• Nie Znaleziono Wyników

Tungsten-tin-molybdenum mineralization in the Karkonosze massif

N/A
N/A
Protected

Academic year: 2022

Share "Tungsten-tin-molybdenum mineralization in the Karkonosze massif"

Copied!
28
0
0

Pełen tekst

(1)

Vol. 25, No. 3

acta geologica polonica

Warszawa 1975

ANDRZEJ KOZLOWSKI, LUKASZ KARWOWSKI & WIESLAW OI..SZYNSKI

Tungsten-tin-molybdenum mineralization in the Karkonosze massif

ABSTRACT: Ore rn.ialeraliza1lion

an

the 2lO!I1e of aplo.g;ranites irn the NW part of the Karlronios;ze ma'SISIilf (Sudetes MIts), paIrtly metasromatized by Na-bearing solutions, and in quartz veins, reveal a l~y ldst of minerals, such as WiOIlm'amirte, cass:iterite, molylbdendJte, sehee1ite, mative ,bismuth, bdmluthiirt;e aI1lId bismUlth s'Ulifrasalts.. StudIes of f,lIudd irnclusions revea,l the crystalld.zaltion oonditions as: pressure aIbou,t 700 aim,

tempera,tur~,4()5--a7I5°C

m

the" pneUIllaltoly1lic stage and, after, 'C'ClIIlIderuSation, f.r0lU

~:5°C' down

to

abOut 100°C r(,hy,dJrothennal stage). The mineral assemblaee, as well

aSthe.seQ.uErnCe

· andClOlllditionsof crystal.ldization a.retypical <Of the

ma.loriity

of

, W-Sn-Mo derposi.ts.

INTRODUCTION

In mai'ginal zon.es

of

the Karkonosze g·rmitoid m.aa:df (Sude'tes), the W-Sln-Mo

minreralrimrtiorn

has been

:fround in

arplogranite and associated quartz veins. The mineralWed 8plograndtte is exposed :art a

granite

quarry, about 4 !km wrestaf Szk1a:rska

POlI'~ba (cf.

Fig. 1 and Karwrawski, OlBzyitski

&

KozlowSki 19'73). The

aplo~niJte{monronitic

granite contact

is

clearly intrusive. Ore nrlnertlls appear

mQi,nly

in quartz veins

0CCllIl"1ing :i!n

deeper

~rtsof

apk?gmnite and

rthey

are di&gemj;na,ted maplogranite especially iriSide nmnetous

sma1i1voids.MIDeta~veins

are 0.5 to 2.5 cm thick (Flg.2) ~nd dipp~declivitatiSly at a strike of about 40 0:

Ackn01pledgem:ents. The writers feel indebted to Dr. A. Nowakowski and A. Barczuki,M. Se.; for their kinrd help in petrographic investigations. Thanks are a1sOI due

. to:

Dr .. P.' ZaWidzki aind T;Wes'olow's'ka, M. Se., for f3()~ spectro- i'f1lphj:caI d,eteli:mina ti~~

(2)

416 ANlDH~ roOZ'LOWlS!KI, l.UKAISZ KAiBlWOWSKI & WJESl.AW OI.JSlZY~1KI

. : .. " l

o 10km

xlelenia Gora x x x x x x x x x x x x x x x x x x x x x x

. Fig. 1.

Sketch-map

'of 'flhie' kaa:k.Ooosze massif

, ! > •

.-.-.~

· d)

(

i

\

~1 .

Ix xl2

1ZX13

·~4

E:35

~6

• 7

1 - aplogranite, 2 - granite, 3 - rock series of the Kaczawa Mts, , - metamorphic series:

of eallttem crust of the massif, 5 - Izera gneiss, 8 - mica schist and hornfels, 7 - granite qlUll'll'y wWth ore.Jbearlng IliPlograJIJMes at Szldamka Por~ Hwta

INVESTIGATING METHODS

,The are paa:-ageneses were studied by the. methods. of a. traIismitted and reflected ·Ug'b.!1; mica:'lOlSOOiPY. Temperatures were measured by the homOgandmtion8lIld decrepitation of flUJid dnc1usd.ons. ~tiIOri. temperatures were taken :kom Naumlov (1968) or determined iby the DT A met.1rod usiJng the MOM de:rivatog·raph.

Pressures were found from the homogen.i:zation and decrepitation data by 'the Naumov & MaliniJn ([968) method. The X-ray analysis was made on the DRON Wffractometer us.iJng CuKu Il'adiatim, ~, ~R,absoa:ptdKl!nspectra

were

taken on the UR - 20 spectr:ophotometer . . The wolframite deMity was determined, by the picnometell' methiod, s,t 23°C. The' oomposi.!fliJon was atnalyzed by the chemicaiJ. and spectral emdSSdoo' methods. The chemical' OOIInpOlSitioo of induaionswas determined after KaJ.yuzbillY'i :(1960) by the method· oIf water lea'chates.

PETROGRAPHY

Aplogranites differ macro-: and mi~rOscopically from the ~urrounding

mon2lOnitic

g:rwrlite. They a:rIe

enriched

ID

.quartz, slightly also

in plagio-

c1ruse, but are pooI'Ier in biotite and pau:tly in potassium fel!dspar. The last-

-named is

often

twinned andperthitized,

and

SOIn-etimes larger albite

patches become dhessboarded (Plo 1, Fig. 1). PlagioclaseiS (oHgoclase to

andes:ine) have out'er

rims oansi.St:ing

of a'lbite (PI. 1, Fig. 2). In addition,

the metasomaJtic a1bite (PI. 1, Fdg. 3) occurs together with a strongly

(3)

TU,NGlS'N;oN-TlIN-MOLYBDiEINiUIM MDN~A.UIZATION 417

chloritiz.ed hioti'te. There also Ql0Curs primary chlorite of the hydrothermal origin {PI. 4, Fig. 3). Quartz ilS P~I"tly simi'lar to that f,ram granite and parily forms granOlphyrk intergrowths (PI. 4, Fig. 1). The Il'ock is cut by quartz veins that hear ore minerals (PI. 4, Fig. 2) and relics of feldsparG.

Accessory minerals as epidoite, sphene, apatite and ziroori, are suhordinat€.

