• Nie Znaleziono Wyników

Hamiltonian Formulation of Water Waves: 1D-formulation, numerical evaluations and examples

N/A
N/A
Protected

Academic year: 2021

Share "Hamiltonian Formulation of Water Waves: 1D-formulation, numerical evaluations and examples"

Copied!
70
0
0

Pełen tekst

(1)

Hamiltonian formulation of

water waves

I D - f o r m u l a t i o i i , n t u n e r i c a l evaluations a n d examples

A . K . O t t a and M . W . Dingemans

(2)
(3)

Hamiltonian fornnulation H782 May 1994

Executive's summary

T h i s r e p o r t describes the f o r m u l a t i o n , n u m e r i c a l i m p l e m e n t a t i o n a n d a p p l i c a t i o n of a w e a k l y nonlinear wave m o d e l f o r finite d e p t h based o n a H a m i l t o n i a n f o r m u l a t i o n (see Radder, 1992). Due t o the t y p e of n o n l i n e a r i t y e x p l i c i t l y accounted f o r i n t h e expansion of the k e r n e l o f t h e H a m i l t o n i a n density ( s u m o f k i n e t i c a n d p o t e n t i a l energy per u n i t surface area), the m o d e l is v a l i d f o r waves of s m a l l , b u t finite a m p l i t u d e a n d f a i r l y l o n g wave l e n g t h (compared t o the water d e p t h ) i n r o u g h l y the same sense m a n y 'Boussinesq-type' models are. There are, however, a f e w significant differences. F i r s t l y , the H a m i l t o n i a n density i n the present f o r m u l a t i o n is always positive definite: a c o n d i t i o n necessary t o ensure good d y n a m i c a l b e h a v i o u r of the m o d e l equations f o r n u m e r i c a l c o m p u t a t i o n . Secondly, the dispersion e q u a t i o n o b t a i n e d f r o m t h e linearised version of the equations is exact. T h i s p r o p e r t y results i n a b e t t e r m o d e l l i n g of t h e phase relations (hence the wave a s y m m e t r y at a given l o c a t i o n ) of the s u p e r h a r m o n i c field w h i c h evolves f r o m the p r i m a r y wave system due t o surface n o n l i n e a r i t y . M o r e i m p o r t a n t l y , i t is possible t o remove the r e s t r i c t i o n o f waves being l o n g t h r o u g h a proper i n c l u s i o n of t h e 'short-wave' n o n l i n e a r i t y i n the expansion of t h e k e r n e l . T h i s results i n a u n i f o r m l y v a l i d m o d e l u n l i k e m o s t of the w e a k l y nonlinear models w h i c h are v a l i d over either deep or shallow water. F u r t h e r , i t is discussed i n the t e x t t h a t even f o r l o n g waves t h e 'short-wave' n o n l i n e a r i t y becomes l o c a l l y i m p o r t a n t near t h e crest of a wave as t h e surface curvature increases. I m p l e m e n t a t i o n of 'short-wave' n o n l i n e a r i t y is therefore considered as one of the first p r i o r i t i e s i n the f u t u r e developments o f t h e m o d e l .

T w o n u m e r i c a l models have been developed: a t i m e - d o m a i n m o d e l a n d a pseudo-spectral m o d e l based o n the sinc-series f o r the g l o b a l a p p r o x i m a t i o n s . T h e n u m e r i c a l code based on t h e sinc-series requires less c o m p u t i n g t i m e and gives the o p t i o n of choosing higher-order i n t e r p o l a t i o n f o r c o m p u t i n g derivatives and integrals over l o c a l i n t e r v a l s . We present here a figure as an example of t h e m o d e l p r e d i c t i o n of nonlinear e v o l u t i o n of a t r a i n o f non-breaking waves passing over an underwater bar. A n i n c i d e n t t r a i n of sinusoidal waves has been represented i n the c o m p u t a t i o n b y a packet of sinusoidal waves of finite l e n g t h w i t h the l e a d i n g edge a f e w wave-lengths b e h i n d t h e bar. D e t a i l s of t h e geometry a n d significance of t h i s test can be f o u n d i n chapter 7. I n

21 m

spite of a p r a c t i c a l disadvantage due t o t h e w a y the i n p u t conditions m u s t be specified i n t h e code (we have an i n i t i a l - v a l u e p r o b l e m ) these models can n o w be used t o s t u d y nonlinear evolutions of n o n b r e a k i n g waves over v a r y i n g d e p t h .

A t t e m p t s t o i n t r o d u c e effects of wave b r e a k i n g have n o t m e t w i t h m u c h success yet. I n

(4)

the f i r s t phase, a n i n t e g r a l c r i t e r i o n has been i m p l e m e n t e d t o determine i f t h e instanta-neous surface shape should lead t o b r e a k i n g . A p p l i c a t i o n of the c r i t e r i o n t o c o m p u t e d surface elevation f o r conditions observed t o have given rise t o m i l d b r e a k i n g i n labora-t o r y labora-teslabora-ts shows labora-t h a labora-t b r e a k i n g slabora-tage is n o labora-t reached. I labora-t is believed labora-t h a labora-t labora-t h i s difference between the c o m p u t e d results and the l a b o r a t o r y observations is caused b y the omis-sion o f t h e 'short-wave' n o n l i n e a r i t y ( u n d e r p r e d i c t i o n o f t h e surface steepness), r a t h e r t h a n the f a i l u r e o f the i n t e g r a l c r i t e r i o n . T h i s is another aspect w h i c h underscores the i m p o r t a n c e o f i m p l e m e n t a t i o n of 'short-wave' nonlinearity.

F i n a l l y t o conclude, comparison of t h e computed results w i t h the e x p e r i m e n t a l mea-surements and i n a w i d e r context w i t h several 'Boussinesq-type' models (see Dinge-m a n s , 1994a) provides strong Dinge-m o t i v a t i o n f o r f u r t h e r developDinge-ments o f t h e Dinge-m o d e l . T h i s is f u r t h e r s u p p o r t e d b y t h e inherent t h e o r e t i c a l appeal of t h e f o r m u l a t i o n s used. As summarised i n chapter 9, the m a j o r recommendations f o r f u t u r e w o r k are:

• T h e f o r m u l a t i o n of a b o u n d a r y v a l u e p r o b l e m instead of an i n i t i a l v a l u e p r o b -l e m . T h i s great-ly enhances the p r a c t i c a -l usefu-lness o f t h e p r o g r a m .

e I n c l u s i o n of short-wave nonlinearity. For a p p l i c a b i l i t y over the f u l l range of deep t o shallow water of a nonlinear wave m o d e l , i n c l u s i o n of short-wave n o n l i n e a r i t y is needed. F u r t h e r m o r e , i t has been shown t h a t f o r wave b r e a k i n g also the i n c l u s i o n of short-wave n o n l i n e a r i t y is needed t o o b t a i n m o r e realistic breaker indices.

• F u r t h e r s t u d y of wave b r e a k i n g characteristics a f t e r i n c l u s i o n of short-wave n o n l i n e a r i t y .

(5)

Hamiltonian formulation H782 May 1994

Contents

E x e c u t i v e ' s s u m m a r y i i 1 I n t r o d u c t i o n 1 2 T h e m a t h e m a t i c a l m o d e l 2 2.1 T h e H a m i l t o n i a n f o r m u l a t i o n 2 2.2 I D - f o r m u l a t i o n 3 2.2.1 S o l u t i o n i n the l ¥ - p l a n e 4 2.2.2 T h e inverse t r a n s f o r m a t i o n 4 2.2.3 Non-linear i n t e g r a l e q u a t i o n 6 2.2.4 L i m i t i n g cases 8 2.3 T h e e v o l u t i o n equations 9

2.3.1 E q u a t i o n s i n the physical plane 9 2.3.2 E x a c t e v o l u t i o n equations 12

3 N u m e r i c a l e v a l u a t i o n o f t h e t i m e - d o m a i n m o d e l 1 5

3.1 Regularised e v o l u t i o n equations 15

3.2 T i m e i n t e g r a t i o n 17 3.3 T h e choice of step size 18

4 S p e c t r a l a p p r o a c h 2 0 4.1 M e t h o d A : a;-space 20 4.2 M e t h o d A : x-space 22 4.2.1 E v o l u t i o n r a t e at fixed x-grids 22 4.3 M e t h o d s 23 4.4 M e t h o d C 24 4.4.1 E v o l u t i o n equation: r] 24 4.4.2 E v o l u t i o n equation: (p 25 4.5 S u m m a r y 26 5 N u m e r i c a l m e t h o d u s i n g s i n c - s e r i e s 2 7 5.1 N u m e r i c a l procedure 27 5.1.1 I n t e g r a t i o n procedure 27 5.1.2 C o m p u t a t i o n of the derivative 29 5.1.3 E v o l u t i o n rates 29 5.1.4 E n d t r e a t m e n t 30 5.2 T h e choice of step size 31

6 T h e p r o g r a m s 3 2

6.1 T h e m a i n p r o g r a m s 32 6.2 T h e i n p u t - g e n e r a t i n g programs solphi and p e r p h i 33

(6)

6.3 Periodic wave i n p u t 34 6.3.1 I n t r o d u c t i o n 35 6.3.2 T i e taper f u n c t i o n ƒ ( » ) 35 6.3.3 E x a m p l e of i n p u t file 37 7 N u m e r i c a l e x a m p l e s 3 9 7.1 S o l i t a r y waves 39 7.2 Periodic waves 45 7.3 C o n f r o n t a t i o n w i t i measurements 49 8 M o d e l l i n g o f b r e a k i n g 5 1 8.1 C r i t e r i o n f o r b r e a k i n g 51 8.1.1 B e i a v i o u r o f t i e i n t e g r a n d near g = 0 52 8.1.2 I n t e g r a l c r i t e r i o n i n p i y s i c a l space 52 8.2 M o d i f i c a t i o n of surface e v o l u t i o n 53 8.3 M o d i f i c a t i o n of v e l o c i t y e v o l u t i o n 54 8.4 S t u d y of b r e a k i n g c r i t e r i o n 55 8.4.1 V e r i f i c a t i o n of c o m p u t a t i o n of b r e a k i n g i n d e x 55

8.4.2 B r e a k i n g i n d e x f o r waves over a bar 56

8.5 S u m m a r y 57

9 C o n c l u s i o n s 6 1

(7)

Hamiltonian formulation H782 IVIay 1994

1 Introduction

I n t h i s r e p o r t t h e s t u d y i n t o the properties a n d n u m e r i c a l behaviour of t h e equations proposed b y Radder (1992) is described.

