• Nie Znaleziono Wyników

Tectonic control of tufa occurrences in the Podhale Synclinorium (Central Western Carpathians, southern Poland)

N/A
N/A
Protected

Academic year: 2022

Share "Tectonic control of tufa occurrences in the Podhale Synclinorium (Central Western Carpathians, southern Poland)"

Copied!
12
0
0

Pełen tekst

(1)

Geo log i cal Quar terly, 2012, 56 (4): 733–744 DOI: http://dx.doi.org/10.7306/gq.1065

Tec tonic con trol of tufa oc cur rences in the Podhale Synclinorium (Cen tral West ern Carpathians, south ern Po land)

Leon ard MASTELLA and Barbara RYBAK-OSTROWSKA

Mastella L. and Rybak-Ostrowska B. (2012) – Tec tonic con trol of tufa oc cur rences in the Podhale Synclinorium (Cen tral West ern Carpathians, south ern Po land). Geol. Quart., 56 (4): 733–744, doi: 10.7306/gq.1065

Tufas in the Podhale Synclinorium (south ern Po land) oc cur as encrustations on moss and plant re mains, crusts, po rous, clastic and mas - sive tufas. The tufas are al most en tirely com posed of cal cite with small ad mix ture of quartz, illite and chlorite. These de pos its in di cate the bi otic and/or abiotic or i gin of cal cium car bon ate. The tufas oc cur in the vi cin ity of map-scale and mi nor fault zones. They pre cip i tate near fis sure springs linked with small faults and fault rocks or seepages along them. Ex po sures with tufas oc cur along sev eral oblique and lat - eral zones. The oblique zones are re lated to Białka and Biały Dunajec faults that have nor mal com po nents. The lat eral zones of tufa oc - cur rences are con nected with lat eral faults lim it ing the “zone of beds with gen tle dips” and extensional brit tle struc tures within the hinge of the synclinorium. The re la tion ship of the tufa with brit tle extensional struc tures sug gests Qua ter nary tec tonic ac tiv ity of the Podhale Synclinorium that can be ex plained by con tin ued up lift in the area stud ied.

Leon ard Mastella and Barbara Rybak-Ostrowska, Fac ulty of Ge ol ogy, Uni ver sity of War saw, Żwirki i Wigury 93, 02-089 Warszawa, Po land, e-mails: lmastella@uw.edu.pl, barbara.rybak@uw.edu.pl (re ceived: Au gust 17, 2012; ac cepted: No vem ber 7, 2012; first pub - lished on line: De cem ber 19, 2012).

Key words: tufas, fault zones, ac tive tec ton ics, Podhale Synclinorium, Cen tral West ern Carpathians.

INTRODUCTION

The oc cur rence of cal car e ous tufas in the Pol ish part of the Podhale Synclinorium has long been doc u mented (Halicki, 1930; Halicki and Lilpop, 1932). Sev eral occurrances of these rocks in the Podhale area have been sub se quently de scribed (Birkenmajer, 1958a, 1964; Małecka, 1974; Mastella, 1975;

Watycha, 1976, 1977; Mastella and Mizerski, 1977; Szulc, 1983; Pazdur, 1987; Mastella et al., 1996; Alexandrowicz, 1997); ad di tion ally, 80 tufa and trav er tine sites have been listed from the Slo vak part of the Cen tral Carpathian Paleogene Ba - sin of the Cen tral West ern Carpathians (Leško, 1958; Zýka and Vtělenský, 1960; Ložek, 1961, 1964; Fusán, 1963; Kovanda, 1971; Gross and Köhler, 1980; Čabalová, 1991; Gradziński et al., 2008a). Tufas have also been doc u mented in the Tatra Mts.

area (Rabowski, 1930; Gradziński et al., 2001; Smieja and Smieja-Król, 2007) and in the Pieniny Klippen Belt (Alexandrowicz, 2004 and ref er ences therein).

Sites of tufas in the Podhale Synclinorium have been ob - served in ar eas of flow ing wa ter: (a) in the up per parts of mi nor

streams, which are dif fi cult to ac cess; (b) on steep banks of short trib u tar ies of main rivers and streams; (c) on river ter races and their slopes. Fur ther more, tufa de pos its are usu ally cov ered with moss and grass. There fore, most of the tufa sites have re - mained un no ticed till pres ent. De tailed field stud ies fo cused on doc u ment ing the oc cur rence of tufas ad ja cent to fault zones, have al lowed us to rec og nize 71 tufa sites in the Podhale Synclinorium (Ap pen dix 1 – sup ple men tary file*). Study of the tufas is on go ing. This pa per de scribes the dis tri bu tion and fab - ric of tufa de pos its and in di cates their re la tion ships with the tec - ton ics of the Podhale Synclinorium.

GEOLOGICAL SETTING

The Podhale Synclinorium (Mastella, 1975) is com posed of rocks that form part of the Paleogene cover of the Cen tral West - ern Carpathians (Figs. 1 and 2; Marschalko, 1968;

Książkiewicz, 1972). The Podhale Synclinorium com prises shales and sand stones of Oligocene to Early Mio cene age (Gedl, 2000a, b; Garecka, 2005), ly ing on de pos its of the

* Supplementary files are available on website: www.gq.pgi.gov.pl

(2)

“Num mu lit ic Eocene” (Sokołowski, 1959; Watycha, 1968) that rep re sent the Borové For ma tion (sensu Gross et al., 1984;

Fig. 3). The thick ness of the en tire suc ces sion is es ti mated at 2.5–4 km (Gołąb, 1959; Watycha, 1959, 1976, 1977; Mastella, 1975).

The sed i men tary se quence in the Podhale Synclinorium com prises four in for mal lithostratigraphic units: the Szaflary Beds in the low er most part of the suc ces sion in the north ern limb of the synclinorium, fol lowed by the Zakopane, Chocho- łów and Ostrysz Beds in the up per part of the suc ces sion across the en tire synclinorium area (Gołąb, 1959; Watycha, 1959, 1968; Dudziak, 1983, 1986). The beds cor re late with the Śambron Mem ber and the Huty, Zuberec and Biely Potok for - ma tions, re spec tively, in the Slo vak part of the Cen tral Carpa - thian Paleogene (Gross et al., 1984). Lithostratigraphic bound - aries be tween the beds are var i ously shown on maps by dif fer - ent au thors (Birkenmajer, 1968; Watycha, 1974, 1976;

Małecka, 1982).

The con tact of the Podhale Synclinorium with the Sub-Tatric units is sed i men tary, whereas that with the Pieniny Klippen Belt is tec tonic (Uhlig, 1897, 1903; Birkenmajer, 1958b; Figs. 1–3). Bed ding dips are steep near the Pieniny Klippen Belt and be come more gen tle to wards the south. Dip val ues sig nif i cantly in crease again in the zone of the peri- Pieniny flex ure. Fur ther to the south oc curs an up lifted “zone of beds with gen tle dips” (Mastella, 1975), fol lowed by an ax ial zone (Fig. 2) with mesofolds. The south ern limb of the synclinorium is monoclinal with a nar row belt of tec tonic de - for ma tion near the Sub-Tatric units (Fig. 2). These par al lel tec - tonic zones are cut by large trans verse fault zones (Mastella, 1975; Mastella et al., 1996). Two of them, the Białka and Biały Dunajec fault zones cut the Pieniny Klippen Belt to the north and con tinue in the Sub-Tatric Units to the south (Fig. 2). These are scis sor faults and they up lift the south ern part of the Podhale Synclinorium and lower the area be tween the Białka

and Biały Dunajec rivers in the north ern part of the synclinorium (Mastella, 1975; Mastella et al., 2012).