FLUID INCLUSIONS

Some generations of flu,id in.clusi'ons were iOUll1d"

un

quartz and cleavelanddte of pegma1tites :in !gIr·alllite an.d of vetiJns and drug,eo; b~CH'jng ore mineral,s in aplogranite (PIs 2 and 3-). Hiomogeniza,tion temperaltures and dndusdon generations are given in the explanations .of Plates 2 'and 3. The inclusdoo studies reveal -in the ea['ly stage of min€!l'aloization the existence of pneumatolytk conditions W1ith the resulting coodensation at 'tempa-·a,tures betweell' 380. and 37o.oC. The well develoqped hydro- thermal stag'e lasts down to teIlllPera1tlm'es low€!l' than 1,lo.oC. At temper.atures of about o.OC neither CO2 nor salts were found; the para:geneses crys.taUdzed from relatilV,ely strongly diluted solutions ,bearing Na, Ca, K, AI, Cl '(n.1o.OO/0), Li, Fe, F (n ·11>- 1 0/0), Ba, Ga, Ti, Mn, W, Bi, BOgS- (n· 1():-2 Ofo), Mg, Sn, Be (n· ilo.-3 '0/0). In quartz grains of apl;og['anite" the 'V'ery small linclu.sions (tenlths of m:iorometer in diameter) probably oontadn a s<i1ica'te melt. In addition, all kinds of inclU's,ions, occurrin.g in ore para!g'enese'S" wereag;<;ertain~d in the same grains, ..

Fig. 2. Aplogranite with vodds a.n.d qUaJrtz veins; in veins relics of feldspars (white) are y.l-sible; X Ui'

(4)

A decrepitation analysis was performed IOIll WQJitamlite, cassliterdlile, molybdenite, ma'gnetite 11, pyrrrhotdte, chaJ.oopyltte I, bismuthite, pyrite, feldspwr :f.rom vu,gs and

quartz (Fig. 3). '

...

o ·c

':.,:.

n 100 200

1100 ( \

1\ ' AA A

JV

V

'J~

~" G;?" ,

'.:.:.:. :.:.:.:.:.:.:.:.:~:.:.:. :.:.-;.', .

: :;: ': :

:': ~

' : '

~::::':::'

: ::. :

.

: ":::::;: ':

. .

.

. . . . . .. ..... .

...

, ' ~ " ', '

. ..... ,: : '.:'. ,: ......

: ;

..

, ,"',~ ~~~'

',,,'~

t. 300 "£: 400

A

JOO , ' 600

,

'Flg;3.~phs

of mmeraIa

from S~rska; Por~ Buta '. " ,

• - wolframite (DT A ,curve' enclosed), ' b : ... 'cassiterlte. c - molybdemte ~enerationr.nd ,11) from ve1ns,d - magnetite ll. e -pyrrhotltefrom vo1ds(I) imd'from veins' (I1), 'f -

ch&lcO-

pyrite. • .:... bismutbite (DT A curve enckleed). h' - pyrite. 1 - felds,pat' ~l'om void, j"':: quartz ,fJ;91iD: voId; temperature range above' mineral oxidation is, dotted; on, the .1ntensi.~r~. one

, "., , " ,' Bect1ODeq~, one Impulse ' , ' , , ,., '" ,

(5)

ACTA GEOIIJOGICA PQLOINl,CA, VOL. ·25 A. KOZI:.OW.SKI & aI., PLo 1

1 - Perthite partly altered into chess'board albIte; nicols oblique, X 120.

2 - Olig.odase An17 surrounded by thrin rim of alhite ~; ni-cols crossed, X 70.

3 - Pseudomorph (i'runer part strongly sericitized) of albite Atno after primarily zonated plagioc:lase; ni-cols crossed, X 110.

(6)

Fluid iiIlIclusions· In qualftz from pegmatiltic muses., X 1000: 1-4 - liquid-gaseous, Th 400-360oC, I g€'neratiOlJ1; 5-7 - ,gaseous-liquid, Th 3'60-3-00oC, Il generation;

8-10 - g,aS>eOus-liquid, Th 270-200oC, III generation; 11-13 - gaseous-Uqui<l, Th 160- 110°C, IV ge:neraltion

Inclusions in cleavelandite, X 2000; 14 - .gaseous-liquid, Th 290°C; 15-16 - gaseous- -liqudd, Th 80°C

(7)

Fluid iiIlIclusions· In qualftz from pegmatiltic muses., X 1000: 1-4 - liquid-gaseous, Th 400-360oC, I g€'neratiOlJ1; 5-7 - ,gaseous-liquid, Th 3'60-3-00oC, Il generation;

8-10 - g,aS>eOus-liquid, Th 270-200oC, III generation; 11-13 - gaseous-Uqui<l, Th 160- 110°C, IV ge:neraltion

Inclusions in cleavelandite, X 2000; 14 - .gaseous-liquid, Th 290°C; 15-16 - gaseous- -liqudd, Th 80°C

(8)

ACTA GEI()II.;OGI'CA POLOlNl'CA, VO'L. 25 A. KOZLOW.sKI & al., PL. 4

1 - Granophyrk s·tructuxe of a'plo.j5['.anirte; ni.cols cross·ed, X 80.

2 - Grains ,of me miinera'l (p.nobably woliramite) in quartz vei:n-letcuttiJng aplogran:i.te;

ni'cols obJoique, X :1.20.

3 - Sphel'olitk aggregates of hydDothermal <:hlorite (in central part), s=oUlIlded by strongly seridtiz'ed perthites; nicols oblique, X 100.

(9)

LncJ.wioos homogenizing at temperatures about 3(1)oCyielc;led pressures of 725 atm (± 1(10/0) amdthose horn.ogen.izlng 6It about 2OQOC - 660 atm' (± If1'/,).

MAIN MINERALOGiCAL AND GEOCHEMICAL FEATURES

Th:er.e occur some differences

in

chemical composition between the mon:zonitic granite and

aplog.ram:te (Table 1).

The

lartter is

enriched

in

SiO!

and

aakalies

and

beam lower amounts

of

TiO!, FeC, FE':IOa,

CaO

and

MgO,

probably resulting from.

primatry

differences

af patrent

melt and

mOlderalte sodium metasoma.tosis.

Component Monzonit1c Aplo- gran1te' granite

5102 72.)2 74.61

'A12O) 1) .10 14.22

Fe20) 1.91 0.59

lteO 1 ~86 0.5)

.

MgO 0.58 0 .• )8

CaO 1.48 1,00

Na20 ).00 ).50

{' K20 4.86 5.04

T10 2 0.17 0.04

MnO 0.04 0.0)

Table 1 H2O+ 0.46 0.)5

H2O- 0.17 0.10

I

Total 99.95 10P.)9

I

.. Chemicaic()lmp6si:ti~Of mOin:zlotnd;tk

i grarUte

and . aplogt-aJlldte (wt. 010) · ' .

T'race

elements

ofbiotites

(Table 2) indicalte,

that 1Jhe origin of aplogranite was simi1m to that of pegmatites rather than to 'the sensu.

stricto magmatic

grani't~crystallization.·

The

tinCO'Iltent

of ,the biotites supports the

SUppositi'Oll thia.t ~t

rooks,

in par:ticulaT aplOig'l"anites,

ace tin-bearing.

