• Nie Znaleziono Wyników

Quasisubordination and Quasimajorization of Analytic Functions

N/A
N/A
Protected

Academic year: 2021

Share "Quasisubordination and Quasimajorization of Analytic Functions"

Copied!
12
0
0

Pełen tekst

(1)

ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA L U B L I N-P O L O N IA

VOL. XXXI, 16 SECTIO A 1977

Instytut Matematyki, Uniwersytet MarliCurie-Sklodowskiej,Lublin

JAN STANKIEWICZ

Quasisubordination and Quasimajorization of Analytic Functions

Quasipodporządkowanie i quasimajoryzacja funkcji analitycznych Квазиподчинение и квазимажорация аналитических функций

Let В be the class of analytic functions in KR, KR = {2: |«| < R} and bounded 199(2)1 < 1 for z e KR.

Let Q denote the class of analytic functions in KR, such that |со(г)| < |2|

for 2 e KR.

Let f(z), F (2) be two functions which are single-valued and analytic in the disc KR.

Definition 1. The function/(2) is said to be subordinate to F(z) in KR if there exists a function 01(2) e £2, for which

f(z) = F (co (z)), zeKR.

In this case we write

/(2) -3 F(z) in KR.

Definition 2. The function/(2) is said to be majorized by F(z) in -^k, if there exists a function 99(2) eB, such that

/(г) =99(2)F(2) for zeKR.

We write then

/(2) « F(z) in KR.

Note that /(2) < F(z) in KR, if and only if, for every 2 eKR we have

|/(2)| < |^(2)|.

Several theorems exist in the literature that relate/(2) and F(z) when /(2) -3 F(z) which have their counterparts that relate g(z) and G(z) when g(z) < G(z). In order to establish some semblance of unification for parallel results for subordination and majorization, M. S. Robertson [6] intro­

duced the concept of quasisubordination.

(2)

Definition 3. [6]. Let f(z) and F(z) be analytic in KR. Let (p(z) be analytic and bounded for z e KR, |ç?(z)| < 1, such that f(z)/<p(z) is regular and subordinate to F(z) in KR. Then/(z) is said to be quasisubordinate to F(z) w.r.t. to q>(z) in KR.

If f(z) is quasisubordinate to F(z) w.r.t. to q>(z) we shall often say simply that/(z) is quasisubordinate to F(z) in KR and write

/(«) -3aF(z) in KR.

From this definition we have that f(z) -3qF(z) in KR, if and only if there exists the function <p(z) eB and w(z) e Q, such that

/(«) = Ç’C*)-*'(<»(«)) for zeKR.

The concept of quasisubordination can be also defined as follows:

Definition 4. Let/(z), F(z) be analytic in KR. If there exists an analytic function g(z), such that f(z) < g(z) in KR and g(z) -3 F(z) in KR, then f(z) is said to be quasisubordinate to F(z) relative to g(z) in KR and we shall often say simply that f(z) is quasisubordinate to F(z) in KR and write f(z) -3qF(z) in KR.

These two definitions 3 and 4 are equivalent. If f(z) is quasisubordi­

nate to F(z) relative to <p(z), then in Definition 4 we can put g(z) = f(z)l l<p(z). Now if f(z) is quasisubordinate to F(z) relative to g(z), then we can put <p(z) —f(z)lg(z) in Definition 3.

Thus we have

f(z) -3qF(z) in KRo 3 (f(z) « g(z) in KR)*(g(z) -3 F(z) in KR).

o(«)

Using the Definition 4 we can obtain immediately the generalizations on quasisubordination of all these theorems, which have the same conclu­

sions and the assumption subordination f(z) -3 F(z) is replaced by that of majorization f(z) < F(z). In particular we have

Theorem 1, [6]. If f(z) -3a F(z) in KR, then for every  > 0 and r e (0,1) we have

f ff(re<e)^dO^J lF(rei0)fd6.

0 0

Theorem 2, [6]. If f(z) -^qF(z) in KR and

OO 00

f(z) = %akzk, F(z)= 2Akzk

A-=0 k —0

for z e KR then for n = 0,1,2, ... and r e (0, B)

fc-0 =0

(3)

Quasisubordination and Quasimajorisation... 129

If the series £ M.k|2r** is convergent for r It then

k-0

OO 00

X

l«fcl2r2fe <

E

lA*lar2i’ 0 <r < R- fc = O fr = O

Theorem 3. If f(z) -3q F(z) in Kl then

n n

Z\ak\2<2\Ak\2,n = 0,1,2...,

k = 0 A=»0

oo

and if the series £ |AJ2 is convergent then

k=0

j>*l2< ^lAI2.

k=0 k=0

The following theorem is a generalization of Theorem 3 in the paper [3]

p. 211.