The struc ture of the Podhale Synclinorium be gan to form as a re sult of hor i zon tal N–S com pres sion and its fi nal con fig u ra - tion is the con se quence of up lift of the area (Mastella, 1975;

Buday et al., 1967). Mastella (1975) and Ludwiniak (2010) con sid ered the Late Oligocene/Mio cene as the be gin ning of the for ma tion of the Podhale Synclinorium. The same age of N–S com pres sion in the Cen tral West ern Carpathians is in di cated by Fodor et al. (1999), al though these au thors do not ex clude that the compressional re gime might have op er ated as late as the Mid dle Mio cene. Sim i lar sug ges tions were made by Vojtko et al. (2010) based on data from palaeostress anal y sis in the Špiska Magura Mts. The up lift of the Podhale Synclinorium com menced from the Mid dle Mio cene times and con tin ues at pres ent (Makowska and Jaroszewski, 1987; Anczkiewicz et al., 2005; Perski, 2008; Śmigielski et al., 2012).

METHODS

Field work was car ried out across the en tire Podhale area us - ing top o graphic maps at the scale of 1:10 000. Some 71 lo ca tions with cal car e ous tufas (Ap pen dix 1) have been doc u mented since the 1960s, based on our ob ser va tions as well as ar chi val data of the Lab o ra tory of Tec ton ics and Geo log i cal Map ping, In sti tute of Ge ol ogy, Uni ver sity of War saw (Kędzierska, 2001;

Majewska, 2001; Dziudzik, 2002; Stępczak, 2011). Most of the tufas were lo cal ized by pac ing and marked on the top o graphic maps. The lo ca tions were con verted to geo graphic co or di nates by geoportal. Some of the tufas have been pre vi ously re ported, but most are doc u mented for the first time. The num ber of tufa sites is vari able due to ero sion of the ex ist ing ex po sures and cre - ation of new ones. Ob ser va tions were car ried out along rivers and streams as well as along their trib u tar ies. The lo ca tions of many tufas co in cide with map-scale faults and fault zones

Fig. 1. Geo log i cal sketch-map of the north ern part of the Cen tral West ern Carpathians with lo ca tion of the study area (af ter Żytko et al., 1989 and Biely et al., 1996, mod i fied)

(3)

Tectonic control of tufa occurrences in the Podhale Synclinorium (Central Western Carpathians, southern Poland)735

f o n o i t a c o L

.

2

.

g i

F tufaout crop sonageo log i ca lsketch-mapo fth ePodhalearea(com piledaf te rWatycha ,1974 ,1976 ;Mastella ,1975 ;Bac-Moszaszwilie tal. ,1979 ;Małecka ,1982)

(4)

(Fig. 2) as well as mesofaults (Figs. 4–6). The tufas were sam - pled for thin sec tion prep a ra tion and geo chem i cal anal y ses. The min er al og i cal com po si tion of the tufas was de ter mined with a DRON-1 diffractometer in the In sti tute of Geo chem is try, Min er - al ogy and Pe trol ogy, Uni ver sity of War saw. Petrographic ob ser - va tions were per formed on se lected sam ples of tufa us ing a po - lar ized mi cro scope at the In sti tute of Ge ol ogy, Uni ver sity of War saw and scan ning elec tron mi cro scope in the In sti tute of Geo log i cal Sci ences, Pol ish Acad emy of Sci ences in War saw.

TERMINOLOGY

Fresh wa ter car bon ate ter mi nol ogy has de vel oped over the de cades. Many stud ies de scrib ing the et y mol ogy and or i gin of the terms trav er tine and tufa, used widely in the lit er a ture, are listed by Pen te cost (2005). The li thol ogy of the de pos its stud - ied, their tex tures, the pres ence of plant and their imprints al low us to use the term cal car e ous tufa (Szulc, 1983; Pedley, 1990;

Gradziński, 2010) or meteogene trav er tine (sensu Pen te cost, 1995) for most of their oc cur rences. Tufas have their car bon di - ox ide source in shal low cir cu la tion wa ters (Chafetz and Folk, 1984). The link age of the de pos its stud ied with fault zones, the mor pho log i cal forms of some of them (e.g., mounds) and iso - tope data (Pazdur et al., 1988) sug gest that these de pos its may de rived car bon di ox ide from deep cir cu la tion wa ters and thus can be re garded as trav er tine (Chafetz and Folk, 1984; Pedley, 1990) or thermogene trav er tine (Pen te cost, 1995). How ever, the fi nal as sign ment of the de pos its stud ied as travertines de - pends on sta ble iso tope anal y sis. Thus, we con se quently use herein the term cal car e ous tufa for all the types of fresh wa ter car bon ate de pos its in this region.

MACROSCOPIC OBSERVATIONS

Sev eral in de pend ent clas si fi ca tions of fresh wa ter car bon - ates based on dif fer ent cri te ria have been pro posed (Julia, 1983; Szulc, 1983; Chafetz and Folk, 1984; Rutkowski, 1991;

Pen te cost and Viles, 1994; Ford and Pedley, 1996). Dur ing

field work, we have used the clas si fi ca tion based on mac ro - scopic tex tural and mor pho log i cal cri te ria pro posed by Gruszczyński and Mastella (1986).

Sev eral tex tural va ri et ies of tufas were dis tin guished dur ing the stud ies. The most com mon are thin coat ings (Fig. 2 – e.g., 7, 34, 62), up to sev eral mm thick, form ing crusts on plant re mains and tree roots on slopes of stream ter races and on peb bles and sur faces on stream bot toms (Figs. 4 and 7A, J, K). Crusts oc cur in ar eas of low flow or seep ing wa ter and oc cur in a va ri ety of forms rang ing from smooth cov ers, through nod u lar forms to ag gre gates of small cal cite crys tals (Figs. 4 and 7K). Fre - quently, the ir reg u lar crust sur faces de velop in ar eas of plant growth and over de posit-ce mented plant de bris. Crusts cover ar eas rang ing in size from a few to tens of square metres. These forms have been ob served in al most all tufa out crops in the study area.

A spe cial form of tufa is rep re sented by frag ile cal car e ous encrustations on moss (Fig. 2 – e.g., 22, 52, 32) oc cur ring on slopes of main stream val leys or their trib u tar ies in ar eas of low flow or seep ing wa ter. These may form cal ci fied moss cur tains in shaded over hangs (Figs. 5 and 7) of up to few metres in high and sev eral metres in width. Be neath the moss cur tains, in cave-like niches, there oc cur char ac ter is tic speleothem forms of vari able shape.