A t first, i n C h a p t e r 2, the m a t h e m a t i c a l f o r m u l a t i o n is given. T h i s follows closely Radder (1992). I t is i m p o r t a n t t o note t h a t t h e present t r e a t m e n t is s t r i c t l y v a l i d o n l y f o r I D wave p r o p a g a t i o n . T h i s is due t o t h e f a c t t h a t the methods rest u p o n c o n f o r m a l t r a n s f o r m a t i o n s . F u r t h e r m o r e , i n course of t h e d e r i v a t i o n , use is made of t h e a s s u m p t i o n t h a t the v a r i a t i o n of t h e s t i l l - w a t e r d e p t h is absent i n t h e H a m i l t o n i a n . T h i s m a y be compared w i t h the way i n w h i c h the mild-slope e q u a t i o n is derived: f o r t h e classical m i l d - s l o p e e q u a t i o n no v a r i a t i o n of t h e d e p t h is i n c l u d e d i n the H a m i l t o n i a n , b u t f o r t h e extended e q u a t i o n variations of t h e d e p t h i n the H a m i l t o n i a n have t o be i n c l u d e d , see Dingemans (1994b, Chapter 3 ) .

T h e n u m e r i c a l e v a l u a t i o n of t h e e v o l u t i o n equations f o r the t i m e - d o m a i n m o d e l is described i n chapter 3.

A spectral approach based o n an expansion i n terms of sine f u n c t i o n s is described i n chapter 4. T h e basic idea b e h i n d such a spectral description is t o o b t a i n i m p r o v e d n u m e r i c a l elRciency. T h e t i m e - d o m a i n m o d e l s t i l l takes m u c h computer t i m e , especially because t h e e v a l u a t i o n o f t h e kernel l o g t a n h ( ) w h i c h has t o be evaluated over t h e w h o l e c o m p u t a t i o n a l d o m a i n . E a r l i e r a t t e m p t s t o t e r m i n a t e t h e c o m p u t a t i o n o f t h i s k e r n e l b e y o n d a l o c a l i n t e r v a l t o take advantage o f the r a p i d decay of t h e k e r n e l h a d no success. I n s t a b i l i t i e s developed t h e n v e r y soon f r o m near the ends of t h e geometry. I t should be emphasised t h a t spectral s o l u t i o n based o n t h e Fourier-series expansion over a finite span has been f o u n d t o be unsuccessful f o r t h e present H a m i l t o n i a n f o r m u l a t i o n . T h r e e possible approaches based o n sine series have been discussed i n chapter 4. T h e n u m e r i c a l procedure f o r one of the three approaches has been described i n chapter 5.

A short d e s c r i p t i o n of t h e programs is given i n chapter 6. Some n u m e r i c a l examples have been given i n chapter 7.

A n approach t o m o d e l l i n g wave b r e a k i n g has been discussed i n chapter 8, f o l l o w e d b y the conclusions i n chapter 9.

T h e research has been carried o u t b y A . K . O t t a a n d M . W . D i n g e m a n s , w h i l e t h e constant guidance o f A . C . Radder of R i j k s w a t e r s t a a t has been i n v a l u a b l e .

(8)

The mathematical model

2.1 T h e Hamiltonian formulation

T h e governing equations f o r i r r o t a t i o n a l wave m o t i o n o n an incompressible i n v i s c i d fluid are given b y t h e Laplace equation and the three b o u n d a r y conditions:

= 0 -h{x) <z< Cix,t) 0 $ dt — + V $ - V / i = 0 dz z^Ci^,t) z = C{x,t) z = —h(x), (2.1a) (2.1b) (2.1c) (2.1d) where

T

[C]

=

7 V VC

(l + IVCP)

1/2

(2.1e)

a n d 7 is the surface tension a n d two-dimensional vectors have been used, x = {x,y^. I t has been s h o w n t h a t the H a m i l t o n i a n constitutes a v a r i a t i o n a l p r i n c i p l e w h e n i t is expressed i n t e r m s of t h e free surface elevation C a n d the value o f t h e velocity p o t e n t i a l at t h e free surface ( f { x , t ) = ^{(x,({x,t),t}, see, e.g., Zakharov (1968) a n d Broer (1974). T h e t o t a l energy of t h e fluid is given b y

n = J J dxdyH = J J dxdy (V + T )

< J J dxdy I^ K ^ + 7 ^ 1 + |VCP - 1

+

/ / 4

(9$ ( 2 . 2 )

I n the sequel of t h i s r e p o r t no effect of surface tension is accounted f o r , i.e., T = 0 is t a k e n . T h e n we have

V=^pgC' a n d T =\p J^_^ dz (2.3)

T h e v a r i a t i o n of t h e H a m i l t o n i a n , given b y (2.2), is equivalent w i t h the o r i g i n a l f u l l set of water wave equations. However, one has the o p p o r t u n i t y t o find a p p r o x i m a t e equat i o n s f r o m an a p p r o x i m a equat i o n of equathe H a m i l equat o n i a n w i equat h equathe advanequatage equat h a equat good d y n a m

(9)

-Hamiltonian formulation H782 May 1994

i c a l b e h a v i o u r is guaranteed w h e n t h e p o s i t i v e definiteness of t h e exact H a m i l t o n i a n density H is also c a r r i e d over t o t h e a p p r o x i m a t e density Ha- E v e r y a p p r o x i m a t i o n Ha w h i c h m a i n t a i n s t h e symmetries of H guarantees a u t o m a t i c a l l y t h e corresponding conservation laws t o h o l d .

N o t i c e t h a t t h e H a m i l t o n i a n density is effectively a f u n c t i o n of t h e free surface variables ( a n d (p. V a r i a t i o n o f t o { a n d ip gives t h e t w o canonical equations:

SH

dc .

SH

dip

where S denotes the v a r i a t i o n a l derivative. N o t i c e t h a t Eqs. (2.4) are t h e free sur-face conditions ( 2 . 1 b ) a n d (2.1c) w h i l e Eqs. (2.1a) and ( 2 . I d ) have been used as side

c o n d i t i o n s . T h e m a j o r d i f f i c u l t y i n a p p l y i n g t h e H a m i l t o n i a n is t h a t t h e k i n e t i c en-ergy density should be f o r m u l a t e d i n t e r m s of t h e surface elevation ( a n d t h e v e l o c i t y p o t e n t i a l (p along t h e free surface.

I n t h e sequel we w i l l use a H a m i l t o n i a n w h i c h is scaled w i t h t h e density: H := Hip a n d s i m i l a r l y scaled p o t e n t i a l a n d k i n e t i c energy ( V a n d T respectively) t o c o m p l y w i t h the n o t a t i o n used i n Radder (1992).

2.2 ID-formulation

For problems w i t h one h o r i z o n t a l dimension an a p p r o x i m a t e H a m i l t o n i a n can be de-veloped w h i c h is u n i f o r m l y v a l i d f r o m deep t o shallow water ( R a d d e r , 1992). I n t h i s case, the k i n e t i c energy d e n s i t y T can be w r i t t e n as

2^ dx 2dx^'

where i/) = ^yp^ {x,({x,t),t} is t h e s t r e a m f u n c t i o n evaluated at t h e free surface. (2.5)

To express i/> i n t e r m s of t h e canonical variables (p a n d a c o n f o r m a l m a p p i n g o f t h e f l u i d d o m a i n Z = x + iz i n t o an i n f i n i t e s t r i p i n t h e complex T1^—plane W = x + "^C '^^ used (Woods, 1961)

C(x') + c o t h TT

{w-x')

Kx') .

