• Nie Znaleziono Wyników

Stratocumulus clouds in a changing climate

N/A
N/A
Protected

Academic year: 2021

Share "Stratocumulus clouds in a changing climate"

Copied!
222
0
0

Pełen tekst

(1)

STRATOCUMULUS CLOUDS I N A CHANGING CLIMATE

(2)

S t r a t o c i u n u l u s c l o u d s i n a c h a n g i n g c l i m a t e Thesis, R o y a l N e t h e r l a n d s M e t e o r o l o g i c a l h i s t i t u t e ( K N M I ) , D e h t U n i v e r s i t y o f T e c h n o l o g y W i t h b i b l i o g r a p h i c i n f o r m a t i o n a n d D u t c h s u m m a r y C o v e r : s t r a t o c u m u l u s c l o u d s o v e r the A d a n t i c o c e a n ( p h o t o c r e d i t : A r m a Ra-b i t t i ) . I S B N : 978-94-6186-437-6 P r i n t i n g : R i d d e r p r i n t B V

(3)

P r o e f s c h r i f t ter v e r k r i j g i n g v a n d e g r a a d v a n d o c t o r a a n de Teclmische U n i v e r s i t e i t D e l f t o p g e z a g v a n de R e c t o r M a g n i f i c u s P r o f . ir. K . C . A . M . L u y b e n , v o o r z i t t e r v a n h e t C o l l e g e v o o r P r o m o t i e s , i n h e t o p e n b a a r te v e r d e d i g e n o p w o e n s d a g 18 m a a r t 2015 o m 10:00 urn-d o o r T U D e l f t L i b r a r y

Prometheusplein 1

2628 ZC Delft

Sara D a l Gesso D o t t o r e M a g i s t r a l e i n Fisica, U n i v e r s i t a d i T r i ë s t e , I t a l i ë g e b o r e n o p 2 m e i 1985 te C a m p o s a m p i ë r o ( I t a l i ë )

(4)

Prof. D r . A . R Siebesma D r . S.R. de R o o d e S a m e n s t e l l i n g p r o m o t i e c o m m i s s i e : Rector M a g n i f i c u s , P r o f . D r . A . R Siebesma, D r . S.R. de R o o d e , P r o f . D r . H.J.J. Joni^er, P r o f . D r . H . W . J . R u s s c h e n b e r g , P r o f . D r . R . A . J . N e g g e r s , Prof. D r . A . A . M . H o l t s l a g , D r . A . L o c k , v o o r z i t t e r Techrusche U n i v e r s i t e i t D e l f t , p r o m o t o r Technische U r ü v e r s i t e i t D e l f t , c o p r o m o t o r Technische U n i v e r s i t e i t D e h t Technische U n i v e r s i t e i t D e l f t U r u v e r s i t a t z u K ö l n ( D u i t s l a n d ) W a g e n i n g U n i v e r s i t e i t M e t O f f i c e ( U K ) T h i s thesis w a s a c c o m p l i s h e d w i t h f i n a n c i a l s u p p o r t f r o m t h e E u r o p e a n U n i o n ' s S e v e n t h F r a m e w o r k P r o g r a m (FP7/2007-2013) u n d e r g r a n t a g r e e m e n t n u m b e r 244067.

(5)
(6)
(7)

'Twas like a sheet with Horns; The sheet was Blue

The Antlers Gray

-It almost touched the lawns.

So low it leaned - then statelier drew-And trailed like robes away, A Queen adown a satin aisle Had not the majesty."

(8)
(9)

S a m e n v a t t i n g ix S u m m a r y x i i i 1 S T R A T O C U M U L U S C L O U D S : A N O V E R V I E W 1 1.1 D e f i n i t i o n o f s t r a t o c u m u l u s 2 1.2 S t r a t o c u m u l u s c l o u d s i n t h e c l i m a t e s y s t e m 2 1.3 T h e s t r a t o c u m u l u s - t o p p e d b o i m d a r y l a y e r 3 1.3.1 P h y s i c a l processes 6 1.3.2 T u r b u l e n t shTicture 10 1.3.3 C l o u d - c o n t r o l l i n g f a c t o r s 11 1.4 E s h m a t i n g t h e s t r a t o c u m u l u s f e e d b a c k 12 1.4.1 Scu i n a f u t u r e c l i n r a t e 12 1.4.2 Forecasted c l o u d f e e d b a c k 13 2 M O D E L L I N G S T R A T O C U M U L U S C L O U D S 1 7 2.1 M a n y scales m a n y m o d e l s 17 2.2 A t h e o r e t i c a l f r a m e w o r k : t h e M i x e d - L a y e r M o d e l 18 2.3 R e s o l v i n g c l o u d s : the L a r g e - E d d y S i m u l a t i o n s 19 2.4 A g l o b a l p e r s p e c t i v e : t h e G e n e r a l C i r c u l a h o n M o d e l s 20 2.5 Research m e t h o d : a m u l t i - m o d e l a p p r o a c h 22 2.6 Research a i m a n d s t r u c t u r e o f t h e thesis 23

(10)

3 A M I X E D - L A Y E R M O D E L P E R S P E C T I V E 2 7 3.1 I n t r o d u c t i o n 28 3.2 M o d e l f r a m e w o r k a n d e x p e r i m e n t set u p 30 3.2.1 D e s c r i p t i o n o f t h e M L M f r a m e w o r k 30 3.2.2 E n t r a i r v m e n t f o r m u l a t i o n 31 3.2.3 E x p e r i m e n t a l set-up 34 3.2.4 S u i t a b i l i t y o f t h e case 37 3.3 Scu i n t e r a c t i o n w i t h t h e f r e e a t m o s p h e r e 39 3.3.1 D e t a i l e d a n a l y s i s o f steady-state s o l u t i o n s 39 3.3.2 T h e r o l e o f e n t r a i n m e n t p a r a m e t r i z a t i o n 42 3.4 Scu response t o a p e r t u r b e d c h m a t e 44 3.4.1 C l i m a t e p e r t r u b a H o n s 44 3.4.2 Scu r e s p o n s e t o d i f f e r e n t c h m a t e p e r t u r b a t i o n s 46 3.4.3 G e n e r a l i z a h o n f o r d i f f e r e n t e n t r a t n m e n t p a r a m e t r i z a t i o n s 50 3.4.4 D i s c u s s i o n 51 3.5 C o n c l u s i o n s 53 3.6 A p p e n d i x 56 4 A S I N G L E - C O L U M N M O D E L E V A L U A T I O N 5 9 4.1 I n t r o d u c t i o n 60 4.2 Case s e t - u p a n d m o d e l d e s c r i p t i o n 62 4.2.1 E x p e r i m e n t a l d e s i g n 62 4.2.2 S u m m a r y o f E C - E A R T H S C M 65 4.3 C o n t r o l c h m a t e r e s u l t s 66 4.3.1 A n a l y s i s o f the m e a n states 66 4.3.2 D e c o u p l i n g a n d Scu b r e a k - u p 72 4.3.3 C o m p a r i s o n w i t h o b s e r v a t i o n s 74 4.3.4 I n c o r p o r a d n g stochastic n o i s e i n t o the s u b s i d e n c e 77 4.4 P e r t u r b e d c h m a t e 82 4.4.1 C l i m a t e p e r t u r b a t i o n 82 4.4.2 C l o u d r e s p o n s e 82 4.4.3 D i s c u s s i o n 85 4.5 S u m m a r y a n d o u t l o o k 87 4.6 A p p e n d i x 89 5 T H E E U C L I P S E S C M I N T E R C O M P A R I S O N 9 1 5.1 I n t r o d u c f i o n 92

(11)

5.2 E x p e r i m e n t a l d e s i g n 93 5.2.1 C o n t r o l c l i m a t e e x p e r i m e n t 93 5.2.2 P e r t u r b e d c l i m a t e e x p e r i m e n t 95 5.3 D e s c r i p t i o n o f t h e m o d e l s 95 5.3.1 S i n g l e - C o l u m n M o d e l s d e s c r i p t i o n 95 5.3.2 G l o b a l - C i r c u l a t i o n M o d e l o u t p u t s 96 5.3.3 D A L E S s p e c i f i c a h o n s 96 5.4 C o n t r o l c l i m a t e r e s u l t s 97 5.4.1 LES r e s u l t s 97 5.4.2 S C M r e s u l t s 102 5.4.3 O n t h e c o r r e s p o n d e n c e t o t h e h o s t G C M s 126 5.5 Response t o a c l i m a t e p e r t u r b a t i o n 131 5.5.1 LES r e s u l t s 131 5.5.2 S C M r e s u l t s 132 5.5.3 Scu r e s p o n s e i n the h o s t G C M s 136 5.5.4 D i s c u s s i o n 141 5.6 S u m m a r y a n d c o n c l u s i o n s 143 6 T H E G C M C O U N T E R P A R T 1 4 7 6.1 h i t r o d u c t i o n 148 6.2 M e t h o d a n d d a t a 150 6.2.1 F r a m e w o r k d e s c r i p t i o n 150 6.2.2 D a t a 151 6.3 Scu c l o u d - c o n t r o h i n g f a c t o r s 152 6.3.1 F r e q u e n c y o f o c c u r r e n c e 152 6.3.2 M e a n v a l u e s o f t h e c l o u d - c o n t r o l l i n g f a c t o r s 155 6.3.3 C o r r e l a t i o n c o e f f i c i e n t s 158 6.4 R e p r e s e n t a t i o n o f Scu m E C - E A R T H 162 6.4.1 C l o u d c o n t r o l l i n g f a c t o r s 162 6.4.2 Scu r e p r e s e n t a t i o n 162 6.5 Scu f e e d b a c k i n E C - E A R T H 165 6.5.1 C h a n g e s i n t h e c l o u d c o n t r o l l i n g f a c t o r s 165 6.5.2 Scu f e e d b a c k 166 6.5.3 O n t h e f a c t o r s c o n t r o l l i n g the Scu f e e d b a c k 167 6.5.4 A p p l i c a b i l i t y o f t h e m e t h o d 170 6.6 S u m m a r y a n d o u t l o o k 172

(12)

