• Nie Znaleziono Wyników

C O L L O Q U I U M M A T H E M A T I C U M VOL. LXII 1991 FASC. 2

N/A
N/A
Protected

Academic year: 2021

Share "C O L L O Q U I U M M A T H E M A T I C U M VOL. LXII 1991 FASC. 2"

Copied!
7
0
0

Pełen tekst

(1)

VOL. LXII 1991 FASC. 2

A NOTE ON GEODESIC MAPPINGS

OF PSEUDOSYMMETRIC RIEMANNIAN MANIFOLDS

BY

FILIP D E F E V E R * (LEUVEN)

AND

RYSZARD D E S Z C Z (WROC LAW)

1. Introduction. Let (M, g) be a connected n-dimensional , n ≥ 3, semi-Riemannian smooth manifold. We denote by ∇, e R, R, S and κ the Levi-Civit` a connection, the curvature tensor, the Riemann–Christoffel cur- vature tensor, the Ricci tensor and the scalar curvature of (M, g), respec- tively. We define on M the tensor fields R.R and Q(g, R) by the formulas

(R.R)(X 1 , X 2 , X 3 , X 4 ; X, Y )

= − R( e R(X, Y )X 1 , X 2 , X 3 , X 4 ) − R(X 1 , e R(X, Y )X 2 , X 3 , X 4 )

− R(X 1 , X 2 , e R(X, Y )X 3 , X 4 ) − R(X 1 , X 2 , X 3 , e R(X, Y )X 4 ) , Q(g, R)(X 1 , X 2 , X 3 , X 4 ; X, Y )

= R((X ∧ Y )X 1 , X 2 , X 3 , X 4 ) + R(X 1 , (X ∧ Y )X 2 , X 3 , X 4 ) + R(X 1 , X 2 , (X ∧ Y )X 3 , X 4 ) + R(X 1 , X 2 , X 3 , (X ∧ Y )X 4 ) , where

(X ∧ Y )Z = g(Y, Z)X − g(X, Z)Y ,

X, Y, Z, X 1 , . . . , X 4 ∈ Ξ(M ), Ξ(M ) being the Lie algebra of vector fields on M .

A semi-Riemannian manifold (M, g) is said to be pseudosymmetric ([4]) if at every point of M the following condition is satisfied:

(∗) the tensors R.R and Q(g, R) are linearly dependent.

A semi-Riemannian manifold (M, g) is pseudosymmetric if and only if

(1) R.R = LQ(g, R)

on the set U R = {x ∈ M | Z(R) 6= 0 at x}, where L is a function on U R and Z(R) = R − κ

n(n − 1) G

*Aspirant NFWO, Belgium.

(2)

with G defined by

G(X 1 , X 2 , X 3 , X 4 ) = g((X 1 ∧ X 2 )X 3 , X 4 ) , X 1 , . . . , X 4 ∈ Ξ(M ).

If R.R = 0 on M , then the manifold (M, g) is called semisymmetric ([9]).

The local and global structure of Riemannian semisymmetric manifolds was described in [9] and [10]. The class of pseudosymmetric manifolds is essen- tially wider than the class of semisymmetric manifolds (cf. [3], [4], [2], [7]).

The study of totally umbilical submanifolds of semisymmetric manifolds as well as the consideration of geodesic mappings onto semisymmetric man- ifolds lead to the concept of pseudosymmetric manifolds (see [1], [5], [6], [8]).

In the survey paper [8] the following theorem is presented.

Theorem 1.1 ([8], Theorem 3). If (M, g) is a pseudosymmetric semi- Riemannian manifold admitting a non-trivial geodesic mapping f onto a manifold (M , g) then (M , g) is also a pseudosymmetric manifold.

Unfortunately, the proof of this theorem is not published. On the other hand, Theorem 1.1 is very important in the study of pseudosymmetric mani- folds. In this paper we give a proof of this theorem.

2. Preliminaries. Let (M, g), n = dim M ≥ 3, be a semi-Riemannian manifold covered by a system of coordinate neighbourhoods {V ; x j }. We denote by Γ ij h , g ij , R h ijk , R hijk and S ij the local components of the Levi- Civit` a connection ∇ and the local components of the tensors g, e R, R and S, respectively. Further, we denote by

(R.R) hijklm = ∇ m ∇ l R hijk − ∇ lm R hijk

(2)

= −R rijk R r hlm − R hrjk R r ilm − R hirk R r jlm − R hijr R r klm , Q(g, R) hijklm = g hm R lijk + g im R hljk + g jm R hilk + g km R hijl

(3)

− g hl R mijk − g il R hmjk − g jl R himk − g kl R hijm , the local components of the tensors R.R and Q(g, R), respectively.