Table 2

Trace elements !In biotites (wt. %) Analysed by Dr. P. Zawidzld

Element

Ba 5r So Cr Co N1 V

SD

.Pb

B10tite

·from gran1te

0.08 0.00)5 0.01) 0.012 .0.0015

0.0025 0.0) 0'.02 0.002

B10tite from B10titee from aplogran1te pegmat1te

0.008 0.005 0.005

0,0058 0.00)) 0.002

0.012 0.014 0.028

0.001 0.001 0.001.

0.0008 0.001 0.0008

0.001 0.0012 0.0015

0.006 0.018 0.007

0.0)5 0.016 0.022

0.002 .. ." 0.002 0.002

(10)

AlilJOilg

'the trade elenieirts

,of tpyrilte

and chalcopyrite (Table

"3),

the distinot dOtriilDatian of c.OoVier " Nlseems to result

:firom

a relatively high temperatul'e

of

the origin

of

these 'sulfides

(ef.

Po!ailski

&

Smulikowski 1969). The relatively higher

amounrt; ·of gallium

in sulfides, particularly in pyrrhotite, 15

aJppalrelIlt

here. " The presence

of

such elements as Ti, Zn, Ag,

eu, Mo,

Mn,

Sn, Bb,

As

a:nd Sb may

be caused

by

mineral inclusions or

by

struCtllrral admixtooes.

Ele"ment· "?yrrhot1te " "~yr1te " Chalcopyrite

Co 0.007) 0.02 0.01

Ni 0.0046 0.00)9 O.OO~)

" T1 0.01)0 0.0096 0.0095

Zn 0.021 0.011 0.022

Ag 0.002B 0.0054 0.1

Cu >1 >1 >10

V 0.0059 0.0012 0.0029

Mo 0.0015 0.0012 ~.002

Mn O.OOB 0.0042 0;021

Ga 0.011 0.004B 0.0054

Sn 0.0087 0.0022 0.014

Pb 0.017 0.05 0.04&

As 0.00 0.02 0.02

In -0.001 -0.001 -0.001

Sb -0.001 -0.001 - 0.001 Table 3

Not detected: Ge, Tl, Cr, Au, W, Y, Cd Trace elements.in" SlUoIfides (wt.Ofo) Analysed by T. Wesolowska, M. Se.

-

The anaiysis of wol£ramites (Table 4) reveals that they are true F.e,.jw:olframites,

poor in

Nb, which, 'howev,er, strongly prevails over Ta as a I'Ie'BUlt

of

crystallrimtion

in

rockssubm1tted tJ() a sodium metasomatosis.

Table 4

Chemical oompositio.n <'Y't. ~/o) and" densirt;y ofwolframites from Szklarilka Par~ba Huta " " " "

" "

Wolfram1te Wolfram1te Wolfram1te 1ntergrown from v01d from vein w1th soheeUte

from vein

FeO 1B.11 16.42 1) .6

MnO 5.)1 7.01 5.B

WO) 76049 76.48 7).8

CaO t·rape.s traoes 2.7

iDsoluble

.

in aqua

reg1a ,..

-

) .1

Nb 0.001-0.01 0.001-0.01 0.001-0.01

Ta 0.00 0.00 0.0001

So O.ooj 0.00) 0.00)

MnW0 4 22.6 29.9 24.7

CaWOi :

- -

1).9

Dens1ty"

g/cm3 " 7 •. 26 7.14 6.85

'"

(11)

TU,NJGIS'Nm-TlJN-MOILYBDimN'U!M IM1INERALIZATlON

421

During pneumatolytic-hydTdtbermaJ. processes, Nb is usuaUy accompanied by Se, which also accumulates in wolframites. Determined an:rou:rl!ts .of Se set in ranges of 0.001 to 0.01010, are most wequently reported in literature (BaTabanov

& Syriltlso

1966; Syritso 19, 67; Ma'kiS1miuk 1971;

Sotnikov

&

Nikitina 19171). On the dia!gram: wolframite composition

ve!rSUS

wolf:ramite density (Fig. 4), the studied mIiin'eral falls in the area poor

lin

NIb-Ta admixtul"'es and

wirt;h

lowerred denSity.

1.6

CD-

7.4

~ c;:

7.2

OD

:>.

-'-'

(/)

c:

Q)

=7.0

6.S

6.6

o

.1

©2 03 04

CD Oana&Oana 1945 121 Barabanov 1961

if) Barabanov cl.Syritso 1966

o

Maksimiuk 1971

=

Dendias &. WalencZak 1958 e Sotnikovtl.Nikitina 1971

<SI Syritso 1967

® Tet yaev 191B. Barabanov 1960

20 40

©

©

% MnW0

4

IllS

100

Fig. 4. Rela1li<mShiiJp between oompiOl3litlon and densttty KJjf wol:fu-amite (after BarabanQv

& Syr:itSlo .1006; Maksdmiuk 1971; changed and completed)

J - N.bA amount 0.~.13 wt%, 11 - 1Nb205 alDltOUIllt o.31~.7 w.t%. 111 - N'btO& amOlll'nt

>

0.71

wt%

1 - wolframltes from Szklarska Porllba Huta, I - Nb.OG amount inside adequate ranges, 3 - NbIO, amount lowered, • - NbtOG amount hlghered

The IR-absarption analysis {Fig. 5) allows one to asceirttain that the tungsten mineral is Fe-woIfu-amite (low intensity

of

42' 5 and 460

cm-1

bands, cf. Moenke 1960) wilth vatrying admixtuTe

o<.f

scheelite, as. indicated by the balIld 445 cm-

1.

The I"€LS'Ul, ts of the above in'Vestigatioos were confirmed by X-ray

powder

patterns (Fig. 6a), due to

which molybdenite and bismuthite were

also !identified (Fig. 6b and 6c).

8

(12)

422 ANlDR/Z;EJ KiOzt.OWISKJ:, l.UiKAiSZ iKARWIOWtSKI & W)!ESl.AW OlJSZYN"SKI

MINERAL SUCCESSION

WolkamUe and sC'heeLite occur both Iiin quartz veins (Fi,g. 7) and voids of apl.oglramte. The wolframite OI"Y5tals lID veinsaa:e ,:zJ<mated, up to '50 mm long (PI. 5, Figs 1-<3) aII1d usually etrhelkaI. In .a{Plogtraalii.,te, wolfr,amite forms anhedral crystals without 2lonatiKm (PI. 5, Fig. 4) anJd it appean; in aggregates reaching 3 cm in diameter. Woliramite ds one of the earldest minerals tin ore paragenesds and OIllily in its [ailer stage it orystall::Lzes together wdth cassiterite, mol;ybdenite,scheelite and pyrite. Scheeli'te w.as formed paa:tly ,by the aJ.teration of wolf.ramite (PI. 6, Figs 1, 3 and 4) anJd :liilled 'the interstd'Ces between. wolfr,amd;te grains (PI. 7, Figs 1 and 2), being usua.1l.y younger thoo wolframi'te and jjn part syngenetic wdth its last crystals.