Tufas with a highly po rous tex ture, fre quently hard but lo - cally soft and poorly lithified (Fig. 2 – e.g., 22, 33, 34) oc cur on the stream bot toms (Fig. 8), on stream ter races as well as in the seep age zones of stream ter race slopes (Fig. 7). They can cover an area of up to sev eral square metres and may ex ceed a few metres in thick ness. Po rous tufas fre quently show a lam i nated fab ric and oc ca sion ally a tex ture typ i cal of stromatolites.

Clastic tufas, po rous, hard (Fig. 2 – e.g., 6, 22, 36, 37) ce - ment ing al lu vial gravel, frag ments of lo cal rock, brec cia, oncoids, peloids or older tufa clasts (Fig. 7F) form on stream val ley slopes (Fig. 6). Their thick ness var ies and may ex ceed sev eral metres. Oc ca sion ally, blocks of clastic tufas de tached and dis placed down wards, were found in the stream bot toms.

Mas sive tufas, hard, lo cally thinly bed ded, fre quently with a lam i nated fab ric (Fig. 2 – e.g., 18, 22, 33) form on ter races and ter race slopes as well as on stream val ley slopes (Fig. 5).

Fig. 3. Sche matic geo log i cal cross-sec tion through the Podhale Synclinorium

(5)

Tectonic control of tufa occurrences in the Podhale Synclinorium (Central Western Carpathians, southern Poland) 737

Fig. 4. Tufas

A – ac tive crusts (yel low) (no. 7) in the Ligasowski Stream; B – sketch of out crops no. 7 and 8 (af ter Dziudzik, 2002, mod i fied);

C – ac tive cal car e ous tufa cov ered by moss (no. 11) in the Kotelnica Stream; D – sketch of out crops no. 10 and 11 (af ter Dziudzik, 2002, mod i fied);

ex pla na tions and scale as in B; E – speleothems in shaded niche be neath en crusted moss (no. 11)

(6)

Fig. 5. Sketch of the cal car e ous tufa oc cur rence in the Gliczarowski Stream and its vi cin ity (no. 22) with sche matic geo log i cal cross-sec tion of out crop no. 21 (af ter Majewska, 2001, mod i fied)

Fig. 6. Sketch of the cal car e ous tufa oc cur rence in the Suchy Stream and its vi cin ity (no. 18) Ex pla na tions as in Fig ure 5

(7)

Tectonic control of tufa occurrences in the Podhale Synclinorium (Central Western Carpathians, southern Poland)739

f o s e p y t l a r u t x e T

.

7

.

g i

F tufasonth eba si so fmor pho log i ca lschem eo ftufade pos it s(af te rGruszczyńskiandMastella ,1986 ,mod i fied)

A LigasowskiStream(no .8) ;B , D ,E –SuchyStream(no .17) ; C –CzarnogórskiStrea m(no .40) ; F –SuchyStrea m(no .18 ;fot .M .Ludwiniak) ; G –OsturniańskiStrea m(no .69); H , I –CzerwonkaStrea m(no .33) ; J –GliczarowskiStrea m(no .22) ;K , L –NiedziczankaStrea m(no .53)

(8)

Their thick ness var ies be tween par tic u lar out crops and may ex - ceed sev eral metres.

Mas sive, clastic and po rous tufas (Fig. 7) build bod ies of dif fer ent size and ge om e try, from tab u lar or fan-like shapes through cas cades to mounds (Figs. 4 and 5). The spa tial dis tri - bu tion of dif fer ent tufas is het er o ge neous with a com plex in ter - nal ar range ment (cf. Alexandrowicz, 1997). They may con - tinue into crusts and plant encrustations at their mar gins that lo - cally spread into the stream bed.

Tufas of ten oc cur on the outer washed-over stream banks and in the in ner reaches of streams in ar eas of small trib u tar ies.

They pre cip i tate near fis sure springs linked with small faults and brec cia zones or seepages oc cur ring in their pro lon ga tions.

The re la tion ships of tufas to faults have been ob served in in di - vid ual ex po sures as well as in se ries of ex po sures lo cated along map-scale faults. An ex am ple is the oc cur rence of tufas along lat eral faults lim it ing a “zone of beds with gen tle dips” (Figs. 2 and 3), par tic u larly ev i dent in the south ern part of the Kaniowski Stream (Fig. 2; out crops no. 34, 35) to the east in the re gion of Kacwin (Fig. 2 – no. 63, 66, 68). An other ex am ple is the well-known ex po sure of tufas in the re gion of Gliczarów (Halicki, 1930), where a map-scale fault con tacts the Biały

Dunajec fault zone (Fig. 2, no. 22; Mastella, 2001; Mastella et al., 2012). The tufa crop outs within bogs on the north ern flat part of the Gliczarowski Stream val ley (Fig. 5). It oc cu pies an area of about 6 hect ares in a fan-like form.

A unique oc cur rence of tufa has been noted on the south ern slope of the Suchy Stream val ley (Fig. 2, no. 18). A se ries of tufa mounds, ex ceed ing sev eral metres in height and di am e ter, oc - cupy a field of about 1 hect are be tween two mi nor trib u tar ies of the Suchy Stream (Fig. 6). It is the larg est oc cur rence of de pos its in such a mor pho log i cal form in the Podhale Synclinorium.

COMPOSITION AND FABRIC OF THE TUFAS X-ray dif frac tion study shows that the tufa con sists mainly of cal cium car bon ate with a small ad mix ture of quartz, illite and chlorite (Fig. 9). It is con sis tent with XRD data from the Slo vak part of the Paleogene sed i men tary cover (Zýka and Vtělenský, 1960; Čabalová, 1991). The cal cium car bon ate con tent is about 95% in most sam ples. Thus most tufas are white in col our with var i ous shades of grey; oc ca sion ally, they are also yel low or brown.

The tufas dis play var ied macro- and mi cro scopic po ros ity, sub-di vided af ter Choquette and Pray (1970) into inter gra nu lar, mouldic, shel ter and frame work po ros ity. Inter gra nu lar po ros - ity has been ob served in clastic tufas (Fig. 7F, G). This has been ob served in clasts of lo cal rock as well as in older tufas (Fig. 7G). Mouldic po ros ity com monly oc curs in tufas that ce - ment plant frag ments and tree roots (Fig. 7C, D). It is also fre - quent in clastic tufas (Fig. 7G). Shel ter po ros ity has been found be neath leaf sur faces and other flat plant frag ments. Moss ce - men ta tion by cal cium car bon ate pro duces tufas with high frame work po ros ity (Fig. 7H, I). These tufas of ten have a po - rous and frag ile tex ture.

Mi cro scopic ob ser va tions show that the tufas con sist of two poly morphs of crys tal line cal cium car bon ate: dom i nant cal cite (Fig. 7E) and rare ar agon ite. Pri mary cal cite crys tals are fre - quently fine anhedral, only oc ca sion ally coarse euhedral. Small voids and hol lows in tufas with po rous frame work con tain sub-euhedral cal cite crys tals. Ar agon ite is rep re sented by small crys tals ran domly dis trib uted within the po rous tufas or by small clus ters of crys tals.