(2.6)

A s o l u t i o n f o r t h e s t r e a m f u n c t i o n ^{x,z,t) at t h e free surface is sought f o r i n t w o steps:

1. Solve t h e p r o b l e m i n t h e 11^—plane

2. F i n d t h e inverse t r a n s f o r m a t i o n %(a;) along t h e free surface.

(10)

2.2.1 S o l u t i o n in t h e W-p\ane

A s o l u t i o n of t h e linear p r o b l e m ^ + = O i n O < ^ < l a n d the b o u n d a r y conditions ^ = 0 at = 0 and $ = '4>{x) at ^ = 1 b y means of Fourier t r a n s f o r m s gives at the free surface ^ = 1

where l o g is the n a t u r a l l o g a r i t h m . I n the t r a n s f o r m e d plane t h e H a m i l t o n i a n H becomes

a n d w i t h V>(x) s u b s t i t u t e d f r o m (2.7) one obtains

w i t h t h e kernel TZ{x-,x') given b y

7e(x,x')

= - - l o g t a n h

Ix - x'|) •

(2-10)

2.2.2 T h e inverse t r a n s f o r m a t i o n

To express (2.7) i n terms of variables of the p h y s i c a l plane, an expression f o r the f u n c t i o n x(a^) along the free surface has t o be f o u n d . T h e i m a g i n a r y p a r t o f the t r a n s f o r m a t i o n (2.6) reads

- ^ / I c o s l . ( x - ° x 1 - c o . . { " ' ^ ' " ' ^ ' <^-"'

T h r o u g h a Fourier t r a n s f o r m of t h i s i m a g i n a r y p a r t a symbolic operator e q u a t i o n is o b t a i n e d ( U a d d e r , 1992, E q . ( 2 6 ) ) :

/ 1 ^ ( I \

T h i s e q u a t i o n has t o be i n v e r t e d t o o b t a i n t h e required f u n c t i o n

xi.^)-

T h e subsequent analysis presented b y Radder is v a l i d i n the s t r i c t sense f o r t h e s i m p l i f i e d case o f a h o r i z o n t a l b o t t o m f o r w h i c h (2.12) simplifies t o

(11)

Hamiltonian formulation H732 May 1994

dx__d_ r_d_

dx dx \ \dx

vix)

w h e r e t h e n o t a t i o n r]ix) =

h + C(x)

(2.13a) (2.13b) is used. A n unlcnown f u n c t i o n s(x) is i n t r o d u c e d t h r o u g h dx

; ^ = ( l

+ e ) , . ( 2 . 1 4 )

N o t i c e t h a t t h i s r e l a t i o n at t h i s stage is m e r e l y another w a y of w r i t i n g r e l a t i o n (2.13a).

T h e k i n e t i c energy T can be r e w r i t t e n i n t e r m s o f t h e physical variables i n t h e f o l l o w i n g way. F i r s t notice t h a t d dx'^^ and dip^dipdx^ dx

dx

dx

dx '

so t h a t ld(f f , . d ( p ^ , 1 dx

f,,dx'

d x ' , z^T =^ J dx(px J dx'(p^iR{x,x')

I n t r o d u c i n g the k i n e t i c energy density b y

dx'(pa,(px''^eix,x') , (2.15)

we t h e n have T = f dxT . T h e kernel TZ^ now follows f r o m (2.10) b y n o t i n g t h a t (2.14) gives

dx =

dx W e t h e n have t h e s y m m e t r i c f u n c t i o n TZ^ given b y : / / ^ 11 ^ T, /^'^ r ' IZs{x,x;7]) = l o g t a n h — / TT V 4 Ja, dr

x - x =

I

( 1 dr (2.16)

I t is n o t e d t h a t t j i e k i n e t i c energy f u n c t i o n a l , expressed i n the x-variable, is positive definite, a n d t h i s p r o p e r t y is preserved o n t r a n s f o r m i n g f r o m x t o x w h e n the J a c o b i a n (2.13a) is positive and b o u n d e d .

(12)

T h e H a m i l t o n i a n i n the physical plane t h e n is

^^ = 7, dxigCi- dx'cpa:<pa;'ne{x,x';ri)) . (2.17)

^ J CO \ J (X> J

E i t h e r t o be able t o use (2.17) d i r e c t l y t o o b t a i n e v o l u t i o n equations f r o m , or t o trans-f o r m results obtained i n the % plane t o the physical plane, i t is necessary t o trans-f i n d a p r e s c r i p t i o n f o r t h e u n k n o w n f u n c t i o n e{x). T h i s is t h e subject of next subsection.

2 . 2 . 3 N o n - l i n e a r i n t e g r a l e q u a t i o n

We n o w seek an e x p l i c i t expression f o r t h e f u n c t i o n £ ( x ) . W e f i r s t notice t h a t equation (2.13a) can be w r i t t e n i n the f o r m of a nonlinear i n t e g r a l e q u a t i o n (Radder, 1992) as

^ ^ - ï ï U J ^ ^ ] _ ^ sinh^iTTx' ^ (2.18)

To solve t h i s nonlinear i n t e g r a l equation, an expansion i n p a r t i a l f r a c t i o n s , w h i c h is v a l i d f o r a l l values of the argument, is used b y Radder (1992):

dx

OO I m-1 m-1 + — mTT 4-. + m-K dx V • (2.19) W i t h the n o t a t i o n rx dr P

Jo

V ^

dp

^

dx

' (2.20)

and the f u n c t i o n e{x) defined according t o (2.14), an e q u a t i o n f o r e is obtained f r o m the expansion (2.19) as

m = l

1

+

V (2.21)

Xl + s)D-nnr (1 + s) D + mir

To solve t h i s equation f o r e{x), Radder introduces the operators G^™^ and GQ™^ b y

D , „r™) D = and GS™) = ^

and because Gi"^^ can be expressed i t e r a t i v e l y i n terms of GQ™^ we have

(2.22)

) ^ G ( ™ ) ( £ G ( ' " ) ) ' .

For t h e f u n c t i o n e{x) we t h e n o b t a i n the equation

G'(-) = ^ ( _ l ) A G M ( £ G M y

A=0

(13)

Hamiltonian formulation H782 May 1994

A=0 w i t h

-| OO r 1,

V

E q u a t i o n (2.21) or (2.24a) can now be solved i t e r a t i v e l y as

Io Io - I l £0 = 0 , £ l =

£2

l - I o ' l - I o + I i

where Iq is given t o be (see Radder, 1992)

dq d Io

V(p) Jo

Tjip) Jo exp(7rg) -Idq a n d II follows as Hp +

l) + v{p

-1)] , (2.24a) (2.24b) (2.25) (2.26) 1 _

j"^ r

[p] Jo Jo

dqdq"

vip)

dq exp TT (g + g') - 1

£1

(p +

e)-^vip

+ q + q') + £i{p- q)-^v{p-q-a')

(2.27) S o l u t i o n f o r £fc, ^ = 0 , 1 , 2 , • • • can i n p r i n c i p l e be o b t a i n e d t h r o u g h a r e c u r r i n g proce-dure i n t h i s way.

F i n i t e d e p t h

For water of f i n i t e d e p t h we have-"^ \\D\\ < TT a n d a T a y l o r series expansion of GQ™^ m a y be used (Radder, 1992, E q . ( 4 3 ) ) :

mir

rmr

\m7rj

yrmr J

(2.28)

a n d liliewise f o r "^K T h e expansion of (2.24a) m a y t h e n be given i n a more conve-n i e conve-n t f o r m . T h e f o l l o w i conve-n g quaconve-ntities are i conve-n t r o d u c e d :

Fk = -D''7j; Fo = l . V

T h e f o l l o w i n g recurrence relations m a y t h e n be derived f r o m (2.29) a n d (2.20):

F (r^Fk) = i]Fk+i a n d DF^ = F^+r - Ff,Fi .

(2.29)

(2.30)

^A bounded opeiatoi T is defined by (ƒ, V) < (ƒ, ƒ) with f some well-behaved function and (•, •) an innei pioduct. The norm of the opeiatoi, HT'H is defined as the maximum of ( V f , V f ) /(ƒ, ƒ).

(14)

SubstitTition of t l i e series expansion (2.28) i n (2.23) and using the recurrence relations (2.30) t h e n leads t o an expansion of e i n terms of the f u n c t i o n s F},. U p t o f o u r t h order Radder obtains (his e q u a t i o n ( 4 6 ) ) :

£ = -^i^2 - ^ (I4 - - lOFi + bF2Fl) , (2.31)

w h i c h can be r e w r i t t e n as^ (cf. Radder, 1992, E q . ( B 6 ) )

{-^vt - 6 (4r;^ + VV<v) mxx + '^''if'Vxx'nxxx + V^Vio) — •

(2.32)

I t is i m p o r t a n t t o note t h a t crucial f o r t h i s a p p r o x i m a t i o n is the v a l i d i t y of the ex-pansion ( 2 . 2 8 ) . I n t h e f i r s t place t h e exex-pansion is o n l y v a l i d f o r water of f i n i t e - d e p t h , and i n the second place the expansion is a T a y l o r t y p e expansion, n o t y i e l d i n g p o s i t i v e -d e f i n i t e a p p r o x i m a t i o n s f o r the class of square integrable f u n c t i o n s w i t h ?/ > 0. Perhaps a better a p p r o x i m a t i o n can be o b t a i n e d b y using a Fade - t y p e a p p r o x i m a t i o n f o r t h e f u n c t i o n s g'q^\

W i t h the H a m i l t o n i a n given b y (2.17), the e v o l u t i o n equations f o r the canonical v a r i -ables C and are i n p r i n c i p l e given b y the defining equations (2.4). However, due t o t h e c o m p l i c a t e d dependence o n £, d e r i v a t i o n o f the e v o l u t i o n equations is n o t a t r i v i a l task, except f o r the case o f £ = 0.

2.2.4 L i m i t i n g cases

Consider the expression (2.16) f o r TZ^. For a constant d e p t h o f h, we can w r i t e

7le{x, x'; rj) = l o g t a n h ( - - r ' V 4

hJx

dr

(! + £)(! +CM)

(2.33)

L i n e a r t h e o r y is o b t a i n e d f o r £ = 0 a n d 77 = h (i.e., i n f i n i t e s i m a l waves, a n d t h u s ( is neglected); the expression f o r Re = Ri t h e n coincides w i t h the one given b y B r o e r (1974) f o r linear waves. For deep water i t t u r n s out t h a t s = 0{ka) a n d t h e n Stokes' t h e o r y is a p p r o p r i a t e , rj = h, so t h a t

Re{x,x';h) = l o g t a n h Ah

dr

+ £

(2.34)

For shallow water we have e = 0{kh • ka) and we can p u t £ = 0 (Boussinesq a p p r o x i -m a t i o n ) . T h e n :

^With Fk = {v~^D''ri) /v = [iv^xf] V we have Fi = {l/r])Tida:Ti = and F2 = [(1/??) {vda:f] V = dm{r)dx)r) and thus, F2 = vl + VVxx- For Fs we have ƒ3 = {Tjdx (ndx)) V, yielding F3 =

(15)

Hamiltonian formulation H782 May 1994 Ro{x,x';r)) = - i l o g t a n h ( ^

L

^' dr 1 + ^ (2.35)

T h e advantage o f a H a m i l t o n i a n m o d e l based o n (2.35) over a Boussinesq-type m o d e l is t h a t i n t h e f o r m e r m o d e l the linear t h e o r y is recovered i n case of deep w a t e r . For p r a c t i c a l applications, such as t h e e v o l u t i o n of a s o l i t a r y wave over an uneven b o t t o m , n u m e r i c a l s o l u t i o n o f t h e r e s u l t i n g i n t e g r a l equations is needed (see Z w a r t k r u i s , 1991).