1000 900 800 700 600 500 400

v,cm-

1

Fig. 5. The IR-absorption spectra of tungsten IllIinarals

a - wolframite 82.24% Mnwb" Kalgutinskoe, USSR (Sotnlkov & Nikit1na 1971, sample 123), b - 'WIIllfiramill:e 36.42% MnWO" Bugu.zWllSlroe, USSR (ibidem, sample 12), c - wolframlte No.

IGMiP 2057, Tinh Tuc, Vietnam, d-wolframite from vein, 29.9% MnWO" Szklarska porl:ba, e-'-f other wolframites from veins, Szklarska Porl:ba, g - wolframite from void, Szklarska Porl:ba, b - scheellte No. :IGMlP 3490, Clnovec, CSSR, i - scheelite No. IGMlP 3488, Atolia, California, j - huebnerite 93.7% MnWO" No.

157, Paszowice

KBr pellets, 0.66 mg of sample per 1 cm2 of pellet

Cassitel'lte OCCUliS together wdth wo];framite iIlJ. veins or in aplogtr>an.ite, sometimes fOlIlllUng tw1i!n:ned crystals .(pJ.. 6, FU.gs 2-4).

Molybdend1;e in qll'aJl'Itz veins m'Y5tal1ized after magrretfte II, i1nter~ng with bismUlthite and bilSlmuth sul'fosalts (PI. 7, Fig. 3; PI. ,10, Fig. 4; PI. 1:1, Fdig. 1). It was

(13)

TUN1GSTiElN -TliN -MOL YBlDEiN,UlM MI:NEBALlZAT]ON 423

formed together with pyrrhiltite (PI. 7, Fig. 4), chalcopyrite I, native bismuth I, and, .partly, wiJth mal WIOliflI".amite ClI"ystalS and sohe'eLite.

Pyri,te ·crysta1li71ed as euhedral or a:nh-edral ClI"ystals (PI. 7, Fd.g. 2) ,coeval with pyrlI"lrotite and chaloopyrlte I (PI. 9, Fig. 4).

Ma;gn.etHe fOlI"ms two geneNl!tilOlr:Js; the fimst occurs only :in aplograndte as intergrowths w.ith Hmendte lamellae GPI. 8, Figs 1 and >3). Microsoopic d!ll.ves1li.gations reveal that these rflwo minerals do not jjQlI"llIl exs.olutiJOn stcuctures, although magnetite I j,s a 1Jitaniferous 'Variety, but that ilmeiIl!ite lamelJ.a'e c:rys·talli:red pI'li.malI"ily in biJOltHe wMch aftelI"wwds turoed w.1lo ch101l1ite (PI. 8, F\iigs 2 a:nd 4). Post-biotitic chlorite was replaced 'by magnetite I, afterwards fOlI"ming with ilmenite Sitructures of pseudoexrolutkm. SimIi.l8ll" d'lmeni1:e lamellae occur 10. p~rhotiJte (Pt 9, F'ig. 1). In the neighbdOOiood of pyn<hot.i1ie m!lJg'Ille'tLte I probably passed

into

magthemite.

Mag!lletite II wequenttly occurs in quartz veins wdth mush1retovite (PI. 19, Fig. 3;

PI. 11, Fig. 21) and bealt"'S a minor amount of Ti.

Pyl"lI'hOlbIte often IOOOUrs as lamellae of twp varieties (monocl.i.in.ic and hexagonal, cf. Arrnold 1969) in one OOffiiPOSiJte gadlll (PI. 9, F&g. 3), neighbori:n.g wd1Jh .~ of simple, i!liOIIl~aamehlar structure. 'I1hds minercd was jjound togeth'er with chalcopyrite 1 (pI. 9, F1ig. 2), pyrilte (PI. 9, F1i:g. 4), natdvebiiSlmuth I and malybdendte (PI. 7, Fig. 4), when the p.l'ecipitati'Olll of wolDramite was closed. Pytthiotite i's ojjten replaced .by melni.,mQlVi1le, then turned i!llto pydte (PI. 8, FigsG and 4; PI. 7, Fig. 4).

ws

w w

c

70 65 60 55 50 4540 35 30 25 20 15 10 . 5

28,°

Fig. 6. The X-Il"ay powd€iI"

paottanns

of minerals :fu:mn Szklalrska POIr~ba Huta: a - wolfnlmite (w) w.ith scheelite (8), b - molybdenite, C - 'lJlismuthdte

(14)

424 A'N'DRZEJ KOZJ:,OWiSIK.I, J:,UIKAJSZ KARlW'OW,SKI & WI.ElSLAW OiUSZYNlSKI

Chal'CIOlpydte tOCCtH's as !two ,generatiQ[1s. The firsi is aniso1;['o,pd·c, twinned and bearing indus'ioos IOIf sphaler,ite I(PI. D, Fig. 2). It occurs in para,genesis wilth py·rite, bi,smuthite, bismuth su1fosalts and IIlJOIlybdendte; it is subsequent 110 magnetite II (PI. ;11, Fdg. 2). The second, mo.t.ropdc, oc-curs ID altered parts of Bi-:sulfos-alts in paIl'agenesois with natLve bismuth II.

Sphoaleni!te is dark and mostly flOrms dJnoCIusJons Ln chaloopyrlite I (Pl. 9, Fi:gs 2 and 2a). It was also found as small grams nieall' chaloopyrite (PI. 10, Fig. I), and then it contams small inclusions o·f ohaloopyrdte.

Native bismuth, vall'JJety I, primaraIy origina·ted in liqu.id state, as indi,cated by ch.aractell'istic ·twins (Go.dovdkov & KolQ[ldJn 19615); it OCCUI"S between quartz grains {PI. 12, Fig. 2), inbds'ffiu'bhiJte gIl'ali:ns (PI. W, Fig. 2) and inside bismuth sulfosalts (PI. 11, Fd;g. 3). Variety II was round d.n fine-gnmed aggreg·ates in altered PM"ts of bdsmut.hi'te 'QIl' Bi-sul.fosa[tg (PI. 11, Fig. 2).

Bi'Smuthdte was :fjoc'ffied later than ma.gnetite II (PI. 10, Fig. 3) and wolframite, syngenetically wdth molybdeni'te (PI. '10, F1gs 2 and 4), BIi-sulfosalts and native

bismu,th I, being 1n paf['lt earlier than scheeli:te.

Bismuth sulfosalts all'e probably two di:fferoot minerals. OIlle 0[ them was idenltified, chem.iJcally and 'by <the ,x-.ray powder analysis, as pIl'lO!baoble emplectite.

They aa:e later than wolframate {Pt 1:2, Fig. 1) and magnetite II (PJ. 11, F1ig. 2).