Fig. 8. Ac tive po rous tufa colo nised by plants, the bed rock of the Niedziczanka Stream, out crop no. 53

Fig. 9. Ex am ple of X-ray dif frac tion iden ti fi ca tion of min er al og i cal com po si tion of tufas Cal – cal cite, Il – illite, Chl – chlorite, Qz – quartz; Czarnogórski Stream (out crop no. 40)

(9)

Encrustations on moss, crusts on plant re mains and po rous tufas con sist mainly of micrite, typ i cal of mi cro bial ce ments (Figs. 7L and 10). Crusts, po rous soft de pos its and mas sive forms of tufa fre quently show lam i nated fab ric with light- and dark-col oured laminae (Fig. 7C, D, L). The laminae are white or white-brown and grey or brown in col our, re spec tively. In di - vid ual laminae range from sub-millimetric to 2 mm in thick - ness. In most sam ples the lam i na tion ap pears to be heteropachous. In most of the crusts, in di vid ual laminae con sist of micrite. Thick mas sive tufas and clastic tufas also show sparite crys tals within in di vid ual laminae (Fig. 7G). Ra di at ing struc tures that are con cen tri cally lam i nated are com mon in mas sive tufas (Fig. 7D). Cal cite de po si tion within biofilm lay - ers around clasts of dif fer ent or i gin is com mon in the clastic tufas (Fig. 7G).

Pri mary fab ric-se lec tive po ros ity pro duces ce mented cav i - ties. Cav i ties in tufas are fre quently infilled by sparite drusy crys tals up to 1 mm in size (Fig. 10). A pal i sade habit of crys - tals of such fringe ce ments has been also ob served in as so ci a - tion with micrite tufas of dif fer ent types (Fig. 10).

TUFA DEVELOPMENT

Ac cord ing to mol lusc data (Halicki, 1930; Urbański, 1932;

Alexandrowicz, 1984) and sta ble iso tope anal y sis (Pazdur, 1987; Pazdur et al., 1988) tufas in the Podhale Synclinorium have de vel oped from Late Gla cial to Ho lo cene times. Many years of field ob ser va tions in di cate that tufa de pos its are con - tin u ing to form. Com monly, these de pos its may be dis in te -

grated and de stroyed by me chan i cal (floods) or chem i cal pro - cesses (dis so lu tion), and than later partly or com pletely re built at the same lo cal ity or in its close vi cin ity.

The tufa ac cu mu la tions in the Podhale Synclinorium have been in flu enced by the sed i men tary en vi ron ment as well as by physico-chem i cal and bi o log i cal con di tions. Cal cite pre cip i ta - tion on plants, de bris and tree roots – the ba sic nu clei of crys tal growth – pro duces de pos its with ir reg u lar fab ric and high po - ros ity (Figs. 7B, H and 10) that are char ac ter is tic of most ini tial tufa de pos its (Pedley, 2000; Viles and Pen te cost, 2008).

Tufa fab ric in di cates the bi otic and/or abiotic or i gin of cal - cium car bon ate de pos its (Fig. 7C, D, L). A lam i nated tex ture in micritic tufa may point to sea sonal ac cu mu la tion, lo cally con - nected with the growth of al gae that form stromatolites sim i - larly to those in ves ti gated by Gradziński (2010). These tufas may form in both low and high en ergy en vi ron ments.

Well-de fined lam i na tion (Fig. 7D) is also char ac ter is tic of tufas de ter mined as cal car e ous sinter (Szulc, 1983 and ref er - ences therein) in di cat ing abiotic pre cip i ta tion of cal cite. The physico-chem i cal de po si tion of cal cium car bon ate in di cates high en ergy en vi ron ments and may oc cur at the out lets of springs and at wa ter falls (Szulc 1983; Pen te cost and Viles, 1994; Zhang et al., 2001).

The lo ca tion and com po si tion of clastic tufa de pos its in di - cate high en ergy en vi ron ments, prob a bly con nected with fall-off pro cesses gen er ated on val ley slopes (Vázquez-Urbez et al., 2012). How ever, the pres ence of oncoids and ad mix tures of quartz sand within clastic tufas (Fig. 7G) point to flow ing wa ter en vi ron ments, prob a bly small flu vial chan nels (cf.

Vázquez-Urbez et al., 2012). Ad di tion ally, al ter nat ing mi cro - bial and chem i cal ce ments may in di cate vari able con di tions dur ing diagenesis of the de pos its. All these in di cate a com plex pro cess of clastic tufa de vel op ment.

All tufas pro duce po ros ity which can be filled by sec ond ary ce ments dur ing mi gra tion of car bon ate-rich wa ter. Thus, sub-euhedral, pal i sade and drusy cal cite crys tals found in voids and cav i ties are prob a bly of sec ond ary or i gin (Figs. 7G and 10).

This pro cess may lead to the for ma tion of mas sive fab rics in tufas. Depositional pro cesses may be suc ceeded by diagenesis, which can be of me te oric or i gin.

It is known that pre cip i ta tion of fresh wa ter car bon ates is in - duced by: (a) pH in crease of flu ids from which cal cium car bon - ate pre cip i tated re sult ing from e.g., al gal growth, (b) fac tors con trol ling CO2 de gas sing of fluids, e.g., as sim i la tion of CO2 in pho to syn the sis, bac te rial and al gal ac tiv ity, in crease in fluid tem per a ture or ac cel er a tion of dif fu sion re sult ing from tur bu - lent flow and/or de crease of par tial pres sure (Chafetz and Folk, 1984; Gruszczyński and Mastella, 1986; Ford and Pedley, 1996). Fresh wa ter car bon ate de pos its form in wa ters with pH val ues in the range of 5 to 9 (Szulc, 1983) cor re spond ing to al - ka line wa ters (Pazdro and Kozerski, 1990). The waters as so ci - ated with tufa oc cur rences in the Podhale re gion be long to acratopegae, i.e., they are two-ion wa ters char ac ter ized by pH val ues in the range of 7.7 to 8.6 (Kędzierska, 2001; Majewska, 2001; Dziudzik, 2002).

It is sig nif i cant that the lo cal fresh wa ter car bon ates as so ci - ated with faults are al most ex clu sively as signed to travertines.

They in clude unique sites such as those in the re gions of Levoča and Liptovský Mikuláš (Slovakia) de scribed by Gradziński et al. (2008b). These de pos its show a char ac ter is tic fab ric and in di cate an en rich ment in CO2 of endogenic or i gin

Tectonic control of tufa occurrences in the Podhale Synclinorium (Central Western Carpathians, southern Poland) 741

Fig. 10. Pal i sade (PC) and drusy (DC) cal cite within tufa cav i ties Crossed polarisers, Dzianiski Stream, out crop no. 4

(10)

char ac ter ized by rel a tively high val ues of d13C. The li thol ogy and tex tures of the de pos its stud ied in the Podhale Synclinorium are typ i cal of cal car e ous tufas. How ever, few of them form bod ies of dis tinct mor pho log i cal shape (Fig. 2 – no.