2.3 T h e evolution equations

I n t h e f o l l o w i n g we describe t h e e v o l u t i o n equations i n t h e p h y s i c a l plane i n c l u d i n g the short-wave n o n l i n e a r i t y f u n c t i o n e w h i c h depends o n rj a n d i t s derivatives. T h e r e a f t e r , we l o o k at the possibihty of the e v o l u t i o n equations i n the t r a n s f o r m e d plane.

2.3.1 E q u a t i o n s in t h e physical plane

S u r f a c e e l e v a t i o n C

To o b t a i n t h e e v o l u t i o n equations i t is necessary t o evaluate the v a r i a t i o n a l derivatives. U s i n g the general f o r m u l a t i o n

sn

dH d fdH 6ip d(p dx \dipx we n o t e f o r t h e H a m i l t o n i a n H, given b y ( 2 . 1 7 ) , t h a t (2.36) dt

' èif

d (dE d f dH dx \dipxJ dx' \d(p^ = ƒ dx''^Re{x,x'-rj{x)) dx^Re{x,x';v{x)) = - J dx'cpxi^ - J dx<px^ . (2.37) D u e t o t h e s y m m e t r y of Rs{x,x';ri) w i t h respect t o x and x', (2.37) can also be

ex-pressed as dC dt = ƒ dx'ipa;'Re{x,x']r}{x)) = - J dx'ip.. dRe ^' dx (2.38) T h e d i f f e r e n t i a t i o n o f R^ proceeds as f o l l o w s . W e i n t r o d u c e t h e n o t a t i o n 1' dr

+

delft hydraulics 9

(16)

1 TT F r o m Re given i n (2.16) we have 71^ = l o g t a n h —v a n d t h u s , TT 4 dRe _ 1 dvldx dx 2 sinh ( f t ; ) " T x r - ^ dv . . ^.dê dê 1 W i t h — = sign('!7)-— a n d — = . , , we o b t a i n dx ^ ^ Ux dx ( l + £ ) ? ; ( a ; ) dRe _ 1 sign(i?) dx 2 ( l + £)7?(a;) s i n h ( f - y ) " Consider n o w t h e t e r m sign('!?)/sinh ( f t ; ) : sign(i?) sign('!?) + 1 (2.39)

sinh ( f - y ) sinh ( f | i ? | ) sinh ( f i ? )

- 1 s i n h ( - f i ? ) s i n h ( f i ? ) i f 1? > 0 i f 1? < 0 . We can therefore w r i t e dRe 1 1

dx 2 ( 1 + £) ri{x) sinh ( f i?)

1 1

(2.40) n i + e),ix) s i n h d r ^ ^ )

T h e e v o l u t i o n e q u a t i o n f o r t h e free surface elevation ( f i n a l l y becomes

V e l o c i t y p o t e n t i a l </?

T h e e v o l u t i o n e q u a t i o n f o r the free surface wave p o t e n t i a l ip is m o r e d i f l i c u l t t o o b t a i n . T h i s is due t o t h e f a c t t h a t e{x,t) is a f u n c t i o n of rj{x,t) a n d therefore also a f u n c t i o n of

C(*?*)-

Since h is o n l y a variable constant,

6r] = Sh + 6C = SC . (2.42) T h u s , 6( m a y be replaced b y 6r]. N e x t , SH, the increment i n t h e H a m i l t o n i a n due t o

^77, a s m a l l i n c r e m e n t i n t] and the associated Ss can be expressed as

(17)

Hamiltonian formulation H782 May 1994

/

CO -OO

i

r

r

4

7 - c

Since

1^1

4 j _ o o (l+^)'7

8rj

St] Jx' 1 + {l + e)r] (2.43) — one lias f r o m (2.43) s i n l i f | Ö | s i n h f ö

/

OO gCSCdx' --OO 1 fOO POO - I dx' dx" / » ^ N

/

OO gCèCdx' + -OO

(r

'^(iT

OO s i n l i I ^x"Px"

ii:"

(1+^)77 dr (1 + e)

V

(2.44)

One m a y proceed f r o m here t o derive a suitable expression b y c a r r y i n g out i n t e g r a t i o n b y p a r t s o f the r i g h t - h a n d side. A l t e r n a t i v e l y , a similar approach as used i n appendix E of Radder (1992) m a y be adopted. Since (2.44) must h o l d f o r a l l 6r) G C , St] m a y be replaced b y any sequence fn(x) approaching t h e delta f u n c t i o n ^(a;).

T h e f o l l o w i n g properties r e l a t e d t o t h e delta f u n c t i o n w i l l be u s e f u l d u r i n g the deriva-t i o n . F i r s deriva-t , as i n Radder (1992, A p p e n d i x E ) , use w i l l be m a d e of

fx"

/ drF(r)S{r - x) = F{x)U{x - x')U{x" - x) Jx'

(2.45)

where F{x) represents a well-behaved f u n c t i o n and U{x) t h e u n i t Heaviside f u n c t i o n . W e f u r t h e r use t h e f a c t t h a t {e.g., Greenberg, 1978; p . 71)

rx"

/ drF{r)Sj{r - x) = {-iyFj{x)U{x - x')U{x" - x). Jx'

(2.46)

T h e subscript j i n (2.46) denotes t h e order of d i f f e r e n t i a t i o n of the f u n c t i o n . We n o w t u r n t o evaluate Se. U s i n g (2.32) f o r e and c a r r y i n g out the o p e r a t i o n t o 0(kay, we have Se(r) = + V^Vrr + VrrSri) • A p p r o x i m a t i n g Srj^r) b y S{r — x) i n (2.47), one has (2.47) Se = --[2r]rSi{r - x) + 7]S2{r - x) + VrrK'^ - x)] (2.48) Hence, delft liydraulics 11

(18)

Jx' (1

+ £)V

1"

Jx'

dr êrj

+

Se

= U{x-x')U{x" -x)Bi{x) where B\ up t o 0 [(fca)^] is giveu b y

(2.49) 5 i ( 7 ? , £ ) ( l + £)7?2

+

d / 27;r7,

+

9 2 . ( 1 + 6 ) ^ 2 d x \ { i ^ e f r j ^ ) dx-^y^l^efri^,

b y using a reduced f o r m of e(a;); i.e.,

U s i n g (2.49) i n (2.44) yields (2.50) (2.51) SH

= K +

/

OO poo dx' / t^a;" •00 J—00 4 j-00 <Px"Px"

00 sinh I

0

a;" rfr Ï7(a; - x')U(x" - x) . (2.52)

R e w r i t i n g the i n t e g r a l o n the second l i n e of (2.52), we o b t a i n

Consequently, t h e r e s u l t i n g e v o l u t i o n equation f o r (p is

(2.53)

sn

1 fx fOO

- 9 C - M v , e ) dx' dx" ^Px^Px" (2.54)

I t m a y be n o t e d t h a t equation (72b) of Radder (1992) results as a special case of (2.54) f o r £ = 0.

2.3.2 Exact e v o l u t i o n e q u a t i o n s

A s discussed so f a r a p p r o x i m a t i o n s have t o be used f o r t h e inverse t r a n s f o r m a t i o n i n order t o express the e v o l u t i o n equations i n the physical plane. A n a l t e r n a t i v e is t o investigate t h e w o r k a b i l i t y of using the exact equation o n the t r a n s f o r m e d plane. T h e

(19)

Hamiltonian formulation H782 May 1994

exact H a m i l t o n i a n H a n d 7^(x,x') are given respectively b y (2.9) a n d (2.10).

S u r f a c e e l e v a t i o n C

For t h e e v a l u a t i o n o f SH/Scp we need o n l y t h e k i n e t i c energy p a r t a n d we have

6n_ST_

Since t h e variable x depends o n 7], we need t o r e w r i t e t h e exact expression of T p a r t l y i n terms o f t h e p h y s i c a l variable x t o be able t o o b t a i n t h e v a r i a t i o n a l derivative 8T /Sip.

Observing t h a t dxl^Px' = dx'fx'i we have

r=\jdxcpx jdx'<px'R{x\x;V) • (2-55)

. , 8r d f dT\ d f d r \

Since T has no e x p l i c i t dependence cp i t s e l f , we have — = " " ^ ^ \d(p ) ~ ~dx \dïp' a n d we o b t a i n

-f = - ^ dx'cp,>n{x,x') • (2-56)

8(p ox J-oo

A l o n g t h e free surface ^ = 1 we have -w^ = -t^tt- a n d therefore 8H/8ip can be e x a c t l y OX CIX

expressed as

dx (dx\~^

Since one has — = I —- subject t o t h e c o n d i t i o n t h a t t h e Jacobian is n o t zero dx \dxJ

( w h i c h is t r u e f o r t h e m a p p i n g used), dx/dx can be calculated exactly f r o m

(2.12)

or f o r a h o r i z o n t a l b o t t o m f r o m

(2.18).

