SANS APT SANS APT SANS APT

LCLV 5min 1.05 ± 0.22 1.09 ± 0.03 1.90 ± 1.95 1.85 ± 0.83 0.13 ± 0.07 0.14 ± 0.07 6 tips (3.8E6 nm 3 ) 79 ± 9.43 45min 1.30 ± 0.05 1.36 ± 0.07 2.10 ± 0.38 1.57 ± 0.39 0.31 ± 0.04 0.31 ± 0.04 7 tips (5.9E6 nm 3 ) 41 ± 4.85 10h 1.53 ± 0.02 2.07 ± 0.15 1.20 ± 0.08 0.59 ± 0.08 0.37 ± 0.09 0.36 ± 0.05 8 tips (5.5E6 nm 3 ) 25 ± 1.88 HCHV 5min 1.14 ± 0.14 1.62 ± 0.17 5.60 ± 3.44 3.60 ± 0.89 0.44 ± 0.10 0.74 ± 0.05 7 tips (4.0E6 nm 3 ) 28 ± 4.08 45min 1.47 ± 0.04 1.79 ± 0.14 3.88 ± 0.53 2.85 ± 0.75 0.73 ± 0.06 0.92 ± 0.04 10 tips (6.6E6 nm 3 ) 20 ± 2.11 10h 1.85 ± 0.03 2.11 ± 0.08 1.86 ± 0.11 1.37 ± 0.13 0.93 ± 0.16 0.90 ± 0.04 12 tips (5.4E6 nm 3 ) 12 ± 0.72

Fig. 13. Precipitate size distribution based on APT cluster analysis in a) LCLV and b) HCHV steels. The cluster analysis is performed in all the tips presented in Table 2 .

consequently the results of the cluster analysis. Based on these

considerations,itisreasonabletoexpectsmalldeviationsbetween theresultsobtainedbythetwotechniques.Nevertheless,thegood

agreementbetweentheresultsobtainedfromthesetwovery

dif-ferenttechniquessupportsthevalidityofouranalysis.

The precipitate size distribution derived fromthe APT cluster

analysis for the LCLV and HCHV specimens annealed for 5min,

45minand10h isplottedinFig.13.The totalnumberof precip-itates measuredinall tipsforeachthermalconditionisalso

pre-sented.Alarger numberofprecipitatesismeasured intheHCHV

specimens compared to the corresponding LCLV specimens that

haveundergonethesameheattreatmentduetothehigher

vana-dium andcarbonconcentration. The time evolutionof the

distri-bution isfoundtohavethesamebehaviour astheone measured

by SANS (Fig.10a and b).Smaller precipitates are presentinthe first5minofannealing.Astheisothermalannealingproceeds,the peakofthedistributionismovingtowardshigherradiiandthe dis-tributionbroadens,indicatinggrowthandcoarseningasthe

domi-nantphenomenainthesesteps.Isothermalholdingat650°Cfrom

45minto10h leadstoa decreaseofthetotal numberof precipi-tatesinbothsteels whilecoarseparticles areformed. Onlyafew

precipitates with a radius of more than 3nm are found in both

steelsandtheprecipitateradiusdoesnotexceed5.5nm.

The precipitates’chemical composition profile isderived from

the Proximity Diagrams (Proxigrams) [56], which are calculated

basedonisoconcentrationsurfaces(isosurfaces)of2at%vanadium. Theevolutionoftheprecipitates’chemicalcompositionduring an-nealingispresentedin1DcompositionprofileinFig.14aandcfor theLCLVsteelandinFig.14banddfortheHCHVsteel.A

compar-isonisshownbetweentheprecipitate chemicalcompositionafter

5minand10hofannealinginbothsteels.Theconcentration pro-filesarecalculatedinonerepresentativeprecipitateforeach condi-tion.Theprecipitatecompositionevolutionduringannealingshows thesamebehaviourforbothsteelsandisdependentonthe precip-itatesize.Itisobservedthatthematrix/precipitateinterfaceisnot sharp(on anm-lengthscale)andthatthere isagradual increase

ofvanadiumandcarbonalongwithadecreaseofFeconcentration

fromthesurfacetotheprecipitatecoreforalltheannealing con-ditions.The smaller precipitatesformed after5min at650°C are Fe-richdespiteadecreaseinFecontentfromtheirsurfacetotheir core. A dropin the fraction ofFe in the coreis observed in the larger precipitatesobserved after 10h andthe coreconsists only

ofvanadium andcarbon atomsin a stoichiometric ratio.Our

re-sultssuggestnomanganeseenrichmentineithertheinterphaseor therandomlydistributedprecipitates,whichisinagreementwith ref.[13,19,26,27],butincontrasttoRef.[25],inwhichmanganese

enrichmentwasobserved only inthe interphaseprecipitatesand

notintherandomlydistributedones.