18, 40) typ i cal of travertines. More over, the tufas pre cip i tate mainly near springs and seepages as so ci ated with mi nor and map-scale faults of the ma jor fault zones that reach the Paleogene sed i men tary se quence. Ad di tion ally, the d13C val ues of tufas from the Gliczarów re gion (Fig. 2, no 22) ob tained by Pazdur et al. (1988, ta ble 1) in di cate par tial en rich ment in CO2

of deep cir cu la tion wa ters. In this view, the cal car e ous tufas de - pos ited in the Podhale Synclinorium likely pre cip i tated from mixed wa ters of deep cir cu la tion and me te oric or i gin (cf.

Gradziński, 2010, Lúčky site). The ex is tence of ther mal wa ters in the Podhale Synclinorium is doc u mented in bore holes (Sokołowski, 1991; Chowaniec and Poprawa, 1998;

Chowaniec et al., 1999). Ac cord ing to our field ob ser va tions most of the springs at which tufas pre cip i tate do not freeze in win ter. This sug gests that tufa de vel op ment may be re lated to the tec ton ics of the Podhale Synclinorium. These data may sug - gest that ther mal wa ters or wa ters en riched in CO2, migrating along faults, leached cal cium car bon ate from the Paleogene sed i men tary se quence or the Me so zoic base ment and pre cip i - tated it on the sur face as cal car e ous tufas.

DISCUSSION AND CONCLUSIONS

Travertines and tufas are con sid ered to be in di ca tors of tec - tonic ac tiv ity and can be used as a tool for iden ti fi ca tion of a nearby fault trace (Han cock et al., 1999; Brogi et al., 2012), of es ti mat ing the age of tec tonic ac tiv ity (Sibson, 1987; Altunel and Han cock, 1993; Han cock et al., 1999; Brogi et al., 2010) or of the per me abil ity of faults and as so ci ated brit tle struc tures (Brogi, 2004, 2012) that played a role as con duits of flu ids (Cain et al., 1996; Sibson, 1996, 2000).

In this view, tufa oc cur rences in the Podhale Synclinorium may be re garded as a re sult of tec tonic ac tiv ity of this re gion dur ing Qua ter nary times. It is char ac ter is tic that ex po sures with tufas oc cur in the vi cin ity of map-scale as well as mesofault zones (Figs. 2, 4 and 5). Re gion ally, ex po sures with tufas oc cur in sev eral zones, oblique and lat eral in re la tion to the synclinorium axis. The oblique zones are con sis tent with the Białka and Biały Dunajec fault zones, with a nor mal com po - nent across fault planes. Ad di tion ally, the con cen tra tion of tufa ex po sures in the Kacwińska Rzeka and Niedziczanka streams

re gion may in di cate the pres ence of a map-scale fault zone in the east ern part of the synclinorium, sim i lar to the Białka and Biały Dunajec fault zones. The lat eral zones oc cur within the

“zone of beds with gen tle dips” and in the ax ial zone of the synclinorium (Fig. 2). The for mer is re lated to lat eral faults lim - it ing “zone of beds with gen tle dips”. The lat ter lat eral zone is re lated to extensional brit tle struc tures in the hinge zone of the synclinorium re sulted from buck ling of the Podhale Synclinorium dur ing the Neo gene (Mastella, 1975). As so ci a - tion of tufas with brit tle struc tures in di cates their prob a ble re - cent and pres ent-day per me abil ity main tained by ac tive tec ton - ics in the Podhale Synclinorium.

The tec tonic ac tiv ity of the Podhale re gion is doc u mented by thermochronological, geomorphological, in stru men tal and macroseismic, geo detic as well as sat el lite im age anal y sis data.

The K-Ar, Ar-Ar, and Rb-Sr as well as fis sion track geo chron ol - ogi cal data in di cat ing con stant up lift of the area (Kováč et al., 1994; Baumgart-Kotarba and Kráľ, 2004; Anczkiewicz et al., 2005; Śmigielski et al., 2012). Data from ap a tite fis sion track anal y ses (Anczkiewicz et al., 2005) in di cate that the east ern part of the Podhale Synclinorium un der went a youn ger and larger up - lift in com par i son with its west ern part, dated to be tween 6 and 10 Ma. This is con sis tent with pro gres sive/grad ual off set of the base ment along the Biały Dunajec and Białka fault zones (Mastella, 1975; Pomianowski, 1995, 2003). Ev i dence of Qua - ter nary fault ac tiv ity is pro vided by data of geomorphological anal y ses per formed along the Białka River (Baumgart-Kotarba, 1981; Szczęsny, 1987). The pres ent tec tonic ac tiv ity is also con - sis tent with earth quakes of low am pli tude re corded in the area of Białka River fault zone, and in the Zakopane re gion (Guterch and Lewandowska-Marciniak, 2002; Guterch et al., 2005 and ref er ences therein). The larger rel a tive up lift of the Zakopane re - gion in com par i son to the Nowy Targ re gion was in ter preted from SAR in ter fer om e try data (Perski, 2008) that is con sis tent with pre vi ous data of geodynamic mea sure ments ob tained by Makowska and Jaroszewski (1987). All the data con firm re - gional ex ten sion dur ing the up lift of the study area, stim u lat ing tufa de vel op ment.

Ac knowl edge ments. This re search was sup ported by the In sti tute of Ge ol ogy (Uni ver sity of War saw). We thank M. Gradziński and R. Vojtko for use ful and con struc tive crit i - cism and com ments. We are grate ful to A. Żylińska for lin guis - tic im prove ment of the manu script. The Ed i tor T. Peryt is ac - knowl edged for ed i to rial as sis tance.

REFERENCES

ALEXANDROWICZ S.W. (1984) – Malacofauna as sem blages in the Qua - ter nary de pos its of the Pol ish Carpathians (in Pol ish with Eng lish sum - mary). Biul. Inst. Geol., 346: 187–205.

ALEXANDROWICZ W.P. (1997) – Malacofauna of Qua ter nary de pos its and en vi ron men tal changes of the Podhale Ba sin dur ing the Late Vistulian and Ho lo cene (in Pol ish with Eng lish sum mary). Folia Quatern., 68: 7–121.

ALEXANDROWICZ W.P. (2004) – Mol lus can as sem blages of Late Gla - cial and Ho lo cene cal car e ous tufas in south ern Po land. Folia Quatern., 75: 3–309.

ALTUNEL E. and HANCOCK P.L. (1993) – Mor phol ogy and struc tural set tings of Qua ter nary travertines at Pamukkale, Tur key. Geol. J., 28:

335–346.

ANCZKIEWICZ A.A., ZATTIN M. and ŚRODOŃ J. (2005) – Ce no zoic up lift of the Tatras and Podhale Ba sin from the per spec tive of the ap a - tite fis sion track anal y ses. Min. Soc. Pol. Spec. Pap., 25: 261–264.