T h u s ,

(2.57)

defines t h e e v o l u t i o n e q u a t i o n f o r ( e x a c t l y i n t h e t r a n s f o r m e d variables.

V e l o c i t y p o t e n t i a l <p

T h e exact e v o l u t i o n equation f o r (p f o l l o w s f r o m t h e free surface conditions t o be

where again a l l t h e derivatives can be expressed i n t h e t r a n s f o r m e d plane b y using t h e Jacobian o f t h e t r a n s f o r m a t i o n .

(20)

A n i m p o r t a n t p o i n t t o note is t l i a t the e v o l u t i o n rates, given b y (2.57) a n d (2.58), correspond t o t h e rates at a f i x e d physical l o c a t i o n x and n o t at a f i x e d %. A f i x e d X-node does n o t correspond t o the same x - l o c a t i o n due t o the change i n t h e surface elevation w i t h t i m e . For t h i s reason, the n u m e r i c a l values need t o be m a p p e d f r o m the set of x-nodes t o the set of the f i x e d x-locations and vice-versa at each time-step. T h i s is one o f t h e basic disadvantages of using the exact e v o l u t i o n equations o n the x-space.

(21)

Hamtlton'tan formulation H782 May 1994

3 Numerical evaluation o f t h e time-domain model

I n t l i e present chapter, we describe the n u m e r i c a l m o d e l w h i c h is based o n t h e f o r m u -l a t i o n s i n the p h y s i c a -l p-lane. T h e n u m e r i c a -l m o d e -l described here w i -l -l be -l a t e r referred t o as ' h a m i l T ' .

3.1 Regularised evolution equations

A s t h e integrands i n (2.38) and (2.54) are singular at a; = a;', regularised f o r m s are f i r s t derived i n a way s i m i l a r t o t h e one adopted i n Z w a r t k r u i s (1991). F u r t h e r , we derive a m o d i i i e d f o r m of (2.54) where t h e outer double integrals need n o t be n u m e r i c a l l y evaluated. S u r f a c e e l e v a t i o n ( W i t h dr ( l + £ ) r / we w r i t e

/

OO fOO d a ; ' A ( a ; ' , a ; ) l o g t a n h ! ƒ ( ? ] , £ ) | = / (ia;''y(a;')logtanh | / ( 7 7 , £ ) | --OO J — OO ^ T / X /•'^ , / l o g t a n h I f (7?,£) I , ^, K l + e ) , l w / _ ^ x ' ^ J | J i . (3,1) I t follows f r o m t h e d e f i n i t i o n of / ( T / , £) b y using L e i b n i t z ' s r u l e t h a t N o t i n g t h a t ƒ ^ oo as a;' —> oo a n d ƒ ^ — oo as — oo we can f u r t h e r w r i t e . o o ^ " ' [ ( l + £ ) ^ ] ( x O ^ ° ' * " ^ ' ^ ^ ' ' ' ' ^ ' = - y _ c ^ / l o g t a n h | / ( . , . 0 | = -TT . ( 3 . 3 ) delft hydraulics 15

(22)

U s i n g (3.3) i n (3.1) yields

/

OO da;'A(a;',cc)logtanh \f{x^x^) -OO T T K I + e)77](a;) +

/

OO da;''y(a;')logtanli|/(a;,a;')| . (3.4) -OO A l t e r n a t i v e l y ,

/:

dx'v{x')logta,niL\f(x,x')\ = - 7 r [ ' y ( l + £)r/](a;) roo + / rfa;'A(a;',a;)logtanh|/(a;,a;')| . (3.5)

T l i e i n t e g r a n d X{x', x) l o g t a n h | / ( s , a;')| is regular at a; = a;' a n d t l i e n u m e r i c a l integra-t i o n o f integra-t h e r i g h integra-t h a n d side o f (3.5) can be carried o u integra-t b y using a s integra-t a n d a r d n u m e r i c a l technique like t r a p e z o i d a l r u l e (or Gauss-quadrature f o r higher accuracy). T h u s , t h e s t a r t i n g e q u a t i o n f o r t h e n u m e r i c a l e v o l u t i o n o f t h e free surface is TT dx

/

oo rfa;'A(a;', a ; ) l o g t a n h I / ( a ; , « ' ) -OO (3.6) V e l o c i t y p o t e n t i a l (p

T h e double i n t e g r a l and t h e singular behaviour o f t h e denominator at x' — x" i n (2.54) make a direct n u m e r i c a l i m p l e m e n t a t i o n d i f f i c u l t . Expression (2.54) is f u r t h e r s i m p l i f i e d as f o l l o w s . DifFerentiation o f (2.54) w . r . t . t o x gives f i a gCx -1 „ d 1 ^ ] r dx' r dx"g{x',x") dx J J—oo Jx \ H /'OO --Bif-^ / dx' / dx"g{x',x") Z dX J—cx> Jx where g{x',x") f x ' f x " U s i n g Leibnitz's r u l e , one has

dx

/

X roo rx -7 /•oo dx' dx"g{x',x") = / dx'^ dx"g{x',x") •OO Jx J—OO dX J(jQ fOO + / dx"g{x,x") Jx (3.7) (3.8)

/

X roo dx'[-g{x',x)]+ / dx"g{x,x") ( 3 . 9 ) -OO J X

(23)

Hamiltonian formulation H782 May 1994 I t f o l l o w s f r o m t h e d e f i n i t i o n of g t h a t g{x',x) = -g{x,x'). Hence, (3.10) dx 7 nx rco rx poo - dx' dx"g{x',x") = / dx'[-g{x',x)]+ dx"g{x,x") X J—oo Jx J-oo Jx

/

OO dx'g{x,x'). (3.11) -OO W e r e c a l l f r o m (2.41) t h a t

/

°° dx'g(x,x') = -2{l+ e)wxCt. (3-12) -oo U s i n g (3.11) and (3.12) i n (3.7) we get f i x = -gCx + dBr j dx'{l + e)Wx'Ci J—oo dx + 5 i ( l + e)r]ipxCt. S u b s t i t u t i n g v f o r (px, (3.13) is f i n a l l y expressed as Vt = -gCx +

dx J—oo r dx' [v{l + e)vCt] + Bl [v{l + e)vQ

(3.13)

(3.14)

Expression (3.14) is t h e s t a r t i n g e q u a t i o n f o r the n u m e r i c a l e v o l u t i o n of v (or conse-q u e n t l y o f (p). T h e regularised set o f econse-quations is t h e n given b y

Ct = - ¬

TT dx

Vt = -gCx +

7 r [ ' u ( H - e ) r / ] ( « ) + / (ia;'A(a;',a;)logtanh|/(a;,a;')

dx J—oo r dx' [v{l + e)riCt] + Bl [v{l + e)v(t] •

(3.15a)

(3.15b)

I n t h e n u m e r i c a l code 'h a m i l T' , t h e derivatives i n the e v o l u t i o n equations are de-t e r m i n e d b y using a f o u r de-t h - o r d e r m i d - p o i n de-t rule^ a n d de-the i n de-t e g r a de-t i o n is carried oude-t according t o the t r a p e z o i d a l r u l e . Nodes are u n i f o r m l y d i s t r i b u t e d over t h e e n t i r e d o m a i n .

3.2 T i m e integration

T i m e i n t e g r a t i o n of t h e t w o e v o l u t i o n equations (3.15a) and (3.15b) are p e r f o r m e d according t o either an e x p l i c i t scheme ( E u l e r ) or a p r e d i c t o r c o r r e c t o r scheme ( A d a m s

-Lagrangian polynomial approximation based on discrete values at 5 nodes are used, with the node of interest being the middle one. Higher-order interpolation can also be later implemented.

(24)

B a s h f o r d - M o u l t o n , liencefortlx referred t o as ' A B M ' ) . F r o m k n o w n values of ( and v at a n i n s t a n t t, values at t h e next i n s t a n t At l a t e r are given i n t h e Euler procedure b y

C{x,t + At) = ((x,t) + A t ^ ^ ^ ^ + OiAty (3.16) v{x,t + At) = i ; ( x , i ) + A i ^ ^ ^ + 0 ( A t ) 2 (3.17)

where a n d Vt are c o m p u t e d f r o m t h e e v o l u t i o n equations (3.15a) a n d (3.15b).

For a n o r d i n a r y d i f f e r e n t i a l e q u a t i o n dy/dt = f ( y , t ) , t h e value of y At l a t e r is given b y a two-step procedure i n t h e A B M scheme:

= / + ^ (552/^° - 5 9 % - i + 37%-2 - 9%-3) ( g . i g a )

= ^ ° + i i^y''+^^y" - ^y^'+y^') (^-i^^)

where t h e superscripts denote t h e number of time-steps w i t h respect t o t h e present i n s t a n t , Ip b e i n g t h e p r e d i c t e d value a n d 1 t h e corrected one. I n t h e context of t h e present e v o l u t i o n equations, t h e p r e d i c t e d values of ( a n d v are evaluated f i r s t . T h e e v o l u t i o n rates (l^ a n d -yj^ are t h e n calculated f r o m (3.15a) o n t h e basis o f the cal-c u l a t e d C^ï' a n d v^P. Sincal-ce e v o l u t i o n rates f r o m three previous time-steps are used i n t h e A B M procedure, t h e e x p l i c i t Euler scheme is used f o r a f e w time-steps at t h e s t a r t of t h e c o m p u t a t i o n . For t h i s purpose, a m u c h smaller time-step ( f o u r times smaller) is used t h a n t h e i n t e n d e d time-step t o be eventually used w i t h t h e A B M scheme. W e n o t e t h a t t h e t r u n c a t i o n error is of O ( A t ^ ) i n t h e E u l e r scheme w h i l e t h a t of t h e A B M scheme is 0 (At^).