For a (0, 2)-tensor field A on (M, g) one defines the endomorphism X∧ A Y of Ξ(M ) by the formula

(X ∧ A Y )Z = A(Y, Z)X − A(X, Z)Y where X, Y, Z ∈ Ξ(M ). In particular, we have

X ∧ g Y = X ∧ Y .

Further, for a (0, k)-tensor field T on (M, g), k ≥ 1, we define the tensor field Q(A, T ) by the formula

Q(A, T )(X 1 , . . . , X k ; X, Y ) = T ((X ∧ A Y )X 1 , X 2 , . . . , X k )

(3)

+ T (X 1 , (X ∧ A Y )X 2 , . . . , X k ) + . . . + T (X 1 , . . . , X k−1 , (X ∧ A Y )X k ) , where X, Y, X 1 , . . . , X k ∈ Ξ(M ). Evidently, putting in the above formula A = g, T = R we obtain the tensor field Q(g, R).

Let (M, g) and (M , g) be two n-dimensional semi-Riemannian manifolds.

A diffeomorphism f : M → M which maps geodesic lines into geodesic lines is called a geodesic mapping. It is known that in a common coordinate system {x 1 , . . . , x n }, Christoffel symbols and curvature tensors of (M, g) and (M , g) are related by

Γ h ij = Γ ij h + δ i h ψ j + δ j h ψ i , (4)

R h ijk = R h ijk + δ j h ψ ik − δ h k ψ ij , (5)

where

(6) ψ ij = ∇ j ψ i − ψ i ψ j ,

(7) ψ i = 1

2(n + 1)

∂x i

 log

det g det g

 .

In the sequel such a geodesic mapping of (M, g) onto (M , g) will be denoted by f : (M, g) −→(M , g) and the manifolds (M, g) and (M , g) will ψ be called geodesically related. A geodesic mapping f : (M, g) −→(M , g) is ψ called non-trivial on M if the covector field ψ with the local components ψ i

is non-zero.

R e m a r k. If f : (M, g) −→(M , g) is a geodesic mapping, then f (U ψ R ) = U R . We can prove this using the fact that the Weyl projective curvature tensor W , defined by

W (X, Y )Z = e R(X, Y )Z − 1

n − 1 (S(Y, Z)X − S(X, Z)Y ) ,

X, Y, Z ∈ Ξ(M ), is invariant under geodesic mappings and that W vanishes at a point of M if and only if Z(R) vanishes at this point.

Lemma 2.1. Let f : (M, g) −→(M , g) be a geodesic mapping of a pseu- ψ dosymmetric manifold (M, g) onto a manifold (M , g) and let the condition R.R = LQ(g, R) be satisfied on U R . Then in a common coordinate system {x 1 , . . . , x n } on U R and U R

(8) (R.R) hijklm = 1

n η(g hl R mijk − g hm R lijk )

+ B il R hmjk − B im R hljk + B jl R himk − B jm R hilk + B lk R hijm − B km R hijl

+ F il G hmjk − F im G hljk − F jl G himk − F jm G hilk + F lk G hijm − F km G hijl , where

B ij = −Lg ij + ψ ij ,

(4)

F ij = − 1

n A ij − 1

n Lg rs (ψ rs g ij − g rs ψ ij ), A ij = ψ ir S r j − ψ rs R r ij s ,

η = g rs (−g rs L + ψ rs ) .

P r o o f. Using the Ricci identity and (5) we obtain

ml R s ijk − ∇ lm R s ijk = ∇ m ∇ l R s ijk − ∇ lm R s ijk

+ ψ il R s mjk − ψ im R s ljk + ψ jl R s imk − ψ jm R s ilk + ψ kl R s ijm − ψ km R s ijl + δ k s (ψ ir R r jlm + ψ jr R r ilm ) − δ s j (ψ ir R r klm + ψ kr R r ilm )

+ δ l s ψ mr R r ijk − δ s m ψ lr R r ijk ,

which, by making use of (5), (R.R) s ijklm = LQ(g, R) s ijklm and (3), turns into

∇ m ∇ l R h ijk − ∇ l ∇ m R h ijk = −L(δ l h R mijk − δ m h R lijk )

+ δ h l E mijk − δ h m E lijk + δ k h (E ijlm + E jilm ) − δ j h (E iklm + E kilm )

+ ψ il R h mjk − ψ im R h ljk + ψ jl R h imk − ψ jm R h ilk + ψ kl R h ijm − ψ km R h ijl

− L(g il (R h mjk + δ h k ψ mj − δ j h ψ mk ) − g im (R h ljk + δ k h ψ lj − δ j h ψ lk ) + g jl (R h imk + δ k h ψ im − δ m h ψ ik ) − g jm (R h ilk + δ k h ψ il − δ l h ψ ik ) + g kl (R h ijm + δ m h ψ ij − δ j h ψ im ) − g km (R h ijl + δ l h ψ ij − δ h j ψ il )) , where