BAC-MOSZASZWILI M., BURCHART J., GŁAZEK J., IWANOW A., JAROSZEWSKI W., KOTAŃSKI Z., LEFELD J., MASTELLA L., OZIMKOWSKI W., RONIEWICZ P., SKUPIŃSKI A. and

(11)

WESTWALEWICZ-MOGILSKA E. (1979) – Mapa geologiczna Tatr polskich 1:30 000. Wyd. Geol., Warszawa.

BAUMGART-KOTARBA M. (1981) – Tec tonic move ments in the East ern Podhale in the light of the anal y sis of Qua ter nary ter races of the Białka Tatrzańska val ley and the lin ea ments ob tained by means of a sat el lite (in Pol ish with Eng lish sum mary). Prz. Geogr., 33: 725–736.

BAUMGART-KOTARBA M. and KRÁĽ J. (2002) – Young tec tonic up lift of the Tatra Mts. (Fis sion track data and geomorphological ar gu - ments). Geol. Carpath., Spec. Is sue, 53.

BIELY A., BEZÁK M., ELEČKO M., KALIČIAK M., KONEČNÝ V., LEXA J., MELLO J., NEMČOK J., POTFAJ M., RAKÚS M., VASS D., VOZÁR J. and VOZÁROVA A. (1996) – Geo log i cal map of the Slo vak Re pub lic, 1:500 000. Ministerstvo Źivotného Prostredia Slovenskiej Republiky, Geologicka Sluźba Slovenskiej Republiky.

BIRKENMAJER K. (1958a) – Mapa geologiczna Pienińskiego Pasa Skałkowego w skali 1:10 000, ark. Dursztyn. Wyd. Geol., Warszawa.

BIRKENMAJER K. (1958b) – Przewodnik po Pienińskim Pasie Skałkowym. Cz. I. Wyd. Geol., Warszawa.

BIRKENMAJER K. (1964) – Mapa geologiczna Pienińskiego Pasa Skałkowego w skali 1:10 000, ark. Trybsz. Wyd. Geol., Warszawa.

BIRKENMAJER K. (1968) – Mapa geologiczna Pienińskiego Pasa Skałkowego 1:10 000, ark. Bór na Czerwonem (3) i Szaflary (13).

Wyd. Geol., Warszawa.

BROGI A. (2004) – Faults link age, dam age rocks and hy dro ther mal fluid cir cu la tion: Tec tonic in ter pre ta tion of the Rapolano Terme travertines (south ern Tuscany, It aly) in the con text of North ern Apennines Neo - gene-Qua ter nary ex ten sion. Ecl. Geol. Helv., 97: 307–320.

BROGI A., CAPEZZUOLI E., AQUÉ R., BRANCA M. and VOLTAGGIO M. (2010) – Study ing travertines for neotectonics in ves ti ga tions: Mid - dle-Late Pleis to cene syn-tec tonic trav er tine de po si tion at Serre di Rapolano (North ern Apennines, It aly). Internat. J. Earth Sc., 99:

1383–1398.

BROGI A., CAPEZZUOLI E., BURACCHI E. and BRANCA M. (2012) – Tec tonic con trol on trav er tine and calcerous tufa de po si tion in a low-tem per a ture geo ther mal sys tem (Sarteano, Cen tral It aly). J. Geol.

Soc., 20: 1–16. doi 10.1144/0016-76492011-137.

BUDAY T., CICHA I., HANZLÍKOVÁ E., CHMELÍK F., KORÁB T., KUTHAN M., NEMČOK J., PÍCHA F., ROTH Z., SENEŠ J., SCHEIBNER E., STRÁNÍK Z., VAŠKOVSKÝ I. and ŽEBERA K.

(1967) – Regionalni Geologie ČSSR, Díl II, Zapadné Karpaty. Ústr.

Úst. Geol., Praha.

CAINE S.J., EVANS J.P. and FORSTER C.B. (1996) – Fault zone ar chi tec - ture and per me abil ity struc ture. Ge ol ogy, 24: 1025–1028.

ČABALOVÁ D. (1991) – Travertiny Slovenska. Geologický Průzkum, 1:

4–8.

CHAFETZ H.S. and FOLK R.L. (1984) – Tufas: depositional mor phol ogy and the bac te ri ally con trolled con stit u ents. J. Sedim. Petrol., 54: 289–316.

CHOQUETTE P.W. and PRAY L.C. (1970) – Geo logic no men cla ture and clas si fi ca tion of po ros ity in sed i men tary car bon ates. AAPG Bull., 54:

207–250.

CHOWANIEC J. and POPRAWA D. (1998) – Ther mal wa ters of the Pol ish part of the Carpathians. Prz. Geol., 46 (8/2): 770–774.

CHOWANIEC J., KĘPIŃSKA B., MAZUREK J., PAWLIKOWSKI M.

and POPRAWA D. (1999) – Min er al og i cal and pet ro graph i cal in ves ti - ga tions of ther mal wa ters’ res er voir rocks from Bukowina Tatrzańska PIG/PNiG-1 well (south ern Po land) (in Pol ish with Eng lish sum - mary). Prz. Geol., 47 (12): 1096–1100.

DUDZIAK J. (1983) – Stra tig ra phy of the Podhale Flysch (Palaeogene), Cen tral Carpathians, based on cal car e ous nannoplankton. I. The Zakopane For ma tion in Biały Dunajec and Białka val leys (in Pol ish with Eng lish sum mary). Studia Geol. Pol., 77: 55–81.

DUDZIAK J. (1986) – Stra tig ra phy of the Podhale Flysch (Palaeogene), Cen tral Carpathians, based on cal car e ous nannoplankton. III. The Chochołów and Ostrysz for ma tions (in Pol ish with Eng lish sum mary).

Studia Geol. Pol., 88: 157–174.

DZIUDZIK J. (2002) – Tektoniczne uwarunkowania występowania martwic wapiennych w rejonie Dzianisza (Podhale). Praca magisterska. Arch. Inst. Geol. Podst. UW, Warszawa.

FODOR L., CSONTOS L., BADA G., GYÖRFY I. and BENCOVICS L.

(1999) – Ter tiary tec tonic evo lu tion of the Pannonian Ba sin sys tem and neigh bour ing orogens: a new syn the sis of palaeostress data. Geol.

Soc. Spec. Publ., 156: 295–334.

FORD T.D. and PEDLEY H.M. (1996) – A re view of tufa and trav er tine de pos its of the world. Earth-Sc. Rev., 41: 117–175.

FUSÁN O. (1963) – Geologicka Mapa ČSSR 1:20 0000, ark. Vysokie Tatry. Ústř. Úst. Geol., Praha.

GARECKA M. (2005) – Cal car e ous nannoplankton from the Podhale Flysch (Oligocene-Mio cene, In ner Carpathians, Po land). Studia Geol.

Pol., 124: 353–369.

GEDL P. (2000a) – Biostratigraphy and palaeoenvironment of the Podhale Palaeogene (In ner Carpathians, Po land) in the light of palynological stud ies. Part I. Studia Geol. Pol., 117: 69–154.