Theorem 4. Let ?.k, fc =1,2,..., be a sequence of nonnegative real numbers, such that Xk > 4+iS* 0 for k = 1,2,....

If f(z) -3, F (z) in Kk then

n n

4la*l2 4 l2> n = 1,2,...

k-l Jt-1

and if the series £ 4I74I2 is convergent, then

k-l

OO 00

2'4l«fcl2 < 24IAI2.

k-l k-l

Let J. be a class of functions analytic in the unit disc K, and normal­

ized by the conditions

/(0) =0, /'(0)>0.

Now we can introduce the concept of so-called quasisubordination in a normalized way.

Definition5. We say that a function f(z)eA is quasisubordinate in a normalized way to F(z) e A, if there exists a function g(z) e A such that/(z) < <z(z) in Kk and g(z) -3 F(z) in Kk. We write then

( Annales

(4)

/(«)

For this kind of subordination we can prove the following theorems.

Theorem 5. Let 8* denote ths close of a-starlike normalized functions in Kt that is F(0) = F'(0) —1 =0 and He{zF'(z)/F (z)} > a for z e Kx.

If F(z) e S*i2 andf(z) -3,„ F(z) then for \z\ = r < 1 we have

\f(z)\ ^T(r,S*2)\F(z)\

where

S*2) = maxjl,

Theorem 6. Let 8C denote the class of convex normalized functions in K1 that is F(0) =0 =F'(0) —1 and Hq{1 + zF" (z)/F'(z)} > 0 in E\.

If F(z) e Sc andf(z) -3gu F(z) then for |«| = r <1 we have

\f(z)\^T(r,Se)\F(z)\

where

T(r, Sc) = T(r, S*(2) = max Jl,

Theorem 7. If F(z)eS* and f(z) -3guF(z), then for |z| =r<l, we have

\f(z)\^T(r,8*0)\F(z)\

where

T(r,8*0) =maxjl,^tpj.

The results of the theorems, 5, 6 and 7 are the best possible in this sense that we could not replace the functions T(r, 8*2) = T(r, 8C) and T(r, 8*) by any smaller functions of r respectively.

The Theorems 5, 6 and 7 follow immediately from one general theorem.

In order to formulate it we must introduce first some notations.

Let He denote so-called the Eogosinski’s domain bounded by an arc of circumference |C| = k|2 and two arcs of circumferences going through the point £ = z and tangent to the circumference |£| = k|2 at the points

= —izlzj respectively.

Let U be an arbitrary fixed subclass of the class $ of normalized (/(0) = 0, /'(0) = 1) and univalent functions in Kx, with the following property: f(z) e U => e~iOf(ei6z) e 17 for all real 0.

(5)

Quasisubordinalion and Quasimajorization... 131 Let us put

U) w =^,ÇeHz,F(z)eu}.

Theorem 8. If f(z) -35„ F(z) and F(z) e U then for r e (0,1) we have sup /(*) <T(r, 17),

where

|«I-r F(z)

T(r, U) = sup<|w|: w eQ[r, TJ)}.

Proof of Theorem 8. f(z) -3qu F{z) implies that there exists a function g{z) such that/(2) < g(z), that is \f(z)/g(z)\ < 1 forz e and g(z) -3 F(z) in Kr. Now by the results of paper [2] (Theorem 1 and Corollary 1) we have that \g(z)/F(z)\ ^T(r, U) for \z\ — r < 1. Therefore

/(«) /(*) 9(z)

P(2) nW F(z) Ï7).

Because the above mentioned results of paper [2] are best possible and subordination f(z) -3 F(z) in K1 implies quasisubordination f(z) -3qF(z) in Klt therefore the result given in Theorem 8 is the best possible, too.

Proof of Theorems 5, 6 and 7. It is enough to use the Theorem 8 and the functions T(r, S*l2), T(r, 8C) and T(r, S*) determined in [2].

If in the definitions 4 and 5 we change the role of subordination and majorization then we obtain one new concept.