7 C O N C L U S I O N S A N D O U T L O O K 1 7 5 7.1 S t r a t o c u m u l u s d e p e n d e n c e o n t l i e c l o u d - c o n t r o l l i n g f a c t o r s . . . 175 7.1.1 P h y s i c a l u n d e r s t a n d m g 175 7.1.2 M o d e l e v a l u a t i o n 176 7.1.3 G l o b a l p e r s p e c t i v e 177 7.2 S t r a t o c u m u l u s response t o c h m a t e c h a n g e 178 7.2.1 P h y s i c a l u n d e r s t a n d i n g 178 7.2.2 M o d e l e v a l u a t i o n 179 7.2.3 G l o b a l p e r s p e c t i v e 180 7.3 R e c o m m e n d a t i o n s a n d o u t l o o k 180 7.3.1 S u g g e s t e d i m p r o v e m e n t s f o r t h e e x p e r i m e n t a l d e s i g n . . . 180 7.3.2 E x t e n d m g t h e G C M s t u d y 181 7.3.3 O n the p h y s i c a l p a r a m e t r i z a t i o n s i n G C M s 181 7.3.4 F u t u r e p e r s p e c t i v e s 183 B i b l i o g r a p h y 1 8 5 A b o u t the author 1 9 5 L i s t of j o u r n a l p u b l i c a t i o n s 1 9 7 A c k n o w l e d g m e n t s 1 9 9

(13)

W o l k e n d i e i n d e a t m o s f e e r d i c h t b i j d e A a r d e v o r m e n w e r k e n als e e n p a r a -s o l v o o r o n z e p l a n e e t . H r m p r i m a i r e effect i-s h e t r e f l e c t e r e n v a n i n k o m e n d e z o n n e s t r a l i n g e n k o e l e n o p deze m a n i e r d e A a r d e af. H o e m e e r w o l k e n e n h o e d i k k e r ze z i j n , h o e m e e r s t r a l i n g d e r u i m t e i n w o r d t g e r e f l e c t e e r d . D e m a t e v a n b e w o l k i n g w o r d t m e e s t a l g e k w a n ü f i c e e r d d o o r d e beivolkingsgrnnd. S t r a t o c u -m u l u s is e e n l a a g h a n g e n d w o l k t y p e d a t e e n e r g h o g e b e w o l k i n g s g r a a d h e e f t (40%-60%, v e r g e l e k e n m e t h e t w e r e l d w i j d e g e m i d d e l d e v a n 30%). O m h u n d i k t e te m e t e n , w o r d t d e h o e v e e l h e i d w a t e r i n v l o e i b a r e v o r m , h e t vloeihaarwaterpnd, b e s c h o u w d . D o o r d e t o e n a m e v a n d e CO2-concentratie d o o r m e n s e h j k e a c t i v i t e i t e n w o r d t de p l a n e e t w a r m e r . I n e e n w a r m e r k l i m a a t w o r d t v e r w a c h t d a t d e w o l k e i g e n s c h a p p e n v e r a n d e r e n e n deze v e r a n d e r i n g k a n o p h a a r b e u r t h e t k l i m a a t s y s -t e e m z e l f w e e r b e ï n v l o e d e n . Ln h e -t g e v a l v a n d e s -t r a -t o c u m u l u s z o u e e n a f n a m e v a n d e b e w o l k i n g s g r a a d o f v a n h e t v l o e i b a a r w a t e r p a d d e m e n s e l i j k v e r o o r z a -akte k l i m a a t v e r a n d e r i n g v e r s t e r k e n , t e r w i j l een g r o t e r e b e w o l k i n g s g r a a d o f e e n d i k k e r e l a a g s t r a t o c u m u l u s d e t e m p e r a t u u r s t i j g i n g z o u v e r m i n d e r e n . O m e e n idee te g e v e n v a n h u n r e l e v a n t i e : e e n t o e n a m e v a n 3% v a n d e b e w o l k i n g s g r a a d v a n d e s t r a t o c u m u l u s w e r e l d w i j d z o u d e geschatte t e m p e r a t u u r s t i j g i n g v a n 3 ° C c o m p e n s e r e n . O m d e e f f e c t e n v a n de C O a c o n c e n t r a t i e t o e n a m e te v o o r s p e l l e n z i j n k l i m a a t -m o d e l l e n h e t enige b e s c h i k b a a r gereedschap. Deze -m o d e l l e n r e p r e s e n t e r e n d e w e r e l d w i j d e a t m o s f e r i s c h e c i r c u l a t i e d o o r d e w i s k r m d i g e v e r g e l i j k i n g e n n u

(14)

-m e r i e k o p een raster o p te lossen. O -m d i t raster te d e f i n i ë r e n is h e t b e l a n g r i j k o m te r e a ü s e r e n d a t e f f e c t e n k l e i n e r d a n d e r a s t e r g r o o t t e n i e t k m m e n w o r d e n b e s c h r e v e n d o o r h e t m o d e l . O m d a t de g r o o t s t e schaal v a n h e t k l h n a a t s y s t e e m d e g r o o t t e v a n de p l a n e e t is (ongeveer h e n d u i z e n d k i l o m e t e r ) e n d e k l e i n s t e schaal d a t d i e v a n een w o l k e n d r u p p e l is ( d u i z e n d e n k e r e n k l e i n e r d a n een m i l l i m e t e r ) is h e t c o m p u t a t i o n e e l r ü e t m o g e l i j k o m een w e r e l d w i j d r a s t e r te d e f i n i ë r e n w e l k e fijn g e n o e g is o m de k l e i n s t e e f f e c t e n te b e s c h r i j v e n . M e t de h e d e n d a a g s e r e k e n k r a c h t k r m n e n w o l k e n n i e t w o r d e n b e s c h r e v e n d o o r h e t m o d e l . H i m stafishsche e f f e c t o p h e t k l i m a a t s y s t e e m w o r d t b e s c h r e v e n d o o r parametrisaties. D e b e s t a a n d e k l i m a a t m o d e U e n z i j n h e t n i e t eens o v e r d e v o o r s p e l l i n g v a n o p -p e r v l a k t e t e m -p e r a t u u r s f i j g i n g e n . Er is a a n g e t o o n d d a t d e g r o o t s t e b i j d r a g e v a n de s p r e i d m g t u s s e n m o d e U e n k o m t d o o r de reacfie v a n l a a g h a n g e n d e w o l k e n o p de k l i m a a t v e r a n d e r i n g , de laaghangendewolkentenigkoppeling. O m t o e k o m -stige k h m a a t v o o r s p e l l i n g e n te v e r b e t e r e n is h e t n o o d z a k e l i j k o m aan de ene k a n t inziicht te k r i j g e n i n d e f y s i s c h e m e c h a n i s m e n d i e l a a g h a n g e n d e w o l k e n e n h u n i n v l o e d o p de k l i m a a t v e r a n d e r i n g beheersen, e n a a n de a n d e r e k a n t o m d e z w a k k e p u n t e n v a n d e h u i d i g e k l i m a a t m o d e l l e n te b e g r i j p e n . H i e r t o e k u n -n e -n e x t i a m o d e l l e e r m i d d e l e -n g e b r u ü c t w o r d e -n . Large-Eddy Simulatie-modelle-n lossen deze l a a g h a n g e n d e w o l k e n e x p h c i e t o p , a l s m e d e de t u r b u l e n t e e n f h e r -m o d y n a -m i s c h e s t r u c t u u r v a n de a t -m o s f e e r r e g i o w a a r l a a g h a n g e n d e w o l k e n v o o r k o m e n . D e z e m o d e l l e n w o r d e n v e e l g e b r u i k t als " n u m e r i e k e l a b a r a t o r i a " o m g e c o n t r o l e e r d e e x p e r i m e n t e n u h te v o e r e n o m ons b e g r i p te v e r g r o t e n . D a a r -naast w o r d e n c o n c e p t u e l e m o d e U e n g e b u i k t o m een m e e r t h e o r e t i s c h i n z i c h t te k r i j g e n . I n h e t g e v a l v a n de s t r a t o c u m u l u s w o l k e n is h e t m e e s t b e t r o u w b a r e g e ï d e a l i s e e r d e r a a m w e r k h e t Mixed-Layer Model. I n d i t p r o e f s c h r i f t w o r d e n de e e r d e r g e n o e m d e m o d e U e e r g e r e e d s c h a p p e n g e c o m b m e e r d m een m u l t i - m o d e l a a n p a k . H e t d o e l is o m de a f h a n k e h j k h e i d v a n s t r a t o c u m u l u s w o l k e n o p v e r s c h i U e n d e aspecten v a n h e t k U m a a t s y s t e e m te b e g r i j p e n , v o o r h e d e n d a a g s e e n t o e k o m s t i g e k l i m a a t o m s t a n d i g h e d e n . T e g e l i -j k e r t i -j d testen w e de b e s c h r i -j v i n g v a n s t i - a t o c u m u l u s w o l k e n e n h i m reactie o p k l i m a a t v e r a n d e r i n g i n k l i m a a t m o d e l l e n .

h r een eerste stap o n d e r z o e k e n w e de a f h a n k e l i j k h e i d v a n s t i a t o c u m u l u s w o l k e n o p e n k e l e f a c t o r e n v a n h e t k l i m a a t s y s t e e m v o o r h e d e n d a a g s e k l i m a a t o m s t a n d i g h e d e n . D e n a d r u k l i g t o p geheel b e w o l k t e g e v a l l e n e n d e o n -d e r z o c h t e f a c t o r e n b e t r e f f e n -de t h e r m o -d y n a m i s c h e o m s t a n -d i g h e -d e n b o v e n -de

(15)