E mijk = ψ mr R r ijk . But this, by contraction with g hs , gives

(9) (R.R) hijklm = −L(g hl R mijk − g hm R lijk )

+ g hl E mijk − g hm E lijk + g hk (E ijlm + E jilm ) − g hj (E iklm + E kilm ) + ψ il R hmjk − ψ im R hljk + ψ jl R himk − ψ jm R hilk + ψ kl R hijm − ψ km R hijl

− L(g il (R hmjk + g hk ψ mj − g hj ψ mk ) − g im (R hljk + g hk ψ lj − g hj ψ lk ) + g jl (R himk + g hk ψ im − g hm ψ ik ) − g jm (R hilk + g hk ψ il − g hl ψ ik ) + g kl (R hijm + g hm ψ ij − g hj ψ im ) − g km (R hijl + g hl ψ ij − g hj ψ il )) . Symmetrizing (9) in h, i we obtain

g hl E mijk − g hm E lijk + g il E mhjk − g im E lhjk

+ g hk (E ijlm + E jilm ) + g ik (E hjlm + E jhlm )

− g hj (E iklm + E kilm ) − g ij (E hklm + E khlm )

(5)

+ ψ il R hmjk − ψ im R hljk + ψ hl R imjk − ψ hm R iljk

− L(g il R mhjk + g hl R mijk − g hm R lijk − g im R lhjk )

− L(g il (R hmjk + g hk ψ mj − g hj ψ mk ) + g hl (R imjk + g ik ψ mj − g ij ψ mk )

− g im (R hljk + g hk ψ lj − g hj ψ lk ) − g hm (R iljk + g ik ψ lj − g ij ψ lk ) + g jl (g hk ψ im − g im ψ hk + g ik ψ hm − g hm ψ ik )

− g jm (g hk ψ il − g il ψ hk + g ik ψ hl − g hl ψ ik ) + g kl (g hm ψ ij − g ij ψ hm + g im ψ hj − g hj ψ im )

− g km (g hl ψ ij − g ij ψ hl + g il ψ hj − g hj ψ il )) = 0 . Contracting this with g hl and using the identity

(R.g) imjk = − g is R s mjk − g ms R s ijk = −g is R s mjk − g ms R s ijk

− g iss j ψ mk − δ s k ψ mj ) − g ms (δ s j ψ ik − δ s k ψ ij ) we get

(n + 1)E mijk + E jikm + E kimj

(10)

+ g ik A jm − g ij A km + ηR imjk − nLR mijk

− L(n(g jm ψ ik − g km ψ ij ) + g rs g rs (g ik ψ mj − g ij ψ mk )

+ g rs ψ rs (g km g ij − g jm g ik ) + g ij D km + g ik D mj + g im D jk ) = 0 , where

D ij = g jr g rs ψ si − g ir g rs ψ sj .

Next, permuting (10) cyclically in the indices m, j, k, we obtain (11) (n + 3)(E mijk + E kimj + E jikm ) + g ik A e jm + g im A e kj + g ij A e mk

−3L(g ij D km + g ik D mj + g im D jk ) = 0 , which, by contraction with g ij , yields

(12) (2n + 1) e A mk = −3(n − 2)LD mk , where

A e ij = A ij − A ji . On the other hand, (10), together with (11), implies

nE mijk + g ik A jm − g ij A km

(13)

− 1

n + 3 (g ik A e jm + g im A e kj + g ij A e mk )

− n

n + 3 L(g ik D mj + g im D jk + g ij D km ) + ηR imjk − nLR mijk

− L(n(g jm ψ ik − g km ψ ij ) + g rs g rs (g ik ψ mj − g ij ψ mk )

(6)

+ g rs ψ rs (g km g ij − g im g jk )) = 0 .

Contracting this with g ij and antisymmetrizing the resulting equality we find

(2n + 1)(n + 1) e A mk = −n(3n − 1) LD mk , which, by (12), gives

A e mk = LD mk = 0 . Now (13) turns into

E mijk = 1

n (g ij A km − g ik A jm ) + 1

n ηR mijk + LR mijk

+ L



(g jm ψ ik − g km ψ ij ) + 1

n g rs g rs (g ik ψ mj − g ij ψ mk ) + 1

n g rs ψ rs (g km g ij − g im g ik )

 . Finally, substituting this in (9), we obtain our assertion.

3. Main result

Proposition 3.1. Let f : (M, g) −→(M , g) be a geodesic mapping of ψ a pseudosymmetric manifold (M, g), dim M ≥ 3, onto a manifold (M , g).

Then the manifold (U R , g) is also pseudosymmetric.