Definition 6. Let/(«), F(z) be analytic in KR. If there exists an analytic function h(z) such that/(2) -3 h(z) in KR and h(z) < F(z) in KR, then/(2) is said to be quasimajorized by F(z) relative to h(z) in KR and we shall often say simply that f(z) is quasimajorized by F(z) in KR and write f(z)<qF(z) in KR.

It is easy to see that f(z) F(z) in KR if and only if there exist the functions cpjfz) e B and a>1(z) e 12 such that

/(») =(p1(w1(z))-F(o)1(z)), for zeKR.

Definition 7. We shall say that a function f(z) e A is quasimajorized in a normalized way by a function F(z) e A, if there exists a function h(z) e A such that/(2) -3 h(z) in K± and h(z) < F(z) in If,. We shall write then

f{z) <quF(z).

Quasimajorization and quasisubordination are connected by the following relations.

(6)

Lemma 1. If

/(2) <a

F(z) in KR then f(z) -3a F(z) in KR.

Lemma 2. If f(z) <qu F(z) thenf(z) -3au F(z).

Proof. In order to prove it it is enough to put ip(z) = and w(z)

= wx(z). Furthermore if f,h, F belong to A then <pt(0) > 0, Wj(0) > 0 and therefore 99(0) > 0, <o'(0) > 0. This implies that 7i(z) = f(z)l(p{z) e A and the both lemmas are proved.

Remark. By the lemmas 1 and 2 it follows that the theorems 1-8 of this paper are valid if we replace in them quasisubordination by quasi- majorization.

Problem. Lemma 1 says that f(z) <Z qF(z) =>f(z) -3qF(z). We can change the direction of this implication that is, the concepts of quasi­

subordination and quasimajorization are equivalent.

Remark. If F(z) = z is identity function then f(z) quF(z) if and

only if /(2)

-3 auF(2).

Proof of the remark. Necessity follows by Lemma 2. Suffiency. In this case /(2) -38„z and we have

/(2)

= <p

(2) (0(2)

= vfahM)

where <n1(z) = 99(2)to(2), (px(z) = 1. Therefore /(2) <quF(z).

Thus we see that for identity these two concepts are equivalent.

In a general case the problem is open.

We can generalize also some such theorems on quasimajorization of which we could not generalize on quasisubordination.

Theorem 9. If f(z) <€quF(z) and F(z)eS* then for every B e (0,1>

we have

where

f(Kr(R)) <= F(Kr)

r(B) = r(R, 8*) — min

Theorem10. If f(z) < qu F(z) and F(z) e S*l2 then for every Ii e (0, 1>

we have

f(Kr(R)) <= F(Kr), where

r(B) = r(B, 8*/2) = min

V

sr

^ +

ir

-

r 2(1 + R)

(7)

Qu asisubordination and Quasimajorieation... 133 Corollary. Theorem 10 is valid if the hypothesis F(z) e S* is replaced by F(z) e Se since S*l2 => Sc.

The theorems 9 and 10 follow from some general theorem which is a generalization of Theorem 2.2 of paper [4]. Now we formulate

Theorem 11. If f(z) <gquF(z) and F(z) e U then for every R e (0, 1) we have

f(Kr(R)) c F(KR) where

r(R) = r(R, U) = sup{r: Or(~} I>{R, r, U) =0}

r<B and

Or — {w: w = <p(z), |z| < r, <p(z) e B, <p(0) > 0}, D(£, r, U) = jw: w = ]«| = R, |£| = r, Fe uj.

Proof of Theorem 11. By the hypothesis f(z) <ait F(z) we have 1° /(«) -3 h(z) in Klf h(z) e A,

2° h(z) < F(z) in Kr.

The functions h(z),F(z) satisfy the hypotheses of Theorem 2.2 [4] and therefore

h(Kr(R)) = F(KR).

From 1° we have that

f(Ke) c h(Ke) for every p e (0, 1>.

Thus we obtain

f(Kr(R}) = F(Kr)

and the proof is complete. In an analogous way: Theorem 9 follows from Theorem 2 of paper [5] p. 924 and Theorem 10 follows from Theorem 2 of paper [1] p. 7.

Let us put in the Theorems 11, 10 and 9 R -*■1. Then we have the following corollaries.

Corollaries.

Suppose f(z) F(z).