3.3 T h e choice of step size

T h e guidelines t o choose step sizes are as follows. T h e s p a t i a l step Aa; is chosen f i r s t based on some i m p o r t a n t p h y s i c a l l e n g t h scale of t h e p r o b l e m . T h e t i m e step At t h e n f o l l o w s b y considering a Courant-Friedrichs-Lewy ( C F L ) c o n d i t i o n : cAt < Aa;, or, f o r r e s t r i c t e d d e p t h ,

C F L = < 1 . (3.19)

T h e value of At depends o n t h e i n t e g r a t i o n m e t h o d . W e n o w take

E u l e r C F L < 0.5

A B M C F L < 0.8 .

W e use A B M i n t e g r a t i o n m o r e or less standardly.

For problems o f s o l i t a r y waves, t h e g r i d size m a y be determined o n t h e basis of t h e water d e p t h h. A n i n d i c a t i v e value of Ax/h f o r m o d e r a t e l y h i g h solitary waves is 1/5.

(25)

Hamiitonian formuiation H782 May 1994

T h e step-size m a y also be based o n the width of t h e s o l i t a r y wave. W i t h

'x - cV

C{x,t) = Hsech'

A (3.20) t h e w i d t h A can be e s t i m a t e d f r o m ^ . A (3.21)

As an example, f o r t h e case of a s o l i t a r y wave w i t h h e i g h t H = A m progressing o n w a t e r of d e p t h / i = 10 m , we have A = 18.3 m . Choosing Aa; = 2 m , we t h e n have 9 mesh p o i n t s over the w i d t h of t h e s o l i t a r y wave. Correspondingly, A t < 0.16 s.

For p e r i o d i c waves t h e smallest wave l e n g t h of interest should be considered. Consider, f o r example, a submerged bar w i t h the water d e p t h changing f r o m 0.40 m at the toe t o 0.10 m at the t o p and an i n c i d e n t t r a i n o f p e r i o d 2.02 s. U s u a l l y t h e t h i r d -h a r m o n i c component, w -h i c -h is generated t -h r o u g -h n o n l i n e a r i t y , is of i m p o r t a n c e f o r such problems. W e have t h e f o l l o w i n g wave lengths f o r t h e f o u r harmonics w i t h p e r i o d Ti = T / i at 0.10 m a n d 0.40 m d e p t h .

Ti

2.02 1.01 0.67 0.505

h

0.40 3.74 1.49 0.70 0.39 0.10 1.97 0.93 0.56 0.37

Table 3.1: Wave lengths Aj for the harmonics Ti = T/i, 1 , . . . , 4 .

W i t h Aa; = 0.10 m we have 5 p o i n t s per wave l e n g t h f o r t h e t h i r d h a r m o n i c at t h e shallower p a r t . A s e n s i t i v i t y test shows the difference between choices o f A a; = 0.1 m a n d Aa; = 0.05 m . For t h e smaller Aa; the representation of the smaller features seems t o be m o r e accurate t h a n f o r the larger Aa;. T h e general p i c t u r e of the t w o wave profiles is t h e same i n b o t h cases.

•^Foi solitary waves a.s resulting from different one-way equations, tlie precise form of tlie widtli A and the celerity c may differ, but these differences are not large (Dingemans, 1994b, section 6.3)

(26)

4 Spectral approach

I n t h e present chapter, we discuss spectral or pseudo-spectral s o l u t i o n o f t h e nonlinear water wave p r o p a g a t i o n based o n the explicit H a m i l t o n i a n m o d e l . One of the basic ideas b e h i n d a s p e c t r a l s o l u t i o n is t o i m p r o v e the n u m e r i c a l efiiciency of the s o l u t i o n b y achieving higher spatial r e s o l u t i o n w i t h a f e w spectral parameters. We h a d seen t h a t using a Fourier series over a f i n i t e span was n o t feasible i n connection w i t h the present H a m i l t o n i a n f o r m u l a t i o n s . O n t h e other h a n d , the constraint o f f i n i t e energy and the r e s t r i c t i o n of t h e i n i t i a l l y specified disturbance t o f i n i t e span p o i n t s t o t h e sinc-series as a n a t u r a l choice. W e discuss several possibilities of the n u m e r i c a l m e t h o d using the sine a p p r o x i m a t i o n .

4.1 Method A: a;-space

We recall f r o m section 3.1 t h a t the (regularised) e v o l u t i o n equations i n c l u d i n g the short-wave n o n l i n e a r i t y s are: 1 d \ Ci = - - T^[v(l + e)v]ix)+ / (ia;'A(a;',a;)logtanh|/(a;,3;') TT ax I J-oo (4.1a) - B l dx J—oo r dx'[v{l^-e)nCt]^Bi[v{l-^e)7jCt]. (4.1b)

I n t h e simplest a d o p t i o n of sinc-series, C,{x) and v{x) i n (4.1a) a n d (4.1b) can be a p p r o x i m a t e d t h r o u g h the c a r d i n a l series:

i = o

CM = E C i W « i i ^ c ( ^ ) , (4.2a)

vix,t) = E ^ i W ^ i ^ M ^ l • (4-2b) i = o

F u r t h e r s i m p l i f i c a t i o n is achieved b y recognising t h a t the f u n c t i o n

A(a;', x ) l o g t a n h \f(x,x')\ belongs t o the PaleyWiener class of B(Ax) ( L u n d a n d B o w -ers, 1992; chapter 2) and hence can be expressed b y the sinc-series, i.e.

A(a;', a;) l o g t a n h |/(a;,a;')| = E A | ( a ; ) s i n c f ^ ^ ^ ^ ) (4.3) i = o V Aa; y

(27)

Hamiitonian formulation H782 May 1994

\*Ax)

=

0, [x = jAx]

( i ) - % X ^ * ^ K ^ ) V o g t a i i l i | / ( a ; , a ; , - ) | [ x ^ j A x ] . ( 4 . 4 )

[1 + S j j t j j I

I n t i o d u c i n g t h e expression (4.3) i n t o (4.1a) a n d using t h e i n t e g r a l r e l a t i o n {e.g., L u n d a n d Bowers, 1992; p 2 5 )

/•°° . f x ' - X j \ , ,

/ sine •—;—- dx = Ax

J-oo \ Ax J

yields the f o l l o w i n g s i m p l i f i e d e v o l u t i o n e q u a t i o n f o r surface elevation:

(4.5)

TT dx -7r[v{l+e)7]]{x) + AxJ2^j 3=0

(4.6)

T h e replacement of (4.1a) t h r o u g h (4.6) is i n f a c t t h e same as t h e t r a p e z o i d a l i n t e g r a -t i o n . However, -t h e f o r m a l i s m o f -t h e sine series under -t h e a s s u m p -t i o n -t h a -t -t h e f u n c -t i o n X{x', a ; ) l o g t a n h \ f { x , x')\ belongs t o t h e P a l e y - W i e n e r class o f B{Ax) gives j u s t i f i c a t i o n t o t h e exactness o f (4.6).

I n t h e i n t e g r a l over (—oo, x] i n (4.1b) we n o t e t h a t the c o m b i n e d f u n c t i o n v{l + e)r]Ci can b e a p p r o x i m a t e d t h r o u g h t h e o r t h o g o n a l sine series since v,(i E B{Ax) w h i l e ( 1 + e) a n d 77 are b o u n d e d ( 0 ( 1 ) ) . I n t r o d u c i n g t h e series

v{l + s)r)Ct{x') = Y^[v{l + s)vCi]j sine

i = o Aa; (4.7) i n t o ( 4 . 1 b ) results i n t h e f o l l o w i n g s i m p l i f i e d e v o l u t i o n e q u a t i o n f o r v: -gC. + Bl [v{l + e)r)Ct]

+

- B l dx

jy{l

+ eU,]i

r

dx' j=o smc X x^ Ax (4.8) N o t e t h a t f o r x = A;Aa; a n d Xj = j ' A a ; t h e i n t e g r a l / dx smc — - — - = dx smc — — - -j- dx smc J-00 \ Ax J J-00 \ Ax J Jxi Ax Ax Ax r^^-j) sin 6» — + ^ r - ' ^ '-^dO ( 4 . 9 ) TT Jo

o

is t i m e i n v a r i a n t a n d can be easily c o m p u t e d . delft hydraulics 2 1

(28)

4.2 Method A: x - s p a c e

One o f t h e disadvantages of the m e t h o d using (4.6) is associated w i t h t h e e v a l u a t i o n of t h e i n t e g r a l f u n c t i o n f { x , X j ) appearing i n X j . T h i s can be avoided b y using t h e e v o l u t i o n equations i n x-space (Radder, 1992) given b y :

1 f°° TT

m = - dx'v(x')logtanli-\x-x'\ (4.10a)

TT J - o o 4

U n d e r the assumption t h a t t h e short-wave n o n l i n e a r i t y £ = 0, we have

1 r/r

Bl = ^ , .nd - = , . (4.11)

Expressing v[x) i i i sinc-series i n t h e u n i f o r m x - g r i d , the e v o l u t i o n equations become

m = E ^ i ^ i ( x ) (4-12a) i=o ^ = - ö C - ^ E E ^ > f c ^ i , A - ( x ) (4.12b) j=ok=o where Vj is t h e value of v at Xj = j^X a n d ^ i ( x ) = ^^X'sine l o g t a n h I | x - x ' | , (4.13a) A I smc

A x y V A x

(4.13b)

T h e integrals I j { x ) a n d I j j . { x ) are time-independent and can be accurately evaluated. N o t e , however, t h a t t h e e v o l u t i o n rates ih and cp are the E u l e r i a n e v o l u t i o n rates a n d do n o t therefore correspond t o the e v o l u t i o n rates at a fixed x - g r i d p o i n t . T h i s means t h a t a correspondence between the u n i f o r m x - g r i d and the s - g r i d has t o be made at each t i m e step unless the e v o l u t i o n rates of m and ip are derived at fixed x - g r i d p o i n t s .