GEDL P. (2000b) – Biostratigraphy and palaeoenvironment of the Podhale Palaeogene (In ner Carpathians, Po land) in the light of palynological stud ies. Part II. Sum mary and sys tem atic de scrip tions. Studia Geol.

Pol., 117: 155–303.

GOŁĄB J. (1959) – On the ge ol ogy of the west ern Podhale Flysch area (in Pol ish with Eng lish sum mary). Biul. Inst. Geol., 149: 225–237.

GRADZIŃSKI M. (2010) – Fac tors con trol ling growth of mod ern tufa: re - sults of a field ex per i ment. Geol. Soc. Spec. Publ., 336: 143–191.

GRADZIŃSKI M., JACH R. and STWORZEWICZ E. (2001) – Or i gin of cal cite-ce mented Ho lo cene slope brec cias from the Długa Val ley (The West ern Tatra Moun tains). Ann. Soc. Geol. Pol., 71: 105–113.

GRADZIŃSKI M., BELLA P., CZOP M., DULIŃSKI M., GŁAZEK J., HAVIROVA D., HERCMAN H., HOLÚBEK P., MOTYKA J., MROZIŃSKA T., RAJNOGA P., WRÓBLEWSKI W., STWORZEWICZ E. and WRÓBLEWSKI W. (2008a) – Trawertyny i kras północnej Słowacji. In: Przewodnik sesji terenowych (ed. G.

Haczewski). Pierwszy Polski Kongres Geologiczny, 26–28 czerwca 2008, Kraków. Polskie Towarzystwo Geologiczne, Kraków.

GRADZIŃSKI M., DULIŃSKI M., HERCMAN H., STWORZEWICZ E., HOLÚBEK P., RAJNOGA P., WRÓBLEWSKI W. and KOVÁČOVÁ M. (2008b) – Fa cies and age of travertines from Spiš and Liptov re - gions (Slovakia) – pre lim i nary re sults. Slov. Kras, 46: 31–40.

GROSS P. and KÖHLER E. (1980) – Geologia Liptovskiej Kotliny. Geol.

Úst. D. Štúra, Bratislava.

GROSS P., KÖHLER E. and SAMUEL O. (1984) – A new lithostratigraphical di vi sion of the In ner Carpathian Paleogene (in Slo - vak with Eng lish sum mary). Geol. Pr., Spr., 81: 103–117.

GRUSZCZYŃSKI M. and MASTELLA L. (1986) – Cal car e ous tufas in the area of the Mszana Dolna tec tonic win dow (in Pol ish with Eng lish sum mary). Ann. Soc. Geol. Pol., 56: 117–131.

GUTERCH B. and LEWANDOWSKA-MARCINIAK H. (2002) – Seis - mic ity and seis mic haz ard in Po land. Folia Quatern., 73: 85–99.

GUTERCH B., LEWANDOWSKA-MARCINIAK H. and NIEWIADOMSKI J. (2005) – Earth quakes re corded in Po land along Pieniny Klippen Belt, West ern Carpathians. Acta Geoph. Pol., 53:

28–44.

HALICKI B. (1930) – Dyluwialne zlodowacenie północnych zboczy Tatr.

Spraw. Państw. Inst. Geol., 5: 397–534.

HALICKI B. and LILPOP J. (1932) – Czwartorzędowe trawertyny w Gliczarowie na Podhalu. Pos. Nauk. Państw. Inst. Geol., 27: 6–7.

HANCOCK P.L., CHALMERS R.M.L., ALTUNEL E. and ÇAKIR Z.

(1999) – Travitonics: us ing tufas in ac tive fault stud ies. J. Struct.

Geol., 21: 903–916.

JULIA R. (1983) – Tufas. AAPG Mem., 33: 64–72.

KĘDZIERSKA K. (2001) – Uwarunkowania tektoniczne występowania martwic wapiennych w dorzeczu Białki (Podhale). Praca magisterska.

Arch. Inst. Geol. Podst. UW, Warszawa.

KOVANDA J. (1971) – Kvartérní vápence Československa. Sbornik Geologických Věd, Antropozoikum, 7: 5–236.

KOVÁČ M., KRÁL J., MÁRTON E., PLAŠIENKA D. and UHER P.

(1994) – Al pine up lift his tory of the Cen tral West ern Carpathians: geo - chron ol ogi cal, paleomagnetic, sed i men tary and struc tural data. Geol.

Carpath., 45: 83–96.

KSIĄŻKIEWICZ M. (1972) – Budowa geologiczna Polski, IV. Tektonika, cz. 3. Karpaty. Wyd. Geol., Warszawa.

LEŠKO B. (1958) – Prehľad geológie paleogénu južnej časti Levočského pohoria a priľahlých Kotlín. Geol. Pr., 12: 14–32.

LOŽEK V. (1961) – Travertines. Pr. Inst. Geol., 34: 81–86.

LOŽEK V. (1964) – Genéza a vek spišských travertinov. Sbornik Východoslovenského Múzea, 5: 7–32.

LUDWINIAK M. (2010) – Multi-stage de vel op ment of the joint net work in the flysch rocks of West ern Podhale (In ner West ern Carpathians, Po land). Acta Geol. Pol., 60: 283–316.

Tectonic control of tufa occurrences in the Podhale Synclinorium (Central Western Carpathians, southern Poland) 743

(12)

MAJEWSKA A. (2001) – Uwarunkowania tektoniczne występowania martwic wapiennych w dorzeczu Białego Dunajca (Podhale). Praca magisterska. Arch. Inst. Geol. Podst. UW, Warszawa.

MAKOWSKA A. and JAROSZEWSKI W. (1987) – On pres ent ver ti cal move ments in Tatra Mts. and Podhale (in Pol ish). Prz. Geol., 35 (10):

506–512.

MAŁECKA D. (1974) – Hy drau lic re la tion ships of ground wa ters of the Mid dle Podhale re gion (Carpathians) on the back ground of its geo log - i cal struc ture (in Pol ish with Eng lish sum mary). Biul. Geol. UW, 15:

87–147.

MAŁECKA D. (1982) – Mapa głównych jednostek geologicznych Podhala i obszarów przyległych. Wyd. Geol., Warszawa.

MARSCHALKO R. (1968) – Fa cies dis tri bu tion, paleocurrents and paleotectonics of the Paleogene Flysch of Cen tral West-Carpathians.

Geol. Zb. - Geol. Carpath., 19: 69–94.

MASTELLA L. (1975) – Flysch tec ton ics in the east ern part of the Podhale Ba sin Carpathians, Po land (in Pol ish with Eng lish summury). Ann.

Soc. Geol. Pol., 45: 361–401.

MASTELLA L. (2001) – Tektoniczne uwarunkowania występowania martwic wapiennych we fliszu podhalańskim. Neotektonika Polski.

In: Materiały IV Ogólnopolskiej Konferencji Komisji Neotektoniki Komitetu Badań Czwartorzędu PAN (eds. W. Zuchiewicz): 76–79.

Sep tem ber 3–4, 2001, Kraków.

MASTELLA L. and MIZERSKI W. (1977) – Some re marks on geo log i cal struc ture of south-west ern Podhale (in Pol ish with Eng lish sum mary).