Sulfooailts aa:e dn par'a.genesis with molybdenite (PI. tl, FUg. 1) and probably with naiflive bismU'th I (PI. 111, Fdg. 3).

MelnikQvite and poot-pyuhoiflitic pyrite are the pr.oducts Qf pYll'll'hiotite hydro- thermal alt€lI"aibion ,(PL 11, Fig. 4). The ;r-eli(!'s 'of PYN'hOtlite 'are pIl'eserved in the post-

-pYIl'T,hotitl~ pyll'i'te (PI. 7, Fig. 4; Pl. 8, Figs 3 and 4).

Marcasi'te was found ,rarely in post-pyrl"hotitic pyrite of cOillomorph st.ructure.

ChalClOcite Il'esults from the a'l:teratilOln of chaloopyrite

n.

As secOllldall'y m inera'ls , moiS·lUy of hypergeruic origin., were aSoCeIl'tained:

bismuth ochre (a mixtull'e of some 'secondary, bismu'th miner'als; PI. 112, Figs 3 'CIDd 4), and molybd.ic ochre that ·coV'ers molY'bdenite i;n weathell'ed aplKlgll'a:n<ites, and fjnally 1imoni,te.

Fig. 7. Wolframite o(w) and scheeldlte 'tS) an quartz vein from aplo~an.ite; X 4

(15)

ACTA GEO[;OOrCA P.OIJONICA, VOL. 25 A. KOZLOWiSKI & al., PL. 5

1-2 - Zonated woIframite tin low .de~.ee replaced by scheel1i1Je; reflected light, X 120 . .3 - ZoII1a<ted wolf.ramite strongly altered into s'chteelite (8); reflected !light, X 120.

4 - ReHcs of wolfu'amHe (w) iiIl s.che€l1ite (8), from CliPlogJl'anite; reflected light, X 120.

(16)

ACTA GEOLOGll'CA POLONIiCA, VOL. 25 A. KOZLOIWIS'KI & aI., PLo I>

1 - Wolframite (w) alteration into scheelite (s); transmitted light, nicols oblique.

X 120.

2 - Twinned ,eass:iterite (k) in qua.rtz; refle.oted lighrt, X 250.

3-<1 - Cassitard.te l(k) and wolframite I(W) repla<led by scheelite (s); glray - quartz;

reflected Light, X 120.

(17)

ACTA GE'OiIJOGICA POlJON1;CA, VOL. 25 A. KOZLOW!SKI & al., PL. 7

1 - -.Scheelite (s) between wolfr.amite ~adns (white); reflected light, X 120.

2 - Pyrite (white) wi'th IScheeldil1e <s) and wolframite (w); re.£J.ected light, X 12<0.

3 - MoJybdenite (whdte) with Bi-sulfosalts (sb) -in 5cheelilte (s) with preserved r,elics of wold'ramiJte (w); reflected light, X 100.

4 - Moolybdendte (mo) with pyr,xholirte (pr) pass1Jn,g into pyrdte (p); !reflected light, X 120.

(18)

ACTA GE'OiLOGICA POllONl:CA, VOL. 25 A. K.oZLOWSKI & al., PL. 8

.:

1 - Magnclite I {m) and nm~niite (i); ['eiliected ligM, X 260.

2 - Gra'ins 'Of magneb1te I r(m) -between dllmelIlJite lamellae; reflected light, X 12<0.

3 - Pyr.rhotite {pr) overgrowing magnetite I (m) with ilmenite lamellae and partly replaced by pJ7['ite (p); refl.ected light, X 120.

4 - Lamellae of ;iImendrte ]n cMorite allld pyrrhotite' (pr) replaced by pyrite (p);

reflected light, X 1:2'0.

(19)

ACT.A GEOluO'GlCA POLONICA, VOL. 25 A. KOZLOWSKI & aI., PL. 9

1 - Ilmenite'(i) betweoo"lPyrrhotLte-g:ra·ins;-reflectedll:ght,' X 120.

2 - Oocurrm.ce of lPY'l'rhotite (pr) a!llJd -chaleopyrdte I (c), oonta:ilIliing exsoluted sphalerite "asteris'ks", X 12.0 (rectangle<! area a; magnified X 1000 in Fig. :!a); reflected Hghrt.

3 - Lamellar. structure of pyrrhoti:te well vis!ible on oxidized surface (upper right gra'in withoUlt lamellar structua:e); reflected Light, X 1120.

4 - O-ccurrence ,of pyrirhOlt1te {pr), pyri·te (p) and chalcopyrite I (c), reflected light, X 60.

(20)

ACT·A GEOLOGJICA POLO~CA, V{)IL. 25 A. ,KOZ,LOWiSKI & al., PL. 10

1 - Chalcopyrite 1 (white) in sphalerite (gray); black - non-oce minerals; reflected light, X 250.

2 - Native bismuth I (bi) in bismuthdte <Cb) occurnnog together with molybdenite (mo) and wolframite {w) altering iIIlto scheelilte (s); reflected light, X 120.

3 - Bismuthdte (white) between grains of magnetite II (m) and musihketlovite (mu);

reflected light, X 1'20.

« -

Molybdenite I(mo) with bismuthite (b) and Bi-sulfosalts (sb); reflected light, X 250.

(21)

ACTA GEOlIJOOJCA POLON'I:CA, VOL. 25 A. KOZLOWlS'KI & aI., PL. 11

1 - Molybdenite (mo) in Bi-suUosalt (sb); reflected light, X 250.

2 - BIi-sulfosa1t (sb), .native bismuth 11 (bi) and chaloopyrJ.te I (c) between mush- :ketovite (mu) and roa.gnetli:te 11 I(m); reflected light, X 120.

3 - Native bismuth I (bi) iJn Bi-su1fosalt; ref:Iected hlg>ht, X 250.

4 - Ps·eudomorph of post-pyrrhotitk pyriJte with preservedmelinikovJte (ml);

reflected light, X 120. -

(22)

A'CTA GElCILOGICA POLOtN~CA, VQIL. 25 A. KOZLOW&KI & aI., PL. 12

1 - Bd-sulfosaJis (white) among Wlotir,amdite (w); re£Ieoted light; X 1120.

2 - Nativ.e bismuth I (bi) n.eaT pyrrhotite (pr) in quartz (gray); reflected liIght, X 25().

3 - Bi-sulfQsalt (whiiIte) l"eplaood ,by bilSmuth ochre (0); m.o - molybderute; rdlected light, X 120.

4 - Bismuthdte (wh,ite) repla.ced by seoondary minerals; refleoted light, X 60.

(23)

425

CONDITIONS OF ORE MINERALIZATION

The investigated ore-bearing aplogranites crystallized from the remnant silicate melt, beadng a OOI"I"e'Spondingly large amount

of

volatile components which

then

formed post-magmatic, mostly aqueous pa:rent solutaoris of are parageneses. The

prima~

solutiO'IllS were of pneuma- tolytic nature at a temperature dropping . :from

480°C. At

that stage such minerals

crystall~ed

as

quralltz

(parily), the majority of feldspa,rs in

vugE!.

mag!l1Etite 1

rand ilmeni,te

(Fig. 8). The

pH-values

oscilliated near the

ilmenite maQnelite!