4 . 2 . 1 E v o l u t i o n r a t e a t f i x e d x-gt'ids

(29)

Hamiltonian formulation H732 May 1994

dt ^ dt ^ dx dt

(4.14)

w h e r e dip/dt is t h e E u l e r i a n e v o l u t i o n r a t e o f ip (mass m or p o t e n t i a l (p). T h e convective t e r m can be expressed e n t i r e l y i n t h e x-space, i.e.;

a n d

dip _ dip dx _ dip dx dx dx Tj dx

dx] d dx , d r^i

dt dt J-oo dx

m dx, d [XJ , f^i . ,

/ -i-dx = T I / Vdx= Cidx •

J-oo ClX dt J-oo J-oo

(4.15a)

(4.15b)

4.3 Method B

I n t h i s p r o c e d u r e , one begins w i t h t h e expression f o r t h e H a m i l t o n i a n

/

oo 2^ ]^ roo roo rx

^gCdx - — dx J^^ dx'v(x)v(x')logt<inh- ^ dr

(4.16)

U s i n g the same sine series (4.2a)-(4.2b), t h e H a m i l t o n i a n H can be expressed as

^ = E e l A x - ; ^ E E ^ i ^ ' ^ ^ O ' ' ^ ' ^ ) (4-17) where

/

CO poo dx / dx' -oo J—oo smc Ax smc X - Xk l o g t a n h •

L

Ax ^' dr

T h e basic e v o l u t i o n equations are t h e n o b t a i n e d f r o m

1

dn

1

dn

m„ =

-Ax dvp' Ax dCp'

Hence, f r o m (4.17) and (4.19) one has

(4.18)

(4.19)

(4.20a)

(30)

Basic t o t l i e efficiency of t h i s approach is a s m a r t e v a l u a t i o n o f t h e i n t e g r a l r e l a t e d t o t h e k i n e t i c energy u s i n g t h e p r o p e r t y of t h e sine a n d l o g t a n h f u n c t i o n s .

4.4 Method C

Radder (1993a, a p p e n d i x A ) has s h o w n t h a t T , t h e k i n e t i c energy p a r t o f the t o t a l H a m i l t o n i a n , can be expressed i n t h e f o r m :

r =

Y.Y.^>mj-k\-Ax)

(4.21) j=0k=0

where

a n d Vj denotes v at t h e j-th p o i n t along t h e equidistant x g r i d or i n other words,

<x) = T . ^ ] s m c ( ^ ^ y (4.22b)

N o t e t h a t — k\; Ax) is exact (evaluated e x a c t l y on the x-space w i t h o u t using any a p p r o x i m a t e t r a n s f o r m a t i o n t o a;-space) a n d needs t o be evaluated o n t h e x - g r i d once at the s t a r t o f t h e c o m p u t a t i o n . T h e disadvantages of u s i n g (4.22a), however, become apparent i f t h e e v o l u t i o n equations are l o o k e d at.

4 . 4 . 1 E v o l u t i o n e q u a t i o n : 7]

Since t h e pseudo-spectral variables v^'s are n o t canonical, t h e e v o l u t i o n rates cannot be expressed as s i m p l e f u n c t i o n a l derivatives of the H a m i l t o n i a n i n t e r m s o f Vj's; i.e., t h e e q u a t i o n

^* = - ^ . j i = - 2 E ^ K I i - ^ ' l ; A x ) (4.23) V

Ax Sv;

i s n o t v a l i d . O n t h e other h a n d , t h e e v o l u t i o n e q u a t i o n f o r mass (consequently, surface elevation) s h o u l d be d e t e r m i n e d f r o m

. L \ - ^ Z 1 M (A9A^

AxSvp- Ax^Sv^Svj,- ^

(31)

Hamiltonian formulation H782 May 1994

k \ J

wliere rcj- denotes t i e ^-coordinate of the j - t h g r i d p o i n t o n the x-space.

4 . 4 . 2 E v o l u t i o n e q u a t i o n : cp

T h e expression

is exact f o r the p o t e n t i a l energy V where ( j denotes the surface elevation f r o m the s t i l l water level at t h e j-th p o i n t along the u n i f o r m a ; - g r i d . Using (4.26) and (4.21) the e v o l u t i o n e q u a t i o n f o r ipp becomes

f p = -sCv + ^ E E ^ d i - k\;Ax)^^v*vl . (4.27)

We have t r e a t e d the i n t e g r a l I{\j - k\; Ax) i n (4.27) i n v a r i a n t (on u n i f o r m

x-gi'id)

leaving the discrete t»|'s t o respond t o increments i n surface elevation ( j ( o n u n i f o r m x - g r i d ) . T h e derivative d{vjVl)/dCp can be c o m p u t e d i n the f o l l o w i n g way.

L e t xtj denote the j—th p o i n t on a n o n n n i f o r m l y d i s t r i b u t e d x - g r i d such t h a t a;*- = x ( x j ) a n d Aa;*- represent the s h i f t i n a;*- due t o A ^ p . Avj(Cp), the i n c r e m e n t i n v*j due t o ACp, is t h e n given b y

Av^iCp) = v(x) + Ax}) - vix}) = ^ x } ^ i x } ) +

T h u s ,

TrrV-iVi, = l i m dCp ^ ^ ACp^o

T h e order t o w h i c h d e p t h v a r i a t i o n and surface n o n l i n e a r i t y are e x p l i c i t l y accounted f o r i n the m o d e l depends on the f o r m of the a p p r o x i m a t i o n of the a c t u a l Woods t r a n s f o r m a t i o n . I n f i r s t instance, we shall use the r e l a t i o n = t] w h i c h gives

dx x{x) x{xq) + / rjdx- A n i n t e g r a l expression f o r dx^/d(p t h e n results: Jx d x \ . . dri , r ) d r ] l , P i 1 . f x - X p \ ^ ,^ 1 ^ ^ ) = / 1^'^X= / •7~-dx= / - s m c — - ^ ] d x . (4.28) dCp Jx dCp Jxl dCpV 7? V Aa; y delft hydraulics 25

(32)

4.5 Summary

T l i e procedure o u t l i n e d i n M e t h o d A eliminates a significant a m o u n t of n u m e r i c a l c o m p u t a t i o n b y u t i l i s i n g the properties of sine f u n c t i o n s . Besides, one expects t h a t smaller number of g r i d p o i n t s are r e q u i r e d t h a n t h a t i n the previous t i m e - d o m a i n m o d e l t o achieve the same degree of accuracy. T h e n u m e r i c a l efficiency o f M e t h o d B depends largely on how t h e i n t e g r a l E{j,k,'q) can be f u r t h e r s i m p l i f i e d .

T h e pxocedure used i n M e t h o d C has one d i s t i n c t advantage f r o m the physical p o i n t of view: the e v o l u t i o n equations are kept exact, the a p p r o x i m a t i o n being i n t r o d u c e d o n l y t h r o u g h the t r a n s f o r m a t i o n f r o m a; t o x a n d vice versa. T h i s allows easier m o d i f i c a t i o n of t h e n u m e r i c a l code t o i n c o r p o r a t e higher-order f o r m u l a t i o n s . T h e disadvantage is r e l a t e d t o t h e f a c t t h a t the n u m e r i c a l operations are d i s t r i b u t e d over u n i f o r m x - g r i d and x-grid i n v o l v i n g continuous i n t e r p o l a t i o n f r o m one t o another.

(33)

Hamiitonian formuiation H782 IVIay 1994

5 Numerical method using sinc-series

I n t h e previons chapter we discussed possible f o r m u l a t i o n s based on sine m e t h o d of w h i c h we set out the reasons f o r the choice of the e v o l u t i o n equations i n the x-space of M e t h o d A (repeated here f o r convenience):

Ct = 1 d TT dx -ir[v{l+e)r]]{x) + AxY^X] 3=0 Vt = -gCx + Bi[v{l + e)r]Ct] ^ " ^ E K l + e)vCt]j r dx' • n J OO

+

dx 3=0 smc , oo V A x (5.1) (5.2)

w i t h A* defined i n (4.4). N o t e t h a t t h e choice of the sinc-series f o r t h e g l o b a l ap-p r o x i m a t i o n requires t h e g r i d ap-points t o be u n i f o r m l y sap-paced a n d f o r x^ = kAx and Xj = jAx, one has

, , . f x ' - x , - \ A x A x r / dx smc — - — - = —— H / y_oo

V A x y 2 TT Jo

Ax . A x

ri''-^)

s i n ö

1"

de.

(5.3)

5.1 Numerical procedure

T h e n u m e r i c a l procedure proceeds i n t w o steps: c o m p u t a t i o n of the e v o l u t i o n rates a n d t h e t i m e i n t e g r a t i o n of t h e e v o l u t i o n . T h e r e are t w o available options i n t h e code f o r c a r r y i n g out t h e t i m e i n t e g r a t i o n : a f i r s t order e x p l i c i t m e t h o d ( E u l e r ) a n d a f o u r t h order predictivecorrective m e t h o d ( A B M ) . I t has been seen f r o m previous c o m p u t a -tions using t h e t i m e - d o m a i n m o d e l t h a t m u c h larger t i m e steps can be successfully used w h i l e using the A B M m e t h o d f o r t h e t i m e i n t e g r a t i o n of t h e e v o l u t i o n rates. T h e t i m e - i n t e g r a t i o n procedure is the same i n b o t h t h e models.