w o l k e n . D e a n a l y s e v a n L a r g e - E d d y S i m u l a t i e - r e s u l t a t e n g e e f t a a n d a t d e stra-t o c u m r d u s w o l k e n d u n n e r w o r d e n i n een d r o g e r e a stra-t m o s f e e r , o m d a stra-t ze bestra-ter v e r d u n d w o r d e n d o o r l u c h t d i e de w o l k e n v a n b o v e n b i n n e n k o m t . O m te e v a l u e r e n h o e k l i m a a t m o d e l l e n d i t b e s c h r i j v e n v e r g e h j k e n w e de L a r g e - E d d y S i m u l a ü e - r e s u l t a t e n m e t de I D - v e r s i e v a n e n k e l e k l i m a a t m o d e l l e n . O p d e z e m a n i e r k u r m e n d e m o d e l l e n beter d e z e l f d e b e g i n - e n r a n d v o o r w a a r d e n ge-b r u i k e n als d e L a r g e - E d d y S i m u l a t i e - m o d e l l e n . D e k l i m a a t m o d e l l e n v e r s c h i l l e n s u b s t a n t i e e l i n h e t g e s i m u l e e r d e w o l k e m e g i m e , e n o n d e r s c h a t t e n o v e r h e t a l -g e m e e n de b e w o l k i n -g s -g r a a d . D e t w e e d e stap is h e t o n d e r z o e k v a n de r e a c ü e v a n s t r a t o c u m u l u s o p k l i -m a a t v e r a n d e r i n g . D o o r een a n a l y s e v a n r e s u l t a t e n v a n z o w e l de L a r g e - E d d y S i m u l a t i e e n h e t I V l i x e d L a y e r M o d e l , k u n n e n w e t w e e m e c h a n i s m e n i d e n t i f i -ceren d i e g r o t e b i j d r a g e n l e v e r e n a a n de s t r a t o c m n u l u s t e r u g k o p p e l i n g ( i n h e t g e v a l v a n geheel b e w o l k t e l u c h t ) . A a n de ene k a n t z o u een t o e n a m e v a n de o p p e r v l a k t e v e r d a m p i n g t o t een v e r d i k k i n g v a n w o l k e n l e i d e n . A a n de a n -dere k a n t z o u e e n a f z w a k k i n g v a n h e t k o e l e n d e e f f e c t d o o r a a r d s t r a h n g n a a r de t o p v a n d e s t r a t o c u m u l u s de w o l k e n d u n n e r m a k e n . V o o r een t o e n a m e i n de o p p e r v l a k t e t e m p e r a t u u r e n een c o n s e q u e n t e v e r w a r m i n g e n b e v o c h t i g i n g v a n de a t m o s f e e r , is d e reactie v e r d u n n i n g v a n de s t r a t o c u m r d u s , een p o s i t i e v e t e r u g k o p p e l i n g d u s . D o o r d e z e r e s u l t a t e n te v e r g e l i j k e n m e t r e s u l t a t e n v a n I D k l i m a a t m o d e l l e n , e v a l u e r e n w e de b e s c h r i j v i n g v a n s t r a t o c u m u l u s t e r u g k o p p e l -i n g . D e k l -i m a a t m o d e l l e n b e s c h r -i j v e n e e n p o s -i t -i e v e t e r u g k o p p e l -i n g , c o n s -i s t e n t m e t r e s u l t a t e n v a n L a r g e - E d d y S i m u l a t i e s e n h e t M i x e d - L a y e r M o d e l . D e z e p o s i t i e v e t e r u g k o p p e l i n g is echter h e t r e s u l t a a t v a n e e n b e w o l k i n g s g r a a d a f -n a m e e -n -n i e t v a -n e e -n a f -n a m e v a -n h e t v l o e i b a a r w a t e r p a d . D i t p r o e f s c h r i f t is d e e l v a n een b r e d e r e w e t e n s c h a p p e l i j k e p o g i n g o m i n z i c h t te k r i j g e n i n d e reactie v a n l a a g h a n g e n d e w o l k e n o p k l i m a a t v e r a n d e r i n g . H e t d r a a g t b i j a a n h e t o p h e l d e r e n v a n f y s i s c h e m e c h a r d s m e n d i e s t r a t o c u m u l u s -w o l k e n t e r u g k o p p e l i n g b e i n v l o e d e n . A a n de a n d e r e k a n t i d e n t i f i c e e r t h e t d o o r g e b r u i k v a n n i e u w e m e t h o d e s e n k e l e v e r t e k e n i n g e n d i e k l i m a a t m o d e l l e n b e ï n -v l o e d e n .

(16)
(17)

T h e c l o u d s t h a t f o r m i n t h e a t m o s p h e r i c r e g i o n close t o the E a r t h s u r f a c e w o r k as a p a r a s o l f o r o u r p l a n e t . T h e i r p r i m a r y e f f e c t is t o r e f l e c t t h e i n c o m i n g solar r a d i a t i o n a n d i n t h i s w a y t o c o o l t h e E a r t h . T l i e m o r e e x t e n s i v e a n d t h e t h i c k e r t h e y are, t h e m o r e r a d i a t i o n is r e f l e c t e d b a c k t o space. T h e e x t e n s i o n is g e n e r a l l y q u a n t i f i e d b y t h e cloud cover. S t r a t o c u m u l u s is a l o w - l e v e l c l o u d t y p e t h a t p r e s e n t s a p a r t i c u l a r l y h i g h c l o u d c o v e r (40%-60% c o m p a r e d t o t h e g l o b a l a v e r a g e v a l u e o f 3 0 % ) . To m e a s u r e t h e i r t h i c k n e s s , the a m o u n t o f w a t e r i n l i q u i d p h a s e i n t h e w h o l e c l o u d , t h e liqidd water path, is c o n s i d e r e d .

Because o f t h e increase i n t h e CO2 c o n c e n t r a t i o n d u e t o a n t h r o p o g e n i c a c d v -i t -i e s , t h e p l a n e t -is b e c o m -i n g w a r m e r . I n a w a r m e r c l -i m a t e t h e c l o u d p r o p e r t -i e s are e x p e c t e d t o c h a n g e a n d t h i s c h a n g e is e x p e c t e d t o c o n s e q u e n t l y a f f e c t t h e c l i m a t e s y s t e m i t s e l f . I n t h e case o f s t i a t o c u m u l u s , a decrease i n t h e c l o u d c o v e r or i n t h e l i q u i d w a t e r p a t h w o t d d a m p l i f y t h e h u m a n i n d u c e d c l i m a t e w a r m -i n g , w h e r e a s m o r e e x t e n d e d o r t h -i c k e r f -i e l d o f s t -i a t o c u m u l u s w o u l d r e d u c e the t e m p e r a t i i r e increase. To g i v e a n i d e a o f t h e i r i m p o r t a n c e , a n increase o f 3% o f t h e area c o v e r e d b y s t i a t o c u m i d u s g l o b a l l y c o m p e n s a t e s t h e e s t i m a t e d g l o b a l w a r m i n g o f 3 ° C . To f o r e c a s t t h e effects o f t h e i n c r e a s i n g CO2 c o n c e n t r a t i o n , c h m a t e m o d e l s are t h e o n l y a v a i l a b l e t o o l . These m o d e l s r e p r e s e n t t h e g l o b a l a t m o s p h e r i c c i r c u l a t i o n b y s o l v i n g n u m e r i c a U y t h e m a t h e m a t i c a l e q u a t i o n s o n a s p a t i a l g r i d . To d e f i n e t h i s g r i d , i t is necessary t o t a k e i n t o a c c o u n t t h a t the p h e n o m e n a t h a t are s m a l l e r t h a n t h e g r i d size are n o t r e s o l v e d b y the m o d e l . Since t h e b i g g e s t

(18)

scale o f the c l k n a t e s y s t e m is t h e p l a n e t a r y scale ( o f t h e o r d e r o f t e n t h o u s a n d k i l o m e t r e s ) a n d the s m a l l e s t scale is o f the size o f a c l o u d d r o p l e t ( t h o u s a n d t i m e s s m a l l e r t h a n a m i l l i m e t r e ) , i t is c o m p u t a t i o n a U y n o t p o s s i b l e t o d e f m e a g r i d , aU o v e r t h e g l o b e , w h i c h is fine e n o u g h t o r e s o l v e the s m a l l e s t scales. W i t h the p r e s e n t c o m p u t e r resources, the g r i d u s e d i n c l u n a t e m o d e l s does n o t r e s o l v e c l o u d s . T h e i r s t a t i s f i c a l e f f e c t o n the c h m a t e s y s t e m is d e s c r i b e d b y parametrizations.

T h e e x i s t e n t c l i m a t e m o d e l s d o n o t agree o n t h e p r e d i c t i o n o f t h e s u r f a c e -t e m p e r a -t u r e hicrease. I -t has b e e n d e m o n s -t i a -t e d -t h a -t -the m a j o r c o n -t r i b u -t i o n t o the i n t e r - m o d e l s p r e a d c o m e s from t h e response o f l o w - l e v e l c l o u d s t o t h e c l i m a t e c h a n g e , the loio-level cloud feedbaclc. T h i s f e e d b a c k is t h e r e s u l t o f t h e m t e r a c t i o n o f a suite o f p a r a m e t i i z a t i o n s . To i m p r o v e the f u t u r e c l i m a t e p r e d i c -tions, i t is necessary o n t h e one h a n d t o g a m i n s i g h t m the p h y s i c a l m e c h a r d s m s c o n t r o l h n g t h e l o w - l e v e l c l o u d s a n d t h e u response t o t h e c h m a t e c h a n g e , a n d o n the o t h e r h a n d t o u n d e r s t a n d the weaknesses o f t h e p r e s e n t i y u s e d c l i m a t e m o d e l s . To t h i s e n d , f u r t h e r m o d e l l i n g t o o l s c a n be e m p l o y e d . Large-Eddy Sim-ulation m o d e l s e x p h c i t l y r e s o l v e the m d i v i d u a l c l o u d s , as w e U as the tiubulent a n d t h e r m o d y n a m i c s t r u c t u r e o f the r e g i o n o f t h e a t m o s p h e r e w h e r e l o w - l e v e l c l o u d s exist. These m o d e l s are w i d e l y u s e d as " n u m e r i c a l l a b o r a t o r i e s " t o p e r f o r m c o n t r o l l e d e x p e r i m e n t s t o increase o i u u n d e r s t a n d i n g . F i u t h e r m o r e , c o n c e p t i i a l m o d e l s are e m p l o y e d t o g a i n m o r e t h e o r e t i c a l m s i g h t . I n t h e case o f s t i a t o c u m u l u s c l o u d s , t h e m o s t r e h a b l e i d e a h z e d f r a m e w o r k is the Mixed-Layer Model.