. mushketovite maQnetite I!

wolF rarnit.e .

cassiterit~

mOlybdenit8 pyrite scheehte nat.ive bismuth I .. Dyrrhotite .

. chalcopyrite I . . ' . sphalerlte ".

.... o5muth sulfosalts

: bismuthite . melnikovit,e

: Post-Dyrrhot.itic pyril:,e marcasit.e

Chalcopyrit.e II native bismuth II bismuth

ochre

mOlybdic' ochre

• chalcocite limonite

,hydralEd l:!l!ll1!anese. .

. oXides

500

-

. -

4)0

Fig. 8. Cry~ta11ization sequence of the investigated ore miner.ais

neutral ood Eh wa!s slightly higher than zero. A

slight\;

increase in redox potential caused

then

the crystallization of nematite.

As

follows from a ;oompariscm with P-T 'COIlditions of the odgi!l1

.of

some typtcal

deposits (Figs 9

and 10), iarfter eonderisatio.n at a temperature about

380°C

:the

solutions became liquid, Le.

hydrothermal,a:nd the conditions

aII"DSe

favorab1e

'to the

origin

0[ tUrlgsten and

tin

'Ill!in:eraLs.

The begimling

'Of

'Wol:firamite

a!lld

Ithe

origin

of

.·cB.rssiteIi~··

oryilalliZialg . later palI'tly tog, eth'er

with

magnetite 11 alre assoeiatedwith the.

oondensation~

The lowered Eh

values

also cause' the' .' alteration . ' of ' hematite into

mushkietovi'ile. , ....

(24)

426 ANDRZEJ KOZl.OWSK.I,·l.UiKAtSZ KABlWOWSoKI· & Waml.AW OLSZY~'SKI

M>lframite

Fig. 9. CrystalMUlItmn1lemperatures of wolfo:amite and . caSSiiterite in some ore deposits as appear from refeiences: 1 - BoglOyavlenskaya &

al. (Im), 2 - Dashdavaa (1970), 3 - DuriSiovA {197(1), 4 - Imai (1970), 5 - !mad & Tak€illouchi (1971), 6 - KeUy & Tumeaure (1970), 7 - Kostyleva {196i51), 8 - Lazko &

al. (1972), 9 - Nauchitel &

aa.

(1972),

10 ..,.... Naumov & IVaIliOva ,(1971), 11 -Ryabov (11968.), 12 - SOltndkov

& NHmtiDla (1971), 13 - Takenouchi

(19'71l), 14 - Tugarinov & Naumoil' (1973), 15 - UmcOOvA & Bradac

{119'7l)

The composition

of

early solution

was

probably

,of

sodium -

chloride

natw-e

wtth signlifiaIDt

amownts

of

F·e. This solution was

Il'epla.ced • by

a

hydrotheT:m:a1

fluid 'biearing tungstate ions, precipitamg together

with

Fe

md

Mn as wolframi'te. In

generall, tungsten

can 'be .transported unde!l' moderately acid

to

weakly alkaline oonditioos (cf.Bryzgalin 1967,

350

010 0 010 10

300e- .1 7 05 0'J -

03 07 07 6 3>10 09 02 02 -. u

Fag. 10. The P-t oondirtions of -.. 0 06 08 wolfo:amdte crystalllization 'in some 04 04

wolframite d€lP05its 250 -

1 - Szklarska Por«:ba Huta, 2 - Spa- koynoe, 3 - Belukha, ,. - Bukuka, 5 - Yultin, 11 - Khara-Moritu, 7 - Buren- -Taogto, 8 - ChWUIIl-K·h'l.lll'yete, 9 - Mo- doto, 10 - lkh-Khayerkhan (2-9 after 200

Naumov :& Ivanova 1971, 10 - after 400 600 800 1000 1200 1400 1600 1800 Dashdavaa 1970, Naumov 8. Ivanova 1971)

P,atm

(25)

TPNiGlS';I1ElN -'I'lN ~MOL YBP:ElN:IUM ~DNERALLZATJON. 42'7

Ivanova 1972). In !the paragleneslis Ulllderstudy there ail'e no distilIlctsigns, indioating ;the range of pH vailues during wolfTami,te crystalUzation. The occurrence of wolframite and molybdenate may

be

helpful

to

a certain extent, since the ions of either W04,,2- orW02S2'1r- can coexist with MoS,'1r--1onS under a'llrnJme coruidtiJOlns (Pavlov &

Sha~apov

1973).

Molybdeni'te

staT.ted

precipitatiJng

when

'the solution became rather acid and reducing. The tthesis on a

1()IW

Eh vaJueat about 300°C is supported by the OCCW"I'IeIIlCle

of

native bismuth, precipitating as a liquid phase in the parag'eneSis.

Scheelite oryStlalli.red partly togIether with molybdenite because of an increasiJp.g aotiv.ilty

of

Ca2+-ions in the solution retsu.lt.im:g from the replacement 'Of Ca iby Na iIn plagioclases. The Ca2+ -ions attaCked woliramite farming scheeiite and il'eiJJea'sing Fie-ions

inJto

roluttion. Iron,

did not hold now in

wolfu-ami1le, formed magnetite H, pylri1te, and laiter - pyrrhotite and chalcopyrite 1.

A

pressure at that stage

(c.

300°C) amount- ed to

about

725 atm.

In the cooling hydrothermal dution,. the slightly inJCreasi!ng Eh potentiaJI caused cryStaH. ization

of

bismutlhite and Bi-sulfosalts. The eSlseIl!tiaJ crystaIiizatiOlI1

!Of

sulfides finished at 'about 200°C and 680 atm because of a lack of metals, whereas a relatively high a'Ctivity

of

S'1r--ions caused the ailteraltian

of

pytthOOite into melmkovite. The subsequent decrease in 8 2- activity partly with 'lower values of Eh and a r€CUrr€D.ce of ,certain

meta~

yie,ldJed such minerals as natiVle bismuth H and chal- copyrite H. This hydrothermal ore mineral aSiSemblag'e has su:bseque.ntly

been submitted to

the hypergenic ailteration.

The ore mineralizartliion investigalted and the paTent rocks are typical of W..;Sn-Mo deposits being the diffelrenttiated intrusive with an aplite- -like zone and quatrltz ore-bearing veins

(cf.

Leontev 1972).