Before describing some specific aspects of t h e c o m p u t a t i o n of the e v o l u t i o n r a t e of sur-face elevation, we l o o k at t w o m a i n n u m e r i c a l operations, i n v o l v e d i n t h e c o m p u t a t i o n of t h e e v o l u t i o n equations. These are i n t e g r a t i o n of a f u n c t i o n over an i n t e r v a l a n d t h e e s t i m a t i o n o f t h e derivative at a n o d a l p o i n t .

5 . 1 . 1 I n t e g r a t i o n p r o c e d u r e

Consider the evaluation of

Ig = g{x)dx (5.4)

Jxi

(34)

where Xi is t h e x - c o o r d i n a t e o f t h e g r i d p o i n t i and g is an a r b i t r a r y regular f u n c t i o n . A Gauss-quadrature procedure is i m p l e m e n t e d i n order t h a t t h i s i n t e g r a l can be evaluated accurately f o r r e l a t i v e l y large êx. T h i s means t h a t t h e f u n c t i o n value needs t o be k n o w n at the i n t e g r a t i o n p o i n t s i n t h e i n t e r v a l [xi, S j + i ] . E s t i m a t i o n of these values is done t h r o u g h a higher-order a p p r o x i m a t i o n based on shape-function m e t h o d (see Zienkiewicz and M o r g a n , 1983 f o r the d e f i n i t i o n of shape f u n c t i o n s ) . I n t e r m s of the shape f u n c t i o n s A^;(/i)'s defined i n parameter /x, an a p p r o x i m a t i o n t o the f u n c t i o n g{x) is expressed i n t h e f o r m l=2m ^ ( « ( M ) ) = E ff(«(i-m+o)^K/^) (5.5) One can n o w r e w r i t e t h e i n t e g r a l Ig as

/=2m fl-tixi+i) dx

h=2Z9{i-m+l)l^ Ni{p)-r-dii. (5.6)

N o t e t h a t the order of t h e a p p r o x i m a t i o n is ( 2 m — 1) a n d t h e a p p r o x i m a t i o n of t h e f u n c t i o n over Xi < x < x^^i is based o n the discrete values of the f u n c t i o n at nodes s u r r o u n d i n g the i n t e r v a l ( i . e , , m number of nodes on either side of t h e i n t e r v a l are used f o r the a p p r o x i m a t i o n ) . I n a general way f o r b o t h u n i f o r m and n o n u n i f o r m grids m a p p i n g of a; t o yti can t a k e place i n a similar way ( k n o w n as 'isoparametric' approach) i n t h e f o r m

X{fi) = E ^{i-m+l)Nl{l^) • (5.7)

1=1

A simpler t r a n s f o r m a t i o n v a l i d o n l y f o r u n i f o r m l y spaced grids is

a;(/«) = + ^ ^ {fx + 1) . (5.8)

I t is convenient t o express t h e i n t e g r a l (5.6) over the i n t e r v a l [-1,1] f o r t h e Gauss-qua-d r a t u r e integrations. T h i s is Gauss-qua-done b y another t r a n s f o r m a t i o n , Gauss-qua-defineGauss-qua-d b y

^ = ^ ( , , ) + / < £ i ± l t i M ( f + i ) , ( 5 . 9 ) where M(xO = - ^ , M ( ^ ( W = ^ - (5-10) F i n a l l y , one has '=2™

nl dx da

= E Hi-m+l) ]_^^^-d{xW^^ Si-m+lll (5.11)

where

(35)

Hamiltonian formulation H782 May 1994

(5.12)

w h i c h is c o m p u t e d t h r o u g h Gauss-quadrature, is c o m p u t e d o n l y once at the s t a r t of t h e c o m p u t a t i o n .

5.1.2 C o m p u t a t i o n o f t h e d e r i v a t i v e

T h e derivative o f a f u n c t i o n at a g r i d p o i n t i is c o m p u t e d b y i n t e r p o l a t i o n f r o m i t s values at the adjacent g r i d p o i n t s f r o m the r e l a t i o n :

J2 wjf{i + l) (5.13)

where the coefficients w;'s are independent of i ( t h o u g h dependent o n Aa;) f o r u n i f o r m grids. T h e order of i n t e r p o l a t i o n is 2m (based on 2m + 1 nodes).

5 . 1 . 3 E v o l u t i o n rates

C o m p u t a t i o n of t h e e v o l u t i o n r a t e of v f r o m (5.2) is r a t h e r s t r a i g h t - f o r w a r d using the i n t e g r a t i o n and derivative procedures j u s t described. C o m p u t a t i o n o f the e v o l u t i o n r a t e o f surface elevation needs some specific considerations.

C o m p u t a t i o n of t h e t e r m A | (see E q . (4.4)) involves the expression

l o g t a n h | / ( a ; f c , a ; j ) | = l o g t a n h

L

^* dx ( l + £)7? • T h e i n t e g r a l argument of l o g t a n h is evaluated t h r o u g h where / = 1,2,. (5.14) (5.15) _ dx , n (5.16)

I t is f u r t h e r t r u e t h a t the value of decreases r a p i d l y away f r o m t h e p o i n t i due t o t h e l o g t a n h operator. I t is possible therefore t o l i m i t t h e s u m t o smaller n u m b e r of nodes, e.g.,

3=n

j=0 3=i—p

(5.17)

(36)

0.

-2 -1. 0. 1. 2. Figure 5.1; The function logtanh(a;)

where the m i n i m u m value of (i - p) a n d the m a x i m u m value of (i + p) are l i m i t e d b y the c o m p u t a t i o n a l g r i d p o i n t s used. T h e i n d e x ^) at a g r i d - p o i n t i is calculated b y using a simple c r i t e r i o n based o n the l o c a l water d e p t h

pAx

> Rl (5.18)

where Ri is an user specified l i m i t . T h e value of Ri should never be lower t h a n 3. I t i s , however, safer t o use a somewhat larger value (say a r o u n d 10). T h e behaviour of the f u n c t i o n logtanh(a;) is shown i n F i g . 5 . 1 , where i t has t o be u n d e r s t o o d t h a t at a; = 0 an a s y m p t o t e is present. Here t h e g r a p h is such t h a t we stay clear f r o m a; = 0 b y 0.005 u n i t s .

5 . 1 . 4 E n d t r e a t m e n t

T h e basic f o r m u l a t i o n s w h i c h c o n s t i t u t e t h e n u m e r i c a l m o d e l here are based o n an i n f i n i t e span. T h e v a l i d i t y of a finite c o m p u t a t i o n a l l e n g t h rests o n the f a c t t h a t t h e entire wave a c t i o n is contained w e l l w i t h i n the finite span. T h i s is difRcult t o meet i n practice i f the c o m p u t a t i o n s are t o be r u n f o r a l o n g t i m e of wave p r o p a g a t i o n . A proper p h y s i c a l t r e a t m e n t o f t h i s p r o b l e m , t h o u g h r a t h e r i m p o r t a n t , is n o t y e t u n d e r t a k e n . I n t h e f o l l o w i n g , n u m e r i c a l aspects of t h e 'end t r e a t m e n t ' are b r i e f l y described.

T h e procedures used f o r c o m p u t i n g the integrals and derivatives as described earlier assume t h a t t h e required number of g r i d p o i n t s are available o n either side ( o f an i n t e r v a l or a g r i d - p o i n t ) and are therefore n o t s t r i c t l y v a l i d at t h e ends. T h i s means t h a t the procedures need t o be m o d i f i e d at the ends. A n a t t r a c t i v e a l t e r n a t i v e is t o define the necessary n u m b e r of a r t i f i c i a l g r i d - p o i n t s t o be able t o use the same procedures f o r a l l t h e r e a l nodes. Presently, the f u n c t i o n value ƒ at an a r t i f i c i a l g r i d -p o i n t x"- is defined t h r o u g h the sim-ple r e l a t i o n :

/(^") = f i x ' ) (5.19)

where x'^ is t h e closest real g r i d - p o i n t . T h e a r t i f i c i a l g r i d - p o i n t s are also assumed t o be equidistant i n t h e same manner as the r e a l g r i d p o i n t s . T h o u g h the simple f o r m (5.19) can be m o d i f i e d , i t is n o t considereded r e a l l y i m p o r t a n t w i t h t h e a s s u m p t i o n t h a t the wave a c t i o n should be non-significant near the ends.

Cytaty

Powiązane dokumenty

As Hesperides was the ancient mythological names for the Casperia or Hesperia (Kashmir) Atlas was in Asia. Prometheus, the brother of Atlas, may be considered to

chiczny oraz poświęcony na to czas. Koszty te związane są nie tylko z samym aktem zmiany miejsca pracy, ale także z adaptacją do no­ wych warunków. Istotną rolę w

Jednym z kluczowych problemów teorii i praktyki społeczno-ekono- micznej jest przełamanie bariery psychologicznej utrudniającej przy- stosowanie się kierownictwa i załogi

Sformułowana w 1996 roku prośba Herberta o pełne, odpowiadające polskiemu oryginałowi niemieckie wydanie Barbarzyńcy po- dyktowana była, poza odautorską intencją

Kiwka zdaje się nie podzielać przekonania, że filozofia jest pozna­ niem li tylko „poznania”, że jest odczytywaniem sensów jedynie i to sensów przez podmiot poznający

Based on the obtained data, it can thus be concluded that al- though setting constants in elastomer material models based solely on one ma- terial test (e.g.

From the tufts and the wind measurements it became apparent that there is a turbulent region directly above the roof surface and that the path angle of the wind is effected by