1. IfF(z) e U, then

f(Kri) <= F(KJ r2 = lim r(R).

ki

where

(8)

2. If F(z) e S*2 then f(K1/2) <= F(KJ.

3. IfF(z) e St thenf(Kll3) c F(KJ.

The Theorems 1-11 are not all which we can obtain. There are many other theorems which can be extended on quasisubordination and quasi- majorization. Some of these generalizations will be studied in the next paper.

REFERENCES

[1] Bogowski F., Stankiewicz Z., Sur la majoration modulaire des fonctions et l'inclusion des domaines dansla classeS*/2>Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 25 (1971), 5-14.

[2] B ogucki Z., Waniurski J., Therelativegrowthof subordinate functions,Michigan Math. J. 18 (1971), 357-363.

[3] G-olusin G. M., Onmajorantsof subordinate analytic functions I, Mat. Sb. N. S.

29 (1951), 209-224.

[4] L ewandowski Z., Stankiewicz J., Majorante modulaire des fonctions et inclusion des domaines, Bull. Acad. Polon. Sci., 10 (1971), 917-922.

[5] —,, Les majorantes modulaires étoilees et l'inclusion des domaines, Bull. Acad.

Polon. Sci., 10 (1971), 932-929.

[6] Robertson M. S., Quasi-subordinate functions, Mathematical essays dedicated to A. J. Macintyre, Ohio TJniv. Press, Athens, Ohio 1970, 311-330.

STRESZCZENIE

Od dawna znane są pojęcia podporządkowania f -3 F i majoryzacji (modułowej) f < F. M. S. Robertson w 1970 r. uogólnił te dwa pojęcia wprowadzając nowe pojęcie quasipodporządkowania f -3 qF, które w szcze­

gólnych przypadkach daje podporządkowania lub majoryzację. W tej pracy podana jest definicja quasipodporządkowania w postaci

f ^qFo\f{(f^g)r,(g ^F)}.

o

Definicja ta pozwala na otrzymanie niemal bez dowodów wielu twierdzeń dotyczących funkcji quasipodporządkowanych.

Wprowadzone jest tu również pojęcie quasimajoryzacji f < gF poprzez zamianą roli majoryzacji i podporządkowania w definicji quasipodporząd- kowania.

f < qF o V{(/ -3 h)/\(h < F)}.

O

Okazuje się, że f < qF =>f -3 ęF, problem odwrotny pozostaje otwarty.

Ponadto podanych jest kilka przykładowych twierdzeń wiążących quasi- podporządkowanie ze wzajemnym wzrostem funkcji f i F oraz quasi- majoryzację też ze wzrostem funckji i dodatkowo z zawieraniem się ob­

szarów f(Kr), F(Kr) gdzie Kr = {z: |z| <r}.

(9)

Квазиопдчинение м квазимажорация.... 135 РЕЗЮМЕ

Уже давно известно понятие подчинения / -< Р и мажорации (модульной) / < .Р. Робертсон М. С. в 1970 г. обобщил эти два понятия, вводя новое понятие квазиподчинения / -3 в -Р, которое в особенных случаях создает подчинение или мажорации. В данной работе пред­

ставлена дефиниция квазиподчинения в виде:

/ -5 Ч Р)}

а

Эта дефиниция дает возможность получить почти без доказательств много теорем, относящихся к квазиподчиненным функциям.

Введено здесь понятие квазимажорации / < заменяя роль мажорации и подчинения в дефиницию квазиподчинения.

Л)л(Л <Р)}

п

Оказывается, что / =>/ -Зв оборотная проблема остаётся откры­

той. Также было представлено несколько примерных теорем, связы­

вающих квазиподчинение с обоюдным ростом функций / и Г, а также квазимажорации с ростом функции и дополнительно с возмещающи­

мися областями /(Кг), Р(Кк), где Кг = {г: |г| <г}.

(10)

12. 07. 1978 r. Podpisano do druku we wrześniu 1979 r. Druk ukończono w grudniu 1979 r.

Zam. nr 538/78 M-7 Wrocławska Drukarnia Naukowa.

(11)

ANNALES

U NI V E R S I T AT I S MARIAE C U K I E ■ 8 KŁ 0 D 0 W 8 K A

VOL. XXIX SECTIO A 1975

16. Z. Świętochowski: On Second Order Cauchys Problem in a Hilbert Space with Applications to the Mixed Problems for Hyperbolic Equations. II O zadaniu Cauchyego drugiego rzędu w przestrzeni Hilberta z zasto­ sowaniem do zadań mieszanych dla równań hiperboliczych. II.