I n t h e p r e s e n t thesis, the p r e v i o u s l y d e s c r i b e d m o d e U i n g t o o l s are c o m b i n e d m a m u l t i - m o d e l a p p r o a c h . T h e g o a l is t o u n d e r s t a n d t h e s t r a t o c u m u l u s c l o u d s d e p e n d e n c e o n d i f f e r e n t aspects o f the c l i m a t e s y s t e m , f o r p r e s e n t - d a y a n d f u t u r e c l u n a t e c o n d i t i o n s . A t t h e same t i m e , t h e r e p r e s e n t a t i o n o f s t r a t o c u m u l u s c l o u d s a n d o f t h e i r response t o c l i m a t e c h a n g e h i c l i m a t e m o d e l s is tested. I n a first step, t h e s t r a t o c u m u l u s d e p e n d e n c e o n s o m e f a c t o r s o f t h e c h m a t e s y s t e m , f o r t h e p r e s e n t - d a y c l i m a t e c o n d i t i o n s , are i n v e s t i g a t e d . T h e f o c u s is g i v e n o n t o t a U y overcast cases a n d t h e e x a m h i e d f a c t o r s are t h e t h e r m o d y n a m i c c o n d i t i o n s a b o v e t h e c l o u d s . T h e a n a l y s i s o f L a r g e - E d d y S h n u l a t i o n r e s u l t s h i g h l i g h t s t h a t s t r a t o c u m u l u s b e c o m e s t h i n n e r f o r a d r i e r a t m o s p h e r e , because i t is d i l u t e d m o r e e f f e c t i v e l y b y the a i r t h a t is e n t r a i n e d m the c l o u d f r o m a b o v e . To e v a l u a t e c l i m a t e m o d e l s i n d e s c r i b i n g t h i s d e p e n d e n c e , t h e L a r g e -E d d y S i m u l a t i o n results are c o m p a r e d t o the I D v e r s i o n s o f s e v e r a l c h m a t e

(19)

m o d e l s . I n t h i s w a y the m o d e l s c a n be c o n s t r a i n e d b y e x a c t l y t h e same i n i t i a l a n d b o m i d a r y c o n d i t i o n s as t h e L a r g e - E d d y s i m u l a t i o n m o d e l s . T h e c l i m a t e m o d e l s d i f f e r s u b s t a n t i a l l y i n t h e s i m u l a t e d c l o u d r e g i m e , a n d generaUy r m d e r e s t i m a t e t h e c l o u d cover. T h e s e c o n d step is t h e i n v e s t i g a t i o n o f t h e response o f s t i a t o c m n u l u s t o c l i m a t e c h a n g e . T h r o u g h t h e a n a l y s i s o f L a r g e E d d y S i m u l a t i o n a n d M i x e d -L a y e r M o d e l r e s u l t s , t w o m e c h a n i s m s are i d e n t i f i e d t o be t h e m a j o r c o n t r i b u t o r s t o the s t r a t o c u m u l u s f e e d b a c k ( f o r the case o f t o t a U y overcast s k y ) . O n t h e o n e h a n d , a n e n h a n c e m e n t o f t h e s u r f a c e e v a p o r a t i o n w o u l d l e a d t o a c l o u d t h i c k e n i n g . O n the o t h e r h a n d , a w e a k e n i n g o f t h e c o o l i n g e f f e c t d u e t o t e r r e s t i i a l r a d i a t i o n at t h e s t i a t o c u m u l u s t o p is e x p e c t e d t o p r o m o t e a c l o u d t h i n n i n g . F o r a n increase i n t h e s u r f a c e t e m p e r a t i u e a n d a c o n s e q u e n t w a r m i n g a n d m o i s t e n i n g o f t h e a t m o s p h e r e , t h e response is a s t r a t o c i u n u l u s t h i n n i n g , hence a p o s i t i v e f e e d b a c k . B y c o m p a r i n g these results w i t h I D c l i m a t e m o d e l results, the r e p r e s e n t a t i o n o f s t r a t o c u m u l u s f e e d b a c k is e v a l u a t e d . T h e cUmate m o d e l s p r e s e n t a p o s i t i v e f e e d b a c k , c o n s i s t e n t w i t h L a r g e E d d y S i m u l a t i o n a n d M i x e d -L a y e r M o d e l r e s u l t s . H o w e v e r t h i s p o s i t i v e f e e d b a c k is t h e r e s u l t o f a c l o u d c o v e r decrease r a t h e r t h a n a l i q u i d w a t e r p a t h r e d u c t i o n . T h i s thesis is p a r t o f a l a r g e s c i e n t i f i c e f f o r t t o g a i n i n s i g h t i n t h e l o w - l e v e l c l o u d s r e s p o n s e t o the c l i m a t e change. I t c o n t r i b u t e s b y c l a r i f y i n g f h e p h y s i c a l m e c h a n i s m s c o n t r o U i n g the s t r a t o c u m u l u s c l o u d f e e d b a c k . A t t h e same time, t h r o u g h t h e use o f n o v e l m e t h o d s , i t i d e n t i f i e s s e v e r a l biases t h a t a f f e c t c l i m a t e m o d e l s .

(20)
(21)
(22)

1.1 DEFINITION OF STRATOCUMULUS

T h e t e r m Stratocumulus d e r i v e s f r o m L a t i i r s t r a t u s ( l a y e r ) a n d c u m u l u s ( p i l e ) . I n the M e t e o r o l o g i c a l G l o s s a r y o f t h e A m e r i c a n M e t e o r o l o g i c a l s o d e t y i t is d e f i n e d as: «A p r m c i p a i c l o u d t y p e , p r e d o m l n a n d y s t r a t i f o r m , i n the f o r m o f a g r a y a n d / o r w h i t i s h l a y e r o r p a t c h , w h i c h n e a r l y a l w a y s has d a r k p a r t s a n d is n o n f i b r o u s . » A n e x a m p l e o f t h e i r t y p i c a l a p p e a r a n c e is d i s p l a y e d i n F i g u r e 1.1.

1.2 STRATOCUMULUS CLOUDS I N THE CLIMATE SYSTEM

S t r a t o c u m u l u s (Scu) f o r m s i n t h e a t m o s p h e r i c r e g i o n t h a t is close t o t h e E a r t h s u r f a c e a n d t h a t is d i r e c t l y i n f l u e n c e d b y i t . T h i s r e g i o n is k n o w n as t h e p l a n e t a r y b o i m d a r y l a y e r ( P B L ) , f o r t h i s r e a s o n Scu is i d e n t i f i e d as a P B L c l o u d t y p e . T h e o t h e r c l o u d r e g i m e c h a r a c t e r i s t i c o f t h e P B L is s h a d o w c u m u l u s ( C u ) . T h e m o s t e v i d e n t d i f f e r e n c e b e t w e e n Scu a n d C u is the area o f t h e s k y c o v e r e d b y these c l o u d t y p e s , r e f e r r e d t o as c l o u d cover. Scu a p p e a r s as a n e x t e n s i v e d e c k , hence i t is c h a r a c t e r i z e d b y a h i g h c l o u d cover.

F i g u r e 1.2-a d i s p l a y s t h e a n n u a l m e a n c l o u d c o v e r o f Scu c a l c u l a t e d f r o m t h e c l o u d atlas database ( H a h n & W a r r e n , 2007). I t is n o t i c e a b l e h o w Scu is a b i m d a n t o v e r oceans. T h e m a x i m u m v a l u e s o f t h e a n n u a l m e a n c l o u d c o v e r are f o u n d o v e r t h e r e l a t i v e l y c o l d p a r t s o f t h e s u b t i o p i c a l oceans. These r e g i o n s are f o u n d o f f t h e coast o f C a h f o r n i a , P e r i l , N a m i b i a a n d N o r t h - W e s t A f r i c a a n d t h e i r l o c a t i o n s i n the A t l a n t i c a n d P a c i f i c oceans are s y m m e t r i c a l w i t h respect t o t h e equator. F u r t h e r m o r e t h e m i d d a t i t u d e oceans are also c h a r a c t e r i z e d b y h i g h v a l u e s o f Scu c l o u d cover. C o n c e r n i n g the c o n t i n e n t s , the o n l y n o t i c e a b l y h i g h Scu c l o u d c o v e r o v e r l a n d is f o u n d i n South-East C h i n a .

T h e v e r y h i g h v a l u e s m the a i m u a l m e a n c l o u d c o v e r are d u e t o b o t h the h i g h i n s t a n t a n e o u s c l o u d c o v e r a n d the f r e q u e n c y o f o c c u r r e n c e o f Scu. To d i s t i n g u i s h b e t w e e n these t w o c o n t r i b u t i o n s . F i g u r e 1.2-b r e p o r t s t h e f r a c t i o n o f l o w c l o u d s associated w i t h Scu. Scu c l o u d s are p r e s e n t a l l o v e r t h e g l o b e a n d c o v e r i n t o t a l 2 3 % o f t h e oceans a n d 12% o f t h e l a n d smTace ( H a h n & W a r r e n , 2007). T h e m a x i m u m frequency o f o c c u r r e n c e is f o i m d o v e r t h e s u b -t r o p i c a l oceans, i n -t h e r e g i o n s Hs-ted p r e v i o u s l y w h e r e s e m i - p e r m a n e n -t shee-ts are f o i m d . These r e g i o n s , k n o w n as the "Scu r e g i o n s " , are c h a r a c t e r i z e d b y t w o c o n d i t i o n s necessary f o r t h e f o r m a t i o n a n d m a i n t e n a n c e o f Scu. F i r s t l y

(23)

the presence o f large-scale s u b s i d i n g m o t i o n , w h i c h p r o m o t e s a l a r g e c o n t r a s t b e t w e e n t h e t e m p e r a t u r e c o n d i t i o n s i n t h e P B L a n d a b o v e , i n t h e s o - c a l l e d f r e e a t m o s p h e r e . T h i s t e m p e r a t u r e c o n t r a s t l i m i t s t h e P B L d e p t h t o a k i l o m e t r e o r less a n d t r a p s t h e m o i s t u r e s u p p l i e d b y t h e ocean i n a r e l a t i v e l y s h a l l o w layer. T h e presence o f a m o i s t u r e s u p p l y is the s e c o n d c o n d i t i o n necessary f o r t h e f o r m a t i o n o f Scu, as i t enables the c o n d e n s a t i o n o f w a t e r v a p o u r .

T h e m a s s i v e presence o f Scu i n these p a r t i c u l a r l o c a t i o n s a n d i t s c l o u d c o v e r r e d u c t i o n w e s t w a r d s c a n be i m d e r s t o o d o n the basis o f t h e H a d l e y c i r c u l a t i o n (Fig. 1.3). T h e e a s t e r n basins o f the s u b t r o p i c a l oceans c o r r e s p o n d s t o the d o w n w a r d s b r a n c h e s o f the H a d l e y c e l l . T h e a i r is t r a n s p o r t e d i n t h e s o u t h -w e s t d i r e c t i o n b y t h e t r a d e -w i n d , O n c e a d v e c t e d o v e r -w a r m e r -w a t e r s , Scu b r e a k s u p i n t o C u , C u c l o u d s c o n t r i b u t e t o increase t h e s u r f a c e e v a p o r a t i o n , hence t o m o i s t e n the P B L , T h e m o i s t u r e is t h e n t r a n s p o r t e d t o w a r d s the e q u a t o r , w h e r e d e e p , p r e c i p i t a t m g c u m u l u s t o w e r s are p r o m o t e d b y r i s m g m o t i o n .