Institute at Geochemistry, Mineralogy and Petrography Institute oj Geology oj the Warsaw U1IIi:Versity oj the Warsaw University (A. Kozlowski & l... Karwowski) (W. Olszynski)

Al. 2wirki i Wigury 93, 02-089 Warszawa, Poland Warsaw, Fe,bruary 1975

REFERENCES

ARNOLID R. G. 1969. PYilThobitte phase relatiOlns below 004±6°C 1 atm total pressure.

Econ. Geol., 64. (4), 405--1419. Lanca'Ster.

BARABANOV V. F. 1960. To the question IOf determining the compositdQIl. of the wolframitte by 11ls specifie gtroavioty. Vestn. Leningr. Univ., Geol. Geogr., 12 (2),

14~151. Lendngratd.

(26)

428 . AlN1D11IZ<EJ KOZlllOWSKJ:.liUKA$Z KAiRWOWSKI & WlESl.A W OISZyJ,qiSiKI

1961. MiJneralogia vol:f.ramitovY1~h mestaroZ'hdenii VostochnogO' Zabaikalya (Bukllllm-Belukha). [in Russian]. Izd. Leningr. Uiliv., 112-126. Lenin.grad.

& SYRITSO L. F. ,1966. The dmluenoe of niQbium, taIIltalum .and scandium on the specific gra'Vity of wIQIlJfrem!te. Zap. Vses. Mineral. Obshch., 95 (5), 578-583.

Moskva - Leningrad.

BOGOYAVLENSKAYA I. V., DOLOMANOYA,E. I. & LOSEVA T. I. 1973. K VQprQSU . Q. fi:lliko-khimieheskd.kh us'lQvia®h !OO1'mirovanda dlJOvyanogO' mes1xllroohdenia Ehrenfriedersdorf (GDR) pO gazovo-zhidkb:n vklucheniam v minerala,kh. Temsy dokladov IV Regionalnog,osoveshohaLnia pO' term.obarogeokhimid processov milnerll1loobrazov'anda [in Russian]. lzd. Bostovsk. U:n::iiv. Rastav.

BRYZGALIN O. V. 1967. 0 vLiyandti sostava xasilvorov na formu pereruosa volframa' v ~drlotermaiJnY1kh uslovdakh [in Russian]. Mineralogia i geakhimia VDlfra- mitovykh mes,tarozhdenii, 6&-72. Lzd, ~. Umv. Leningrad.

PANA J, D, &DANA E. S.194!6. The system Df mineralogy. New York.

DASHDAVAA S. Ul70. Types of m.inerallformalflion. SIOIlution inclusiOlliS Ii:n WIOlframite 8Jl1Jd 'some. ieatur,es of quartz-wolframite V'eins in the Ih-Halerhan depoos1t, MOngolia. Mineral. Sb. Lvovsk. Univ., 24 '2), 236-238. LvoV.

DURISoVA J. 1971. G.eothennometric study of cassiterite ':firQm' the Breiselberk deposit !in the

eastem

part

of

the KnlSine Hory Mts. vest. Ostfed. Ost. GeDt..

46

(6?,

~. Praha.

GODOVIKOV, A. A . . & KOLONIN G. P. 1965. ExperimeIlltal mvesti:ga1lilcms O'f pecU!li.'a1'liMes Qf bismUlth extraction' and possj,bilities Qf tits applicatiQn as geologica:1 thermO'meter.Geol. Rud. MestDrDzhd., No. 2, 97-101. Moskva.

lMAI H. 1970~ G~O'logy and mineral deposi~ of the Akenobe mine. IMA 7th General Meeting, IAGOD" TokYo-KyotO' Meeting, GuidebDDk 8, ExcursiO'n B4, 1-21.

Toky.o~

& TAKENOUCHI S. 197:1. Report of 'the JaPanes'e Committee on the InclusdiOlns in Mi'lllerals .. J. Mining MetaZZ. Inst. Japan, 87 (lOO1), 546-560. Tokyo.

IVANOVA G. F. 1972. GeDkhimicheskie ,uslDvia obrazovania vDlframitDvykh mesto- rDzhdeniJ :[in Russian]. Na~a, 101 ... 116. Mos:kva.

KAL YUZHNYI V. A .. 1960. ' Me1Jody . vivchennia bDgatDfazDvikh vkluchen u. ,mine- ralakh [in Ukrainian]. Vi<d. AN USSR, 28-816. Kiiv.

KARWOWSKI L., OLSZYNSKI W. & KOZLOWSKI A. 1973. Wolframite m.inera- ldzartiJan from the vicinity of Szklarska Por~ba Huta. Przegl. GeDl., No. 12,

{)33-,-i637~ Wa:~zarwa.

KELLY W. C. 1& TURNEAUBE F. S.

uno.

Mineralogy, parag€iOJesds and geother- mOlmetry of the tflirn. and t1lJl'lgSlben depolSlits O'f the eastern Andes, BoLiIvia. Econ.

GeDl., 65 (6), OO~. Lancaster.

KOSTYLEVA E. E. 1965. Me1x>d delm'epitatsii d ego znachenie dla milneralQgicheskoj termometrdi [in Russian]. Mineral. termDmetria i barometrla, Vot 1. Nauka.

:MOSkva.

LAZ,KO E. M., DOROSHENKO U. P., KOLTUN L. 1., LYAKHOV U. V., MYAZ N. 1.

& PIZNIUR A. V. :19'm,. 0 temperaJturinykh i drugikh ifm.ko-khimicheskikh usloviakh formLrovania poiStma,gmaticheskikh mestorozhdenid VlOStochnogo . Za:badkalya[in Russian]. RudooorazuyushchaYa sreda PO' vklucheniam v mi-

neralakh, 1'5-23. Nasuka. Moskva.

LEONTEV'

A.

N.1972. TipcllVaya gookhimiehesbya mO'del rudOl!lOSlIlOgo gxamtnogo , 'intruziva i ee petrogxafichesklie mod:iJf;ikatsH [in Russian], Magmatiim, formatsii

kristalZicheskikh pDrod i glubin'U Zemli. Vol. 2, 9-12. Nauka. MQl'kva~ ,

(27)

429

MAKSIMIUK E. I. 1971. ZaMisimost fizicheskikh svoistv \1IOIlflramita

at

k.biimicheskogo sOSltava fin Russian]. Mineralogia i geokhimia volframovykh mestorozhdenii,

.275~a81. Izd. Laningr. UnJiv. LeniJngrad.

MOENKE H. [gOO. U11lr'arotspekralphotmneter aJs Hilfsnll'ttel bei der Pu:IOspektion und Erzl:agestiitten. Jam-b. 1:1, 402-400. Jena.

NAUCHITEL M. A., LUGOV S. F., MAKEEV B. V. & POTAPOVA T. M. 1972.

TemperatumYe usJ.OVIia :foa:mdrovaJnJi o1oVJarUdnykh meSl1ioroz;hdendi 'kassiterit- -kvartsevoi formatsii Severo-Vostoka SSSR {in Russian]. Rudoobrazuyushchaya sreda po vklucheniam v mineralakh, 917-106. Nauka; MJOskva..