17. Z. Świętochowski: Some Remarks on the Wave Operator in a Curvilinear Coordinate System.

Pewne uwagi o operatorze falowym w krzywoliniowym układzie współ­

rzędnych

18. J. Waniurski: A Note on Extermal Properties for Certain Family of Convex Mappings.

Własności ekstremalne pewnej rodziny odwzorowań wypukłych.

19. A. Wesołowski: Des certaines estimations danslaclasse 27*(a, /3).

O pewnych oszacowaniach w klasie

20. W. Zygmunt: On the Full Solution of the Functional-Paratingent Equation.

O pewnym rozwiązaniu równania paratyngensowo-funkcjonałowego.

21. W. Zygmunt: The Generic Property ofDifferential Equations with Compact Convex Valued Solutions.

Własność generyczna równań różniczkowych, których rozwiązaniami zbiory zwarte i wypukłe.

22. W. Zygmunt: On the Convergence of Solutions of Certain Generalized Func­ tional-Differential Equations.

O zbieżnościrozwiązańpewnychrównań kotyngensowo-funkcjonałowych

(12)

UNIVEKSITATIS VOL. XXX

annales MARIAE

SECTIO A

w Lublinie

l|(W

CZASOPISMA

W

1. E. Błoński: Analytical Treatment of Isom«

Analityczne podejście do izometrii ] 2. R. N. Das, P. Singh: On Properties ofC

Functions.

0 własnościach pewnych podklas fi 3. L. Grzegórska : On an Estimation of t

Sampling under an Inflation.

0 estymacji frakcji wadliwych elementów w uciętych próbach z popu­ lacji o rozkładach ze zniekształceniem.

4. M. Fait, E. Złotkiewicz:Convex Hullsof someClasses of Univalent Functions.

Otoczki wypukłe pewnych klas funkcji jednolistnych.

6.V. K. Jain: On theLocation ofZerosof Polynomials 0 rozmieszczeniu zer wielomianów.

6. R. Janicka, W. Kaczor: On the Construction of some Measures of Noncom­ pactness.

O konstrukcji pewnych miar niezwartości.

7. J. G. Krzyż, E. Złotkiewicz: Two Remarks on Typically-Real Functions.

Dwie uwagi o funkcjach typowo-rzeczywistych.

8. R. J. Leach: Strongly Starlike Functions of Higher Order.

Funkcje mocno gwiaździste wyższego rzędu.

9. M. Polak: On a Queueing System of the Type /Jf/Jf/wA O systemie obsługi masowej typu IM/MInl1.

10. Cz. Tokarczyk: The Podkovyrin’s Connections with a Torsion.

Koneksje Podkowyrina ze skręceniem.

11. M. R. Ziegler: An Extremal Problem for Functions of Positive Real Part with Vanishing Coefficients.

Pewien problem ekstremalny dla funkcji o dodatniej części rzeczywistej ze znikającymi współczynnikami.

12. J. 8zynal, J. Waniurski: Some Problems for Lineary Invariant Families.

Pewne problemy dla rodzin liniowo-niezmienniczych.

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ BIURO WYDAWNICTW

20-031 LUBLIN Plac M. Curie-Skłodowskiej 5 POLAND Cena zł 36. —

Cytaty

Powiązane dokumenty

In general, even when there is a critical point of multiplicity d, a sharper upper bound than (1.16) is available by applying our result for pure exponential sums, Theorem 2.1,

The parameter σ α has appeared in many papers on exponential sums but we are not aware of an upper bound of the type (1.13) ever appearing before, even for the case of

Large deviations results for particular stationary sequences (Y n ) with regularly varying finite-dimensional distributions were proved in Mikosch and Samorodnitsky [19] in the case

Formuła zdaniowa jest wymuszana we wszystkich liniowo uporządkowanych modelach Kripkego wtedy i tylko wtedy, gdy jest prawdziwa we wszystkich liniowo uporządkowanych

The levels of such parameters characterizing dynamic loads and overloads of examined movement structures as: maximal and average values of vertical ground reaction forces, total

(b) Find the gradient of a line perpendicular to the line segment [AB]... (ii) Write down the coordinates of A

Generalized analytic functions play an important role in the study of differential equations, especially with irregular singular point.. To show this observe that the operator R(x, x

O n Borel sets and immeasurable functions in metric spaces.. In this note we give simple proofs of the theorems proved