T h e m o s t i m p o r t a n t c o n t r i b u t i o n o f Scu o n the c l i m a t e s y s t e m is its e f f e c t o n t h e e n e r g y b a l a n c e o f the p l a n e t . D u e t o t h e h i g h c l o u d cover, Scu reflects a l a r g e p a r t o f t h e m c o m i i i g solar r a d i a t i o n , u p t o f i f t e e n t i m e s l a r g e r t h a n t h e u n d e r l y i n g ocean s u r f a c e . T h i s y i e l d s a s t r o n g c o o l i n g e f f e c t ( H a r t m a n n et a l , , 1992), Scu i n t e r a c t i o n w i t h the r a d i a t i v e fluxes is d e t e r m i n e d b y t h e m a c r o p h y s -i c a l s t r u c t u r e , s u c h as the c l o u d c o v e r a n d t h e l -i q u -i d w a t e r a m o u n t , as w e l l as b y the m i c r o p h y s i c a l p r o p e r t i e s , s u c h as the size o f t h e c l o u d d r o p l e t s . T h e f a c t o r s c o n t r o l l i n g these characteristics are d i s c u s s e d i n the f o l l o w m g section,

1.3 THE STRATOCUMULUS-TOPFED BOUNDARY LAYER

T h e p r o p e r t i e s o f a Scu d e c k s t r o n g l y d e p e n d s o n the v e r t i c a l s t r u c t u r e o f the P B L , F i g u r e 1,4-a is a schematic r e p r e s e n t a t i o n o f t h e S c u - t o p p e d b o u n d a r y layer, i n c l u d i n g a l l p h y s i c a l processes t h a t d e t e r m i n e i t s characteristics. I n t h i s S e c t i o n the g e n e r a l aspects o f t h e v e r t i c a l s t r u c t u r e o f the S c u - t o p p e d b o u n d a r y l a y e r w i l l be s u m m a r i z e d , f o l l o w e d b y a d i s c u s s i o n o n t h e m a j o r c l o u d c o n t r o l l i n g f a c t o r s .

I n F i g u r e 1,4-a t w o r e g i o n s a p p e a r t o be d i s t i n c t : t h e u n s a t u r a t e d s u b - c l o u d l a y e r close t o the s u r f a c e a n d the s a t u r a t e d c l o u d l a y e r o n t o p . To describe the t h e r m o d y n a m i c a l p r o p e r t i e s i n presence o f p h a s e c h a n g e , t w o m o i s t c o n s e r v e d v a r i a b l e s are g e n e r a l l y u s e d . T h e total water specific humidity, qt, is the m a s s o f h u m i d i t y i n a n a i r v o l u m e . C o n s i d e r i n g t h a t t h e w a t e r c a n be p r e s e n t i n a n y

(24)

Fraction of low cloud cover due to stratocumulus [annual mean] Insufficient data

FIGURE 1.2: A n n u a l climatology of Scu f r o m the cloud atlas database (Hahn & Warren, 2007). Locahons w i t h no reports of obsen^ahons (because of either a lack of obser\'ations or a lack of clouds) are depicted i n grey. Panel (a) shows the annual mean cloud cover of stratocumulus. Panel (b) displays tbe fraction of the annual mean l o w cloud cover due to Scu. Figure adapted Wood (2012).

(25)

deep convection

warm, western tropical oceans cold, eastern subtropical oceans

FIGURE 1.3: C l o u d regimes i n the Hadley chculation (Figure adapted f t o m Stevens (2005) and Arakawa (1975)),

phase, qi c a n be d e c o m p o s e d as:

q, = q„ + q, + qj (1,1)

w h e r e q^, is t h e w a t e r v a p o u r s p e c i f i c h u m i d i t y , qj t h e l i q u i d w a t e r s p e c i f i c h u m i d i t y a n d qi t h e ice s p e c i f i c h u m i d i t y . M o r e o v e r , w e i n t r o d u c e t h e liquid water potential temperature, 0;, w h i c h c a n be a p p r o x i m a t e d as f o l l o w s :

(1.2,

w h e r e 0 is t h e p o t e n t i a l t e m p e r a t u r e a n d is a c o n s e r v e d v a r i a b l e f o r d r y a d i a b a f i c m o t i o n . T h e s e c o n d t e r m i n t h e r i g h t - h a n d side o f eq, (1,2) describes t h e c o n t r i b u t i o n o f l a t e n t h e a t release d u e t o c o n d e n s a f i o n o f w a t e r v a p o t u i n t o l i q u i d w a t e r . I n p a r t i c u l a r L,, is the l a t e n t h e a t f o r c o n d e n s a t i o n o f w a t e r , Cp the s p e c i f i c h e a t o f d r y a i r at c o n s t a n t p r e s s u r e a n d H t h e E x n e r h m c h o n ,

L i q t u d w a t e r f o r m s w h e n qt exceeds t h e saturation specific humidity, q^, w h i c h is d e f i n e d as t h e m a x i m i u n a m o u n t o f w a t e r v a p o m a n a u p a r c e l c a n c o n t a i n b e f o r e c o n d e n s a t i o n takes place. I t is a f u n c d o n o f t e m p e r a t u r e a n d p r e s s u r e a n d c a n be w r i t t e n as:

w h e r e E = Rd/t^v, the r a t i o o f t h e s p e c i f i c gas constants f o r d r y air, R^, a n d w a t e r v a p o u r , Ry. F i n a l l y Cs is t h e s a t u r a h o n v a p o u r p r e s s u r e a n d can be c a l c u l a t e d o n

(26)

t h e basis o f t h e C l a u s i u s - C l a y p e r o n r e l a h o n t h r o u g h t h e Tetens a p p r o x i m a t i o n es,o exp (T-b) (1.4) w h e r e T is t h e t e m p e r a t u r e i n K e l v i n a n d T^p is t h e t r i p l e p o m t o f w a t e r , a a n d b are t w o constants. T h e l i q u i d w a t e r s p e c i f i c h u m i d i t y w r i t e s : q, = maxiO,qt~qs) (1.5) hence i t d e p e n d s o n t e m p e r a t i i r e , p r e s s u r e a n d h u m i d i t y . To m e a s u r e t h e h q u i d w a t e r c o n t a i n e d i n a c l o u d , t h e v e r t i c a l i n t e g r a l o f qi, t h e liquid water patii ( L W P ) , is g e n e r a l l y u s e d . I n r e g i o n s d o m i n a t e d b y m a r i n e Scu, t y p i c a l v a l u e s o f L W P r a n g e b e t w e e n 40 a n d 150 gjrrp- (e.g. W e n g & G r o d y , 1994). T h e presence o f H q u i d w a t e r l e a d s t o a d i s c o n t i n u i t y i n t h e l o n g - w a v e ( L W ) r a d i a t i o n flux at t h e c l o u d t o p . T h i s d i s c o n t i n u i t y is t h e m a i n source o f t u r -b u l e n c e i n t h e P B L , w h i c h is c o n s t a n t i y m a i n t a i n e d v e r t i c a l l y w e U - m i x e d . I n t h i s c o n d i t i o n the m o i s t c o n s e r v e d t h e r m o d y n a m i c v a r i a b l e s are c o n s t a n t w i t h h e i g h t . T h e P B L is c a p p e d b y a s t r o n g c o n t r a s t i n b o t h t e m p e r a t i i r e a n d h u m i d -i t y , r e f e r r e d t o as d -i v e r s -i o n . T h -i s s t a b l y s t -i a t -i f -i e d , v e r y t h -i n l a y e r suppresses t h e t u r b u l e n c e , hence c o n f i n e s the P B L i n a r e l a t i v e l y s h a l l o w layer. T h e q u i e s c e n t a i r a b o v e is r e f e r r e d t o as free t r o p o s p h e r e .

1.3.1 PHYSICAL PROCESSES

Scu is a f f e c t e d b y t h e solar a n d t e r r e s t r i a l r a d i a t i o n , t h e fluxes at the s m f a c e a n d at the c l o u d - t o p , the large-scale v e r t i c a l v e l o c i t y a n d , i n d i r e c t l y , b y t h e c o n c e n t r a t i o n o f a t m o s p h e r i c aerosols (see F i g u r e 1.4-a). A n o v e r v i e w o f t h e effects o f these p h y s i c a l processes o n the S c u - t o p p e d b o u n d a r y l a y e r is r e p o r t e d .

a. Radiative forcing

Scu c l o u d s are l a r g e l y o p a q u e t o the L W r a d i a t i o n because o f the l a r g e a m o u n t o f l i q m d w a t e r ( P a l t i i d g e , 1974; P i a t t , 1976). A Scu c l o u d r a d i a t e s as a b l a c k b o d y w h e r e a s t h e f r e e a t m o s p h e r e a b o v e e m i t s L W r a d i a t i o n as a g r e y b o d y . A s a c o n s e q u e n c e , j u s t a b o v e t h e c l o u d t o p d o w n w e l l i n g L W r a d i a t i o n is s i g n i f i c a n t l y less t h a n t h e o u t g o i n g L W r a d i a t i o n (see l e f t p a n e l i n F i g u r e 1.5). I n t h e c l o u d layer, t h e d o w n w e l H n g a n d u p w e l H n g fluxes b e c o m e a l m o s t e q u a l . T h e r e f o r e

(27)

FIGURE 1.4: Schematic representaHon of the Scu-topped boimdary layer (STBL). Panel a represents tbe pbysical processes involved i n the Scu system, where SHF stands f o r sensible beat flux, L H F for fatent beat flux, LW for long-wave and SW for short-wave, f t also includes the vertical profiles of the conserved variables, 61 and qt, and of the buoyancy flux, iu'6'„ i n a weU-mixed Scu-topped b o i m d a r y layer. The dashed hnes represent tbe turbulent structures. Panel b depicts tbe vertical profiles of 0;, q, and iv'9'„ and tbe hirbulent structures i n a decoupled Scu-topped b o i m d a r y layer.

t h e t o p o f t h e Scu experiences a j u m p i n t h e n e t L W f l u x w h i c h t y p i c a h y r a n g e s b e t w e e n 50 a n d 90 W/iif i n a l a y e r o f a c o u p l e o f tens o f m e t r e s (e.g. N i c h o l l s & T i u t o n , 1986). A s t h e L W flux i n t h e f r e e t r o p o s p h e r e is p r o p o r t i o n a l t o the w a t e r v a p o u r c o n t e n t , f o r d r i e r f r e e t r o p o s p h e r i c c o n d i t i o n s t h e d i s c o n t i n u i t y i n t h e L W flux reaches the l i i g h e s t v a l u e s . T h e L W d i v e r g e n c e leads t o a l o c a l c o o h n g r a t e o f 5 t o 10 K p e r h o u r , c o n c e n t i a t e d at t h e c l o u d t o p . T h i s s t r o n g L W c o o l i n g acts t o m a i n t a i n t h e t e m p e r a t i i r e g r a d i e n t at the i n v e r s i o n a n d t o d e s t a b i l i z e t h e c l o u d layer, r e s u l t i n g i n t h e m a i n source o f t u r b u l e n t m i x i n g .