P r o o f. Assume that the condition (1) holds on U R . Moreover, let {x 1 , . . . , x n } be a common coordinate system on U R and U R . Antisym- metrizing (8) in h, i and symmetrizing the resulting equality in the pairs h, i and j, k we find

4(R.R) hijklm = − 1

n ηQ(g, R) hijklm

(14)

− 3Q(B, R) hijklm − 3Q(F, G) hijklm . On the other hand, symmetrizing (8) in h, i we obtain

0 = e B il R hmjk − e B im R hljk + e B hl R imjk − e B hm R iljk

(15)

+ F il G hmjk − F im G hljk + F hl G imjk − F hm G iljk , where

B e il = B il − 1 n ηg il .

We now prove that the tensor e B with the local components e B ij is a zero

tensor. Suppose that e B is non-zero at a point. Moreover, let V be a vec-

tor at this point with local components V i such that V i V j B e ij = ε, ε = ±1.

(7)

Transvecting (15) with V i and V l and antisymmetrizing the resulting equal- ity in h, m we obtain

R hmjk = −εV s V r F sr G hmjk , which easily gives Z(R) = 0, a contradiction.

Thus we see that (15) reduces to

F il G hmjk − F im G hijk + F hl G imjk − F hm G iljk = 0 ,

which, by contraction with g hk and g mi , yields F il = 0. Now (14) completes the proof of our proposition.

Let f : (M, g) −→(M , g) be a geodesic mapping of a manifold (M, g) ψ onto a manifold (M , g). We note that if the tensor Z(R) vanishes at a point x ∈ M then the tensor Z(R) also vanishes at the point f (x) ∈ M . This remark, together with Proposition 3.1, implies the assertion of Theorem 1.1.

REFERENCES

[1] A. A d a m ´ o w and R. D e s z c z, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math. 16 (1983), 39–59.

[2] J. D e p r e z, R. D e s z c z and L. V e r s t r a e l e n, Examples of pseudosymmetric con- formally flat warped products, Chinese J. Math. 17 (1989), 51–65.

[3] R. D e s z c z, On pseudosymmetric warped product manifolds, J. Geom., to appear.

[4] R. D e s z c z and W. G r y c a k, On some class of warped product manifolds, Bull.

Inst. Math. Acad. Sinica 15 (1987), 311–322.

[5] R. D e s z c z and M. H o t l o´ s, On geodesic mappings in pseudosymmetric manifolds, ibid. 16 (1988), 251–262.

[6] —, —, Notes on pseudosymmetric manifolds admitting special geodesic mappings, Soochow J. Math. 15 (1989), 19–27.

[7] R. D e s z c z, L. V e r s t r a e l e n and L. V r a n c k e n, On the symmetry of warped product spacetimes, Gen. Relativity Gravitation, in print.

[8] J. M i k e s h, Geodesic mappings of special Riemannian spaces, in: Topics in Differ- ential Geometry (Hajduszoboszl´ o 1984), Colloq. Math. Soc. J´ anos Bolyai 46, Vol.

II, North-Holland, Amsterdam 1988, 793–813.

[9] Z. I. S z a b ´ o, Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0.

I. The local version, J. Differential Geom. 17 (1982), 531–582.

[10] —, Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. II. Global versions, Geom. Dedicata 19 (1985), 65–108.

INSTITUUT VOOR THEORETISCHE FYSICA DEPARTMENT OF MATHEMATICS KATHOLIEKE UNIVERSITEIT LEUVEN AGRICULTURAL ACADEMY

CELESTIJNENLAAN 200D C. NORWIDA 25

B-3030 LEUVEN, BELGIUM 50-375 WROC LAW, POLAND

Re¸ cu par la R´ edaction le 30.8.1990

Cytaty

Powiązane dokumenty

The author would like to thank the referee for his valuable

In this paper we are concerned with the compact- ification G P of the homeomorphism group of the pseudo-arc P , which is obtained by the method of Kennedy.. We prove that G P

In particular, it turns out that the mixed measure-category product of ideals (i.e. the product of the ideal of all meager sets and the ideal of all sets having measure zero)

For a special formally real Jordan algebra U there exists a Euclidean space E and a Jordan algebra injective homomorphism φ : U → Sym + (E) of U into the formally real Jordan algebra

Si on note H 1 le sous-groupe de R form´e par tous les nombres r´eels x tels que la s´ erie de terme g´ en´ eral kxn!k 2 converge, cela se traduit donc par le r´ esultat suivant,

If R is continuous, we can extend it by continuity onto the whole of X, and since relations (2) will be satisfied for all x in X, by continuity of the involved operators, we can

We shall prove (Section 5) that (∗) and (∗∗∗) are equivalent at every point of a 4-dimensional warped product manifold at which the tensor S − (K/n)g does not vanish, where K is

Among other things we shall prove that for n > 4, if around a generic point there exists a non-trivial null parallel vector field, then in some neighbourhood the Ricci tensor