NAUMOV V. B. 1968. K VOpil"OSU ob opredelenii temperatur mineraloobrazovania metodom dekrepitatsdi {in Russian]. Mineral. termometria i barometria, Vol. 2, 37-413. Ne:uka. Mosawa.

& MALININ S. D. 19:68. A new method of press1l["e determinaltton by gaseous- -liqUiid insciusions. Geokhimia, No. 4, 432-441. M.osk:va.

& IVANOVA G. F. 19'71. Barothermometric characteristics .of the conditions of woHlramite deposlit farmatioo. Geokhimia, No. 6, 627-641. Moslt,va.

P AV'LOV A. L. & SHARAPOV V. N. 1972. Elementy fiziki d fizikokhimii pr.otsessov formirovan:ia redk,ome~ykh meSltolI"()zhdenii milru>-gre1zerrovogo tipa . [in Russian]. Trudy IGiG, 114, 73-1136. Mookva.

PENDIAS H. & W ALENCZAK Z. 1900. Signs od: llliIIleraJizatioo dn the I!lIOIl"th-western part of Sflrze~ massiif, Lower SWle&a. Biul. Inst. Geol., No.. !1l2, 2Q9-240.

Wars,zawa.

POLAJ.liSKI A. & SMULIKOWSKI K. 1.969. Geochemia. Wyd. GeOO.. WaJrszawa.

RYABOV V. K. 1968. Temperatumoe milOlDiiJ:'ovialne v olovOlllOSlllykh provintsyakh s pomloShchyu 'termozvukovogo metoda {in Russian]. Mineral. termometria i barometria, Vol. I, J71-276. Nauka. MJoskNa.

SOTNIKOV V. I. & NIKITINA E. I. 1971'. Molybdenum - rare metal - tungsten (greisen) formation of Mountainous ALtai. Nauka. MOSIkva..

SYRITSO L. F. 1967. Vlo!f.ramovaya mineraWi'zatsia oooogO dz redk!ametaanykh me9boroZhdenid Zabadikalya [in Russian]. Mineralogia i geokhimia volframovykh. mestorozhdenii, 41'-55.

loo.

Len.ial:gr. Univ. LeinlinJgrad. . 'l'AKENOUCHI S. !l.9''i!l, Study Of CO2-bearmg audd inclusdons by means of the

freezilng stage mii:ll'Osoope. Kodzan 'J'Iisitsu (Mining Geol.,), 21, 2IB-42.. Tokyo.

TETYAEV M. M. 1918. Volframovye i olO\1y'atlye mestoa:ozhdenna OnIOn-BIOIrzilItskogo raiona Zabai'kalskoi oblasti '[in Russian]. Mat. po obshch. i prikl. geol., Vo!. 32.

~d.

TUGARINOV A. I. & NAUMOV V. B. 11973. Fd7Ji.ko-ldIdmioheskie parametry gidro- termaLnogo mialemlJoobrazovaaliia 'fin . Russian]. Mezhdunarodny; Geokhimi- cheski; Kongress, Moskva 1971, Doklady, Vol. 2, 7-49. Izd. AN SSSR. M06kva.

ULRlcHO'VA D. & BRADAC L. 19'711,. Decll"epdtatron and optical methods applied to dttlclusiilQIls in minerals. Vestn. 'Ostfed. Ost. Geol., 46 (4), ,193-200. Plraha.

(28)

A. KOZl.OWSKI, l..KA.RWOWSKI i :Wo OI..SZYNSKI

OKRUSZCOWANIE APLOGRANITOW OKOLIC SZKLARSKIEJ POR~Y

(StI"e'S:Zczenie)

W pracy przedstawi.ono wyn:iJki baidati. Illad strefl:l okruszcowanych, aplogra- nirt6w okoldc Silklarskiej Ptorflby w K&konosmch (fig. 1). W aplograndta'ch tych, W:I- kazujl:lcych przej,awy metaslomaJllozy sodo'Wej (POr. pI. 1 i 4), ora'z w zylach kwaa-- cowych (fdg. 2 d 7) ISItwiardZlOlll() obeanoSc m.!illl. taktich mineral6w kruszoowych, jah::

W1olfr,amdt, kasy1leryt,moUbd-endJt, s!Ze1it, b~ut rodzimy, bdzmutyn, pirotyn, chalko- pilryt oraz siaa:lrosol.e bizmu'llOlWe (par. fi,g. 5-6 i pI. 5-112).

Na

pod'S'tawie badati.

in.kluzjd flu1idailinyeh (por. pI.' 2-3) wykazaJIlo, Ze minmaly kruszc.owe ,kry'StaliZiOwaly h.rtilj z . rozciencionyoh roztwo:r:6w. chJOII'kowo-f1uO!I'kowo~sd'al'cZ!kowych (g16wnie kiationy: Na, Ca, K, ,All) przy ciSnltenda,ch irZflclu 700 atm, w tempexatWl"ach 400-100oC (par. Ng.'

a

i 8). StW1i.erdZOlriJO ItypoWoSC hydroterrruiilnych waI"Ulllk6w' pows'taJpda bada- nych krus:zc6w W stosl1lllku do :ialJIly,eh ,maJIly,eh tego typu zl6z W101framitoVoo-xaJSyte- rytoWlO-mdli'bdend!bowycll 00 swiecie (por. :Iiiig. 4, 9 i. 10).' .' .

", ,,'

Cytaty

Powiązane dokumenty

Zones of this type of ore mineralization appear fairly commonly in Ordovician and Lower Silurian rocks constituting the cover of the granitoid stock - the main geologic element of

Sudetian Terrane as a volc anic arc (G6ry Sowie complex, possibly rooted in the Middle Odra complex) with oceanic crust (ophioli tes) all thrust southwards, in

In section NW-2B (west part ofthe old quarry), there occur gneiss-limestone conglom- erates with intercalations of gneiss sandstones with a calcite cement, overlain by limestone

One of the most important phases, taking part in metallization of the Old Paleozoic rocks, is the syndiagenetic (synde- positional- early diagenetiC) mineralization. The

Conodonts occurring in gneissic breccias and conglomerates of the lower part of the Nowa Wieś formation point to the Visean age of these rocks.. The overlying alloda- pic

inclusions of the titanium minerals observed in microscope is a later, secondary mineral. Thus it should be concluded that the Tapadla deposit does not belong to any of the listed

Almost the same scatter is shown by the sample set ( 87 Sr/ 86 Sr)soo Ma values when the protolith origin is related to hypothetic sea-floor spreading which may evolve from

2 - specimen cut by quartz vein, lateral view, sample BIII/9; 3 - nearly complete specimen, upper view, sample BIV/7; 4 - incomplete specimen, upper view, sample BIV/7; 7 -