(28)

1500

1000

500

280 300 320 340 360 380 400 0 20 40 60 80 100 LWflux (W m"2) LW flux (W m"2)

FIGURE 1.5: U p w e l l i n g and d o w n w e l l i n g L W fluxes (left panel) and net L W f l u x (right panel) observed d u r i n g Atlantic STratocumulus Experiment, (ASTEX, A l -brecht et al., 1995). Tbe asterisks and the diamonds show the mean values drrrrng a horizontal aircraft leg, and the lines indicate results f r o m a slant profile. Figure adapted fiom Duynkerke et al. (1995).

f h e day, p a r t o f the s h o r t - w a v e ( S W ) r a d i a h o n is a b s o r b e d b y Scu. T h i s results i n a w a r m i n g e f f e c t t h a t l i m i t s t h e c o o l i n g d u e t o t h e L W c o m p o n e n t . A s a consequence, t h e m i x i n g w i t h i n t h e P B L is r e d u c e d . H o w e v e r t h e largest p a r t o f S W r a d i a t i o n is r e f l e c t e d b a c k t o space. Scu is c h a r a c t e r i z e d b y a l a r g e a l b e d o , a, w h i c h is, i n a f i r s t a p p r o x i m a t i o n , a h m c t i o n o f t h e o p t i c a l t h i c k n e s s , T , a l o n e . T h e o p t i c a l t h i c k n e s s c a n be w r i t t e n as: w h e r e p a n d p,,, are t h e d e n s i t i e s o f a i r a n d w a t e r r e s p e c t i v e l y , z is t h e v e r t i c a l c o o r d i n a t e a n d is t h e e f f e c t i v e r a d i u s , w h i c h is a n e s t i m a t e o f t h e c l o u d d r o p l e t r a d i u s . T h e r e f o r e t h e Scu o p t i c a l t h i c k n e s s , hence t h e a l b e d o , increases f o r a l a r g e r l i q u i d w a t e r c o n t e n t a n d f o r s m a l l e r c l o u d d r o p l e t s . F i n a l l y t h e area average a l b e d o also d e p e n d s o n the m e a n c l o u d cover. D u e t o t h e d e p e n d e n c y o n a l l these f a c t o r s , Scu a l b e d o v a r y o n a w i d e r a n g e , f r o m 4 0 % t o 8 0 % , h e n c e e i g h t t o f i f t e e n times l a r g e r t h a n t h e t y p i c a l a l b e d o o f the ocean s u r f a c e .

(29)

b. Surface fluxes

A t t h e s u r f a c e , t h e l a t e n t h e a t f l u x ( L H F ) a n d the sensible heat f l u x ( S H F ) c a n be a p p r o x i m a t e d as:

LH¥ = pLyCoUiqifi-qt,sci)

S H F - PC,,CDU{6O - e,,,) ^ •

w h e r e CQ represents the s u r f a c e e x c h a n g e c o e f f i c i e n t a n d U the h o r i z o n t a l w i n d v e l o c i t y , sci s t a n d s f o r s u b - c l o u d l a y e r a n d 0 i n d i c a t e s t h e s u r f a c e c o n d i d o n s . T h e r e f o r e , L H F a n d S H F are a f u n c t i o n o f t h e w i n d v e l o c i t y a n d o f t h e d i f f e r e n c e b e t w e e n t h e s u r f a c e c o n d i t i o n s a n d the c o n d i t i o n s i n t h e s u b - c l o u d layer. T h e f l u x e s act t o h o m o g e n i z e t h e c o n d i t i o n s at t h e i n t e r f a c e . I n p a r f i c i ü a r , o v e r t h e s u b t r o p i c a l oceans, t h e y t e n d t o m o i s t e n a n d w a r m t h e P B L . T h e m a j o r c o n t r i b u t i o n c o m e s f r o m L H F , w h o s e e f f e c t is t w o f o l d . O n t h e o n e h a n d i t is t h e m a i n source o f s u r f a c e - d r i v e n t u r b u l e n c e a n d o n f h e o t h e r h a n d is a f u n d a m e n t a l m o i s t r u e s u p p h e r f o r t h e f o r m a t i o n a n d m a i n t e n a n c e o f Scu.

c. Subsidence and cloud-top entrainment

Free t r o p o s p h e r i c a u p e n e t r a t e s i n t o t h e P B L , l e a d i n g a w a r m i n g a n d d r y i n g effect, w h i c h t e n d s t o d i l u t e c l o u d . T h i s process is r e f e r r e d t o as entrainment a n d t h e rate at w h i c h i t takes place is caUed e n t r a i n m e n t v e l o c i t y , w,,.

T h e e n t r a i n m e n t also causes t h e d e e p e n i n g o f f h e P B L . T h e g r o w t h is l i m i t e d b y the large-scale v e r t i c a l v e l o c i t y (w) w h i c h is n e g a t i v e ( d o w n w a r d s ) i n Scu d o m i n a t e d r e g i o n s . T h e t e m p o r a l change i n the P B L - t o p h e i g h t , z „ c a n be w r i t t e n as: ^-^=zv„ + w{zd (1.8) w h e r e w{zj) i n d i c a t e s t h e large-scale v e l o c i t y at t h e P B L - t o p h e i g h t . F o r r e a l i s t i c p r o f i l e s o f ïü, t h e r e l a x a t i o n time scale f o r w h i c h z, a p p r o a c h e s a n e q v d l i b r i u m is o f the o r d e r o f d a y s ( S c h u b e r t et a l . , 1979). O n t h e o t h e r h a n d t h e Scu r e s p o n s e t o changes i n t h e r m o d y n a m i c v a r i a b l e s , e.g. the sea s u r f a c e t e m p e r a t u r e , is o f the o r d e r o f h o u r s . T h i s i m p l i e s t h a t the P B L d e p t h is g e n e r a l l y o n l y n e a r l y i n e q u i l i b r i u m w i t h the l o c a l large-scale c o n d i t i o n s .

d. Microphysics

T h e t e r m m i c r o p h y s i c s r e f e r s t o a l l the processes c o n t i o l l i n g the f o r m a t i o n a n d e v o l u t i o n o f c l o u d d r o p l e t s a n d r a i n d r o p s , i n c l u d i n g p r e c i p i t a t i o n processes.

(30)

These p h e n o m e n a are m f l u e n c e d b y t h e m t e r a c t i o n w i t h a t m o s p l r e r i c aerosols, w t d c h act as c l o u d c o n d e n s a t i o n n u c l e i ( C C N ) . A h i g h e r d e n s i t y o f C C N f a v o u r s t h e f o r m a t i o n o f c l o u d d r o p l e t s b u t , at c o n s t a n t h q u i d w a t e r c o n t e n t , i t r e d u c e s t h e i r size. C o n s i s t e n t w i t h eq. (1.6), t h e a l b e d o hrcreases f o r a n increase i n C C N c o n c e n t i a t i o n ( T w o m e y , 1977). A t the same time m o d i f i c a t i o n s m the c l o u d d r o p l e t r a d i u s i m p a c t s the c l o u d h f e cycle t h r o u g h p r e c i p i t a t i o n ( A l b r e c h t , 1989).

I n t h e case o f Scu, t h e m i c r o p h y s i c a l processes d i r e c d y a f f e c t the m a c r o p h y s -i c a l s t r u c h -i r e o f t h e P B L . T h e e v a p o r a t -i o n o f c l o u d d r o p l e t s at t h e c l o u d t o p , d u e t o the p e n e t r a t i o n o f free t r o p o s p h e r i c a i r f r o m a l o f t , enhances e n t r a i n m e n t , h e n c e t h e w a r m i n g a n d d r y i n g o f t h e P B L . F o r m a t i o n a n d e v a p o r a t i o n o f p r e c i p -i t a t -i o n also a f f e c t t h e t h e r m o d y n a m -i c s t r u c t m e , b u t Scu c l o u d s are n o t s t r o n g l y p r e c i p i t a t h i g . T h e y p r e s e n t h g h t p r e c i p i t a t i o n m t h e f o r m o f d r i z z l e i n t h e 3 0 % o f t h e t i m e ( L e o n ef a l . , 2008) a n d t h e r o l e o f d r i z z l e i n t h e e n e r g y b u d g e t is s i g m f i c a n t o n l y w h e n its rate is o f t h e o r d e r o f a f e w t e n t h s o f m i l h m e t r e s p e r d a y I n t h a t case, the w a r m m g e f f e c t r e l a t e d t o the d r i z z l e p r o d u c t i o n is c o m -p a r a b l e t o t h e r a d i a t i v e f o r c m g . A t t h e same t h n e , t h e e v a -p o r a t i o n o f t h e d r o -p s m the s u b - c l o u d l a y e r leads t o a c o o l h r g effect. I n s u m m a r y the f o r m a t i o n a n d e v a p o r a t i o n o f d r i z z l e p r o d u c e s a t h e r m a l s t r a t i f i c a t i o n w i t h m the P B L , w h i c h r e d u c e s t h e t u r b i d e n t m i x i n g .

1.3.2 TURBULENT STRUCTURE

A U t h e p r e v i o u s l y d e s c r i b e d processes a f f e c t t h e t m b u l e n t s t r u c t m e o f t h e Scu-t o p p e d P B L . T h e p r h n a r y g e n e r a Scu-t o r o f Scu-t u r b u l e n Scu-t k m e Scu-t i c e n e r g y is Scu-the b u o y a n c y flux, w h i c h is p r o p o r t i o n a l t o the flux o f v i r t u a l p o t e n t i a l t e m p e r a t m e , 0 „ , de-f i n e d as:

e,, = [1 + Eiq„ - qi]d (1.9)

w h e r e e, = - I . A t y p i c a l v e r t i c a l p r o f d e o f w ' O ; is d i s p l a y e d i n F i g u r e 1.4-a. T h e b u o y a n c y flux at the s u r f a c e m a m l y d e p e n d s o n L H F a n d decreases I m e a r l y w i t h h e i g h t w i t h i n the s u b - c l o u d layer. A t t h e c l o u d base, the release o f l a t e n t heat, d u e t o t h e p h a s e c h a n g e , leads t o a j m n p i n t h e p r o f i l e . T h e s h a r p increase at t h e c l o u d t o p is the consequence o f t h e l o c a l c o o l h i g c o m m g f r o m t h e L W d i v e r g e n c e . D u e t o b o t h these effects, a p o s i t i v e b u o y a n c y flux is f o m r d m t h e c l o u d layer. A b o v e , t h e parcels are n e g a t i v e l y b u o y a n t a n d t e n d t o s f r i k m the c l o u d layer. T h e r e f o r e , the n e g a t i v e j u m p i n zu'd'^, a t t h e m v e r s i o n c o r r e s p o n d s t o t h e flux d u e t o e n t r a i n m e n t .