3.2.5. Precipitategrowth/coarseningat650°C

Theaveragegrowthoftheprecipitateaftertheaustenite/ferrite transformationfronthaspassedcanbedescribedbythemodel de-velopedby Öhlund etal. [21],in whichthe growth iscontrolled byvolumediffusionofatoms, i.e.inourcaseofvanadiumatoms. Duringprecipitategrowth,thediffusionfieldisassumedtohavea linearconcentrationprofilewithlength,L,whichcanbecalculated by[21]: L=



1 3

44+54B+6

54+132B+81B2

1 /3 − 2 3



44+54B+6√54+132B+81B2



1 /3 − 4 3

R, (8)

whereRistheprecipitate radiusandB=(c0 m -c

equil VC)/(cequil m

-c0 m ).c0 m istheconcentrationofvanadiuminthematrixobtained from the nominal steel composition. cequil m and cequil VC are the

equilibriumconcentrationsof vanadiumatoms inthe matrixand

inthevanadiumcarbideprecipitates,respectively,andboth quanti-tiescanbederivedfromThermoCalc[41].FortheLCLVsteelthese are cequil m =0.011wt.%and cequil VC =68wt.%, while forthe HCHV steelcequil m =0.014wt.% andcequil VC =70wt.%. According to Ther-moCalc[41], thecequil VC isslightlydifferentbetweenthe 2alloys

(15)

Fig. 14. Proxigrams showing the precipitate chemical composition evolution during isothermal holding at 650 °C. Specimen of a) LCLV steel annealed for 5 min, b) HCHV steel annealed for 5 min, c) LCLV steel annealed for 10 h and d) HCHV steel annealed for 10 h. They are based on isoconcentration surfaces of 2at%V and belong to one representative precipitate of this condition.

Table 3

Overlap of the diffusion fields of the VC precipitates. Steel Holding time R m (nm) by SANS L (nm) d = N p−1/3 (nm) Overlap of diffusion fields 2 R m + 2 L > d LCLV 20min 1.20 10.3 14.6 Yes 45min 1.24 10.6 15.7 Yes 2h 1.35 11.6 16.8 Yes 10h 1.53 13.2 20.3 Yes HCHV 20min 1.29 8.5 11.9 Yes 45min 1.48 9.8 13.9 Yes 2h 1.58 10.4 14.4 Yes 10h 1.80 11.9 16.8 Yes

VC of 1:1 stoichiometric ratio, i.e. ctheoretical,equil VC =atomic mass

of vanadium / (atomic mass of vanadium+atomic mass of

car-bon)=50.9/62.9=81%.Thisindicatesthatpossiblyasmallamount

of Fe is included in the precipitates. In particular, ThermoCalc

[41] predicts a precipitate equilibrium composition of 45mol%V,

47mol%Cand8mol%Feinbothsteels.

Coarsening ispossibleonlywhenthediffusionfieldsof

neigh-boringprecipitatesoverlap.Thelengthofthelinearconcentration profile,L,iscalculatedforbothsteelsforthespecimensannealed

fortimeslongerthan20min,usingtheexperimental meanradius

values,Rm , derived by SANS. The average distance between two

randomlydistributedprecipitates, d, isobtainedby usingthe

ex-perimentalnumberdensityvaluesfromSANSmeasurementsandis

equaltoNp−1/3 .Forthecaseofthegrowthofsphericalprecipitates

ofthesamesize,thediffusionfieldsoverlapwhen2R+2L>d.This

criterionisfulfilledforbothsteelsforallthesamplesannealedfor

longer than 20min at 650°C and the results are summarized in

Table3. Combiningthe factthat the diffusionfieldsoverlapwith

the experimental observations that the precipitate number

den-sitydecreases(Fig.8b),thevolumefractionincreases(Fig.8c),and theamountofvanadiuminsolidsolutiondecreases(Fig.8d)with time, provesthat theobserved increase inaverageprecipitate ra-dius(Fig.8a)after20minofannealingistheresultofbothgrowth

withsoftimpingement (overlappingdiffusionfields)and

coarsen-ing.

4. Conclusions

Thevanadiumcarbideprecipitationkineticsandthe austenite-to-ferrite phase transformation kinetics are studied in two vana-diummicro-alloyedsteels,which areisothermally heattreatedat

different temperatures for various holding times, by combining

dilatometry, SANS, TEM and 3D-APT measurements. The

conclu-sionsaresummarizedasfollows:

(1) Thermodynamic equilibriumcalculationspredict that

vana-dium carbide precipitates are present at 900, 750 and

650°C. However, experiments show that neither

precipita-tion nor phase transformation takes place in both steels

when isothermally treated at 900 and 750°C for holding

timesup to 10h (except fortheformation ofa small

frac-tionofferriteat750°CintheLCLVsteel).

(2) Experiments at 650°C show that precipitation of

vana-dium carbides does take place after the onset of the

Cytaty

Powiązane dokumenty

Odrodzenie się matematyki i pokrewnych jej dyscyplin: muzyki, fizyki (optyki), astrologii, astronomii, kosmografii i geografii dokonało się samodzielnie ale współcześnie

[r]

Redakcja zastrzega sobie prawo dokonywania w ręko­ pisach: zmiany tytułów, dodawania podtytułów ogólnych i tekstowych, skrótów i przeróbek technicznych oraz

[r]

λ is in fact the non-centrality parameter of the distribution of the test T q under the alternative hypothesis (Equation 7) and measures the incidence of the error on the test

Badania prowadzono na próbkach wysuszonych oraz będących w stanie długotrwałego nasycenia wodą (co najmniej 50 dni). Badanie wytrzymałości na ściskanie prowadzono w maszynie

Pisarze patrystyczni podkreślają, że w całym zdarze- niu objawia się miłosierdzie Boga, który skraca do 1/12 – jak twierdzi Teodoret – czas trwania epidemii. Dzięki

Therefore, to reduce the communication costs of the DDSB, we first proposed a clique-based gossip algorithm, and then we presented the CbDB algorithm based on the principle