(31)

F o r PBLs d e e p e r t h a n o n e k i l o m e t r e , t h e b u o y a n c y g e n e r a t e d b y t h e L W d i v e r g e n c e is n o t e n o u g h t o m a i n t a i n a w e U - m i x e d P B L ( B r e t h e r t o n & W y a n t , 1997). T h i s is h i r t h e r e n h a n c e d b y t h e S W w a r m i n g d u r i n g d a y - t i m e , w h i c h reduces t h e L W c o o l i n g . I n t h i s case, t h e c l o u d l a y e r d e c o u p l e s from t h e s u b -c l o u d layer. F i g u r e 1.4-b s -c h e m a t i -c a U y r e p r e s e n t s t h e so--called d e -c o u p l e d S-cu- Scu-t o p p e d b o m i d a r y layer. T h e s Scu-t r a Scu-t i f i c a Scu-t i o n is n o Scu-t i c e a b l e i n Scu-the v e r Scu-t i c a l p r o f i l e s o f 0; a n d qt, w h i c h p r e s e n t t h r e e layers: a w e l l - m i x e d s u b - c l o u d l a y e r n e a r t h e s u r f a c e a n d a c l o u d l a y e r w h i c h c o m p r i s e s a w e U - m i x e d l a y e r at t h e t o p a n d a w e a k l y s t a b l y s t r a t i f i e d layer. T h e l a t t e r is c h a r a c t e r i z e d b y n e g a t i v e v a l u e s o f t h e b u o y a n c y flux, w h i c h p r e v e n t the d o w n w a r d s p l u m e s f r o m t h e c l o u d t o p t o s i n k i n t o t h e s u b - c l o u d layer. H o w e v e r s t r o n g p l u m e s f r o m t h e s u r f a c e can r i s e a n d c o n d e n s e f o r m i n g C u c l o u d s , w h i c h i n t e r m i t t e n t l y t r a n s p o r t m o i s t i u e from t h e s u r f a c e t o the Scu. V e r y v i g o r o u s p l u m e s e n h a n c e t h e e n t r a i n m e n t at c l o u d t o p w h i c h p r o m o t e s a sti'onger d e c o u p l i n g . T h i s r e d u c e s t h e t h e r m a l s t r a t i f i c a t i o n at t h e c l o u d t o p b y w a r m m g t h e u p p e r r e g i o n c l o u d layer, w h e r e Scu is f o u n d . A w e a k e r t h e r m a l s t i a t i f i c a t i o n f a v o u r s e n t i a i n m e n t o f f r e e t r o p o s p h e r i c a i r i n the c l o u d l a y e r a n d so o n . T h i s c h a i n o f p o s i t i v e f e e d b a c k s is at t h e basis o f c h a n g e i n t h e c l o u d r e g i m e , k n o w n as Scu t o C u t r a n s i t i o n (see F i g u r e 1.3).

1.3.3 CLOUD-CONTROLLING FACTORS

T h e i n t e r n a l processes d e s c r i b e d i n t h e p r e v i o u s S e c t i o n are c o n t r o U e d b y s e v e r a l e x t e r n a l f a c t o r s . These f a c t o r s d e t e r m i n e t h e m a c r o s c o p i c a l a n d m i c r o s c o p i c a l characteristics o f Scu c l o u d s . W e d e f i n e as c l o u d - c o n t r o l U n g f a c t o r s : • t h e sea s u r f a c e t e m p e r a t u r e , w h i c h d e t e r m i n e s t h e s u r f a c e fluxes o f t e m -p e r a t u r e a n d h u m i d i t y ; • t h e h o r i z o n t a l w i n d v e l o c i t y , w h i c h is f u n d a m e n t a l f o r s u r f a c e fluxes; • t h e t h e r m o d y n a m i c c o n d i t i o n s i n t h e free tioposphere, w l i i c h a f f e c t t h e P B L state t h r o u g h e n t r a i n m e n t ; • t h e s u b s i d e n c e , w h i c h r e g i d a t e s t h e P B L d e p t h ; • t h e h o r i z o n t a l a d v e c t i o n o f t e m p e r a t u r e a n d h u m i d i t y d u e t o t h e l a r g e -scale t r a n s p o r t ; • t h e C C N c o n c e n t i a t i o n , w h i c h i m p a c t t h e m i c r o p h y s i c a l p r o p e r t i e s o f Scu.

(32)

U n d e r s t a n d i n g t l i e i n t e r a c t i o n b e t w e e n Scu a n d the c l o u d - c o n t r o l l i n g f a c t o r s is f u n d a m e n t a l t o d e t e r m i n e t h e p h y s i c a l r e l a t i o n s h i p s g o v e r n i n g the S c u - t o p p e d PBL.

1.4 ESTIMATING THE STRATOCUMULUS FEEDBACK

1.4.1 Scu I N A FUTURE CLIMATE

I n the f u t u r e , several o f the p r e v i o u s l y m e n t i o n e d c l o u d - c o n t r o l l i n g f a c t o r s are e x p e c t e d t o change. Table 1.1 r e p o r t s t h e m e a n changes f o r SST, t h e f r e e t r o p o s p h e r i c largescale v e r t i c a l v e l o c i t y (at 500 hPa) a n d h o r i z o n t a l w m d v e l o c -i t y -i n t h e t r o p -i c s (30°N-30°S). These est-imates h a v e b e e n c a l c u l a t e d f r o m c l -i m a t e m o d e l s i m u l a t i o n s f o r a d o u b l i n g o f CO2 c o n c e n t r a t i o n .

T h e sea s u r f a c e w i h w a r m a n d c o n s e q u e n t l y t h e t e m p e r a t i i r e i n t h e w h o l e a t m o s p h e r i c c o l u m n w d l b e c o m e h i g h e r . A w a r m e r a t m o s p h e r e c a n store m o r e w a t e r v a p o m , as qs increases f o r a h i g h e r t e m p e r a t m e (see eq. (1.3)). T h e h u m i d i f i c a t i o n o f t h e a t m o s p h e r e w h l increase t h e d o w n w e l l i n g L W r a d i a t i o n i n the free tioposphere, w i t h a s u b s e q u e n t r e d u c t i o n i n t h e L W d i v e r g e n c e at t h e Scu t o p . F i n a U y the large-scale a t m o s p h e r i c c i r c u l a t i o n is e x p e c t e d t o c h a n g e i n a w a r m e r c l i m a t e . I n p a r t i c u l a r , t h e H a d l e y c i r c u l a t i o n w d l w e a k e n r e s u l t i n g i n a r e d u c t i o n i n t h e subsidence, t h e h o r i z o n t a l a d v e c t i o n o f t e m p e r a t u r e a n d h u m i d i t y a n d the h o r i z o n t a l w i n d v e l o c i t y .

T h e Scu response t o changes i n the c l o u d - c o n t r o l l i n g f a c t o r s n u g h t r e s u l t i n a v a r i a t i o n o f i t s m a c r o s c o p i c a l a n d / o r m i c r o s c o p i c a l p r o p e r t i e s . A s a consequence Scu a l b e d o w i U be m o d i f i e d so t o e i t h e r enhance or t o d a m p t h e c l i m a t e w a r m i n g . To g i v e a n i d e a o f t h e i m p o r t a n c e o f Scu response, c o n s i d e r t h a t a r e l a t i v e s m a l l increase i n t h e u w o r l d w i d e c o v e r o f o n l y 4 % w o u l d o v e r c o m p e n s a t e f o r a sea s m f a c e w a r m m g o f 2 ° - 3 ° C (RandaU ef a l . , 1984).

C o n s i d e r i n g t h e m a c r o s c o p i c a l p r o p e r t i e s o n l y , t h r e e scenarios exist (see F i g . 1.6 f o r a schematic r e p r e s e n t a t i o n ) . Scu c a n t h i c k e n , m o r e p r e c i s e l y L W P can increase, t h e r e b y m o r e i n c o m i n g solar r a d i a t i o n w i l l be r e f l e c t e d b a c k t o space (Scenario 1 i n F i g . 1.6). O n t h e c o n t r a r y , i f Scu w i U c o n t a i n less U q u i d w a t e r , t h e r e f l e c t e d S W r a d i a t i o n w U l be less w i t h respect t o t h e p r e s e n t - d a y c l i m a t e c o n d i t i o n (Scenario 2 m F i g . 1.6). F m a l l y t h e Scu c a n b r e a k u p i n t o C u , w i t h a c o n s e q u e n t r e d u c t i o n o f t h e c l o u d cover. T h e r e g i o n s w h e r e Scu d i s s o l v e s w i l l experience a l a r g e decrease i n the r e f l e c t e d solar r a d i a t i o n (Scenario 3 i n

(33)

C l o u d - c o n t r o l l m g f a c t o r C h a n g e

SST 2.5 K

- 5 %

U -1.5%

TABLE 1.1: Changes i n the cloud-controlling factors associated w i t h a d o u b l i n g of the COJ concentration. Values estimated for the tropics (30°N-30°S), o n the basis of CMIP3 (Couple-Model Intercomparison Project version 3) m o d e l study (Bretherton & Blossey, 2014).

F i g . 1.6). Ln the first case the Scu r e s p o n s e w o u l d d a m p f h e c l i m a t e w a r m i n g , w h e r e a s m the s e c o n d a n d t h i r d s c e n a r i o i t w o u l d e n h a n c e i t .

1.4.2 FORECASTED CLOUD FEEDBACK

T h e o v e r a l l response o f t h e c l i m a t e s y s t e m t o a c h a n g e m t h e r a d i a t i v e f o r c m g (F) s u c h as the one d u e t o a n increase i n CO2, is d e f m e d as clunate sensitivity:

A . f ( 1 . 1 0 ,

w h e r e Tg is t h e g l o b a l s u r f a c e t e m p e r a t i i r e at e q u i l i b r i u m . E q u a t i o n (1.10) can be e x p a n d e d h t t o t w o t e r m s :

T h e first o n e o n the r i g h t - h a n d s i d e is r e f e r r e d t o as P l a n c k t e r m , AQ, a n d i t estimates t h e c l i m a t e s e n s i t i v i t y i n absence o f v a r i a t i o n s i n t h e c l i m a t e s y s t e m . T h e e f f e c t o f the r e s p o n s e o f the c l i m a t e s y s t e m is m e a s u r e d t h r o u g h t h e s e c o n d r i g h t - h a n d side t e r m . W e detine feedback as a process t h a t changes the s e n s i t i v i t y o f c l i m a t e response. T h e v a r i o u s f e e d b a c k s a p p e a r m eq. (1.11) t h r o u g h t h e n o n - d i m e n s i o n a l f e e d b a c k f a c t o r s , ƒ , r e l a t m g t o the v a r i a b l e s y, w h i c h r e f e r t o d i f f e r e n t processes. T h e m o s t i m p o r t a n t f e e d b a c k s are t h e w a t e r v a p o u r f e e d -b a c k w h i c h assesses the c h a n g e i n the L W r a d i a t i o n d u e t o t h e h u m i d i f i c a t i o n o f t h e a t m o s p h e r e , t h e s u r f a c e a l b e d o f e e d b a c k w h i c h m e a s u r e s the v a r i a t i o n i n the area c o v e r e d b y ice a n d s n o w a n d t h e c l o u d f e e d b a c k .

To f o r e c a s t the a v e r a g e E a r t h ' s t e m p e r a t u r e increase, c l i m a t e m o d e l s are e m -p l o y e d . F i g u r e 1.7 d i s -p l a y s the t e m -p e r a t i i r e c h a n g e associated w i t h t h e P l a n c k

(34)

P r e s e n t - d a y c l i m a t e

FIGURE 1.6: Schematic overview o f t h e possible responses of Scu cloud to a climate w a r m i n g . Ttie boxes indicate the sign of tbe feedback.

t e r m a n d t h e v a r i o u s f e e d b a c k s p r e d i c t e d b y 12 G l o b a l C i r c u l a t i o n M o d e l s f o r a d o u b l i n g o f CO2 ( D u f r e s n e & B o n y , 2008). T h e rise h i s u r f a c e t e m p e r a t u r e ranges b e t w e e n 2 ° 4 ° C , t h u s the u n c e r t a i n t y is c o m p a r a b l e t o t h e p r e d i c t e d t e m -p e r a t u r e change. C o n s i d e r i n g t h e l a r g e i n t e r - m o d e l s -p r e a d i n c l o u d f e e d b a c k s h o w n i n F i g u r e 1.7, i t does n o t c o m e as a s u r p r i s e t h a t t h i s is c o n s i d e r e d t o be t h e m a i n source o f u n c e r t a h i t i e s h i tiiture c l i m a t e p r e d i c t i o n s ( D u f r e s n e & B o n y , 2008; V i a l et al., 2013). F u r t h e r m o r e t h e d e c o m p o s i t i o n o f the c l o u d f e e d b a c k f o r d i f f e r e n t c l o u d t y p e s s h o w s t h a t the m a i n c o n t r i b u t i o n t o t h e i n t e r - m o d e l s p r e a d comes f r o m b o i m d a r y l a y e r c l o u d s ( B o n y & D u f r e s n e , 2005). h i p a r t i c u l a r Scu a n d S c u - t o - C u t r a n s i t i o n h a v e b e e n i d e n t i h e d as t h e r e g i m e s t h a t c o r r e s p o n d t o t h e l a r g e s t m t e r - m o d e l discrepancies ( W i U i a m s & W e b b , 2009). To t a c k l e t h e Scu f e e d b a c k , i t is m d e e d necessary t o increase o u r u n d e r s t a n d i n g o f t h e p h y s i c a l m e c h a n i s m s t h a t are at its basis. F o r these reasons, i n latest years, the processes u n d e r l y i n g Scu response t o c l i m a t e c h a n g e h a v e b e e n t h e subject o f s e v e r a l s t u d i e s . T h i s thesis is p a r t o f f h i s l a r g e s c i e n t i f i c e f f o r t .

(35)

5 6 7 8 GCM number

FIGURE 1.7: Change i n the e q u i h b r i u m temperahire due to the Planclc term and the various feedbacl<;s predicted by 12 Global Circulahon Models (GCM) f o r a d o u b l i n g of COj- Tbe water vapour feedback is referred to as " W V + L R " , the surface albedo feedback as "SFC A L B " . Figure adapted f r o m Dufresne & Bony (2008).

(36)
(37)

2

MODELLING STRATOCUMULUS CLOUDS

2.1 MANY SCALES MANY MODELS

T h e a t m o s p h e r e is a c o m p l e x s y s t e m w h e r e p h e n o m e n a o c c u r at v a r i o u s scales s i m u l t a n e o u s l y . A n o v e r v i e w o f the characteristic t i m e a n d l e n g t h scales o f t h e p r i n c i p a l a t m o s p h e r i c processes is p r e s e n t e d i n F i g u r e 2 . 1 . T h e t i m e a n d l e n g t h scales p r e s e n t a h u g e r a n g e o f 10 o r d e r s o f m a g n i t u d e . T h e large-scale c i r c u l a t i o n takes p l a c e at g l o b a l scale a n d v a r i a t i o n s i n the c l i m a t e s y s t e m , e i t h e r p e r i o d i c osciUations (e.g. E l N i n o ) o r p e r m a n e n t changes (e.g. g l o b a l w a r m i n g ) , h a p p e n o v e r t i m e scales r a n g i n g f r o m years t o c e n t i m e s . T h e p l a n e t a r y c h c u l a t i o n e n t a i l s s e v e r a l p h e n o m e n a w h i c h are t h e m s e l v e s f o r m e d b y processes w i t h smaUer l e n g t h a n d time scales. T h e r e f o r e b y " z o o m i n g i n " t h e a t m o s p h e r i c processes, time a n d l e n g t h scales k e e p r e d u c i n g u p t o the characteristic scales o f t h e m i c r o p h y s i c a l processes, hence o f the o r d e r o f the c l o u d d r o p l e t (i.e. m i c r o m e t r e ) t o t h e r a i n d r o p s (i.e. m i l l i m e t r e ) .

T h e i n s i g h t i n a t m o s p h e r i c c i r c u l a t i o n has tiemendously i n c r e a s e d w i t h the b i r t h o f a t m o s p h e r i c m o d e l l i n g ( C h a r n e y et a l . , 1950). A r a n g e o f m o d e l s is a v a i l a b l e b u t n o n e o f t h e m encompasses a l l the t y p i c a l t i m e a n d l e n g t h scales d i s c u s s e d p r e v i o u s l y G l o b a l C i r c u l a t i o n M o d e l s ( G C M s ) r e s o l v e t h e g l o b a l c h c u l a t i o n a n d the s y n o p t i c systems. A U the processes t a k i n g p l a c e at scales s m a l l e r t h a n the one d i r e c t l y r e s o l v e d are k n o w n as s u b - g r i d processes. T h e y are n o t c a l c u l a t e d b y r e s o l v i n g t h e g o v e r n i n g e q u a t i o n s b u t t h r o u g h p a r a m e t r i z a -tions, t h e s t a t i s t i c a l r e p r e s e n t a t i o n o f t h e i r effect o n the r e s o l v e d scales.

(38)

Stra-Year Month ^ Week m u "1 Day £ i - Hour Minute Second 10^ 1 0 ' 10° 10' 10' 10' 10' 10= 10' 10' 10» L e n g t h s c a l e ( m )

FIGURE 2.1: Characteristic dme and lengtli scales of the principal ahnospheric processes. The grey box i n the top-right corner shows the range of processes re-solved by Global Circulation M o d e l (GCM). A U the other processes are described indirectly b y paramehizations. I n the lower-left comer the typicai scafes resolved by Large-Eddy Simulation (LES) are f o u n d .

t o c u m u l u s c l o u d s b e l o n g t o t h i s category. To g a i n i n s i g h t i n the m e c h a r d s m s at t h e basis o f t h e s t r a t o c u m u l u s f o r m a t i o n a n d e v o l u t i o n , s m a l l e r scale m o d -els are necessary. L a r g e - E d d y S i m u l a t i o n (LES) m o d e l s resolve t h e t m b u l e n t s t i u c t u r e s i n the b o i m d a r y layer. For t h i s r e a s o n t h e y are g e n e r a l l y u s e d as " n u m e r i c a l l a b o r a t o r i e s " t o p e r f o r m c o n t r o l l e d e x p e r i m e n t s w h i c h increase t h e p h y s i c a l m i d e r s t a n d i n g .

I n the f o l l o w i n g Sections w e w i l l b r i e f l y describe t h e m o d e l l i n g t o o l s t h a t h a v e b e e n u s e d f o r t h e p r e s e n t research. S u b s e q u e n t l y t h e m e t h o d a d o p t e d w i l l be s u m m a r i z e d a n d a n o u t l i n e o f the thesis w ü l be r e p o r t e d . 2.2 A T H E O R E T I C A L F R A M E W O R K ! T H E M I X E D - L A Y E R M O D E L Because o f b o t h t h e i r s i m p l i c i t y a n d t h e i r l i m i t e d c o m p u t a t i o n a l d e m a n d , c o n c e p t u a l m o d e l s are p o w e r f u l t o o l s to l a y the f o m i d a t i o i i o f o u r m s i g h t . I n p a r -t i c u l a r , f h e M i x e d - L a y e r M o d e l ( M L M ) is a n i d e a h z e d f r a m e w o r k -t h a -t describes f h e b o u n d a r y l a y e r e v o l u t i o n i n t h e a s s u m p t i o n o f h o r i z o n t a l h o m o g e n e i t y a n d v e r t i c a l w e U - m i x e d n e s s . T h e s t i a t o c u m u l u s - t o p p e d b o i m d a r y l a y e r can be w e U d e s c r i b e d b y t h i s c o n c e p t i i a l m o d e l , w h i c h has b e e n w i d e l y u s e d i n t h e last

(39)

Cytaty

Powiązane dokumenty

Volume I 'Conc/usions and recommendations &#34; focusing on all aspects of the internal situation on the Netherlands Antilles: the country's general economie

Traktowane jako zespół cech zróżnicowane formy recepcji rytuału szkieletowego w świeżo nawracanych krajach słowiańskich wydają się być istotnym instrumentem poznawczym

telier K ustk w alit eit 2011 De t oek omst v an de ‘S tille kustlandschapp en ’ 23 paviljoens visgrond wassenaarse slag boulevard pier boulevard militair terrein

• The heat pump plays a crucial role in ATES systems, it simultaneously produces the heat and cooling capacity consuming over 50% of the energy needed to run an ATES system. Making

W sprawie -formularzu zachowało się wiele donosów informatorów na temat tego, że Chwylowyj i jego przyjaciele mieli ścisły związek z teatrem Berezil i Lesiem Kurbasem.. Na

One proposition to increase groundwater resources (safe yield) of the “Wydrzany” groundwater intake can be artificial recharge of the aquifer with surface water obtained from

Amplitudes of weekly cyclicality for the process of daily yogurt sales in the wholesale store (n=1562) calculated for model F with the exclusion of zero sales

Pozbawienie praw publicznych zakaz porowadzenia pojazdów zakaz wykonywania zawodu nawiązka przepadek przedmiotów publiczne ogłoszenie wyroku. 8/ sposób i okoliczności popełnienia