Prz. Geol., 25 (10): 494–499.

MASTELLA L., KONON A. and MARDAL T. (1996) – Tec ton ics of the Podhale Flysch, Białka River Val ley, south ern Po land (in Pol ish). Prz.

Geol., 44 (12): 1189–1194.

MASTELLA L., LUDWINIAK M. and KLIMKIEWICZ D. (2012) – Ge ol - ogy of the Biały Dunajec Val ley (Podhale re gion, S Po land) (in Pol ish with Eng lish sum mary). Prz. Geol., 60 (9): 496–505.

PAZDRO Z and KOZERSKI B (1990) – Hydrogeologia ogólna. Wyd.

Geol., Warszawa.

PAZDUR A. (1987) – Iso to pic com po si tion of car bon and ox y gen in Ho lo - cene cal car e ous tufa sed i ments (in Pol ish with Eng lish sum mary).

Zesz. Nauk. P.Śl., 1019: 14–75.

PAZDUR A., PAZDUR M.F. and SZULC J. (1988) – Ra dio car bon dat ing of Ho lo cene cal car e ous tufa in south ern Po land. Ra dio car bon, 30:

133–151.

PEDLEY H.M. (1990) – Clas si fi ca tion and en vi ron men tal mod els of cool fresh wa ter tufas. Sedim. Geol., 68: 143–154.

PADLEY H.M. (2000) – Am bi ent tem per a ture fresh wa ter mi cro bial tufas.

In: Mi cro bial sed i ments (eds. R.E. Rid ing and S.M. Awramiks):

179-186. Springer-Verlag, Berlin.

PENTECOST A. (1995) – The Qua ter nary trav er tine de pos its of Eu rope and Asia Mi nor. Quatern. Sc. Rev., 14: 1005–1028.

PENTECOST A. (2005) – Travertines. Springer-Verlag, Berlin and Hei - del berg.

PENTECOST A. and VILES A. (1994) – A re view and re as sess ment of trav er tine clas si fi ca tion. Geogr. Fis. Quatern., 48: 305–314.

PERSKI Z. (2008) – Re cent tec tonic ac tiv ity of the Tatra Mts and Podhale (Po land) stud ied by InSAR and PSInSAR (in Pol ish with Eng lish sum - mary). Prz. Geol., 56 (12): 1082–1086.

POMIANOWSKI P. (1995) – Tec ton ics of the Orava–Nowy Targ Ba sin – re sults of the com bined anal y sis of the grav ity and geoelectrical data (in Pol ish with Eng lish sum mary). Prz. Geol., 51: 498–506.

POMIANOWSKI P. (2003) – Struc ture of the Orava Ba sin in the light of se lected geo phys i cal data (in Pol ish with Eng lish sum mary). Ann.

Soc. Geol. Pol., 64: 67–80.

RABOWSKI E. (1930) – Dyluwialne martwice wapienne w Tatrach. Pos.

Nauk. Państw. Inst. Geol., 27: 45.

RUTKOWSKI J. (1991) – Ho lo cene de pos its in the Racławka River Val ley (in Pol ish with Eng lish sum mary). Zesz. Nauk. AGH, Geologia, 17:

173–191.

SIBSON R.H. (1996) – Struc tural per me abil ity on fluid-driven fault-frac - tured meshes. J. Struct. Geol., 18: 1031–1042.

SIBSON R.H. (1987) – Earth quake rup tur ing as a min er al is ing agent in hy - dro ther mal sysytems. Ge ol ogy, 15: 704–710.

SIBSON R.H. (2000) – Fluid in volve ment in nor mal fault ing. J.

Geodynam., 29: 469–499.

SMIEJA and SMIEJA-KRÓL (2007) – Springs with ac tive cal cium car - bon ate pre cip i ta tion in the Pol ish part of the Tatra Moun tains. In: Karst and Cryokarst (ed. A. Tyc and K. Stefaniak): 219–226. Univ. Silesia, Fac ulty of Earth Sci ences, Univ. Wrocław, Zoo log i cal In sti tute, Sosnowiec, Wrocław.

SOKOŁOWSKI J. (1991) – Dokumentacja obiektów geotermalnych.

Materiały konferencyjne: Problemy geotermii, środowiska przyrodniczego i kulturowego Tatr, Podhala, Orawy, Spisza i Gorców, 9 października 1991, Zakopane: 7–50.

SOKOŁOWSKI S. (1959) – Geo log i cal map of the Num mu lit ic Eocene re - gion (north ern mar gin of the Pol ish Tatra). Pre lim i nary re port (in Pol - ish with Eng lish sum mary). Biul. Inst. Geol., 149: 197–213.

STĘPCZAK P. (2011) – Analiza spękań ciosowych we fliszu podhalańskim wzdłuż potoku Kacwińska Rzeka (Podhale). Praca magisterska. Arch. Inst. Geol. Podst. UW, Warszawa.

SZCZĘSNY R. (1987) – Geo logic in ter pre ta tion of lin ea ment from Podhale (in Pol ish with Eng lish sum mary). Biul. Geol. UW, 31:

401–410.

SZULC J. (1983) – Or i gin and clas si fi ca tion of tufa de pos its (in Pol ish with Eng lish sum mary). Prz. Geol., 31 (4): 231–237.

SZULC J. (1986) – Ho lo cene tufa de pos its of the Cra cow Up land. IAS 7th Eu ro pean Meet ing. Ex cur sion Guide-Book: 185–189. ING UJ, Kraków.

ŚMIGIELSKI M., STUART F., PERSANO C., KRZYWIEC P., SINCLAIR H., ALEKSANDROWSKI P. and PISANIEC K. (2012) – Sub se quent ex hu ma tion, burial and ex hu ma tion of the Tatra Moun - tains con strained by the low tem per a ture thermochronology. Miner.

Slov., 44: 105.

UHLIG J. (1897) – At las geologiczny Galicji, 1:75 000, z. 24, Zakopane, Nowy Targ. Wiedeń.

UHLIG J. (1903) – Bau und Bild der Karpathen. Wien.

URBAŃSKI J. (1932) – Beitrag zur Kenntnis der Mollusken der interglazialen Tufa von Gliczarów bei Zakopane. Rocz. Pol. Tow.

Geol., 8: 205–209.

VÁZQUEZ-URBEZ M., ARENAS C. and PARDO G. (2012) – A sed i men - tary fa cies model for stepped, flu vial tufa sys tem in the Ibe rian Range (Spain): the Qua ter nary Piedra and Mesa Val leys. Sedimentology, 59:

502–526.

VILES H.A. and PENTECOST A. (2008) – Tufa and Tufa. In: Geo chem i - cal Sed i ments and Land scapes (eds. D.J. Nash and S.J. Mc Laren):

173–199. Blackwell, Ox ford.

VOJTKO R., TOKÁROVÁ E., SLIVA Ľ. and PEŠKOVÁ I. (2010) – Ce no - zoic palaeostress field re con struc tion and re vised tec tonic his tory in the north ern part of the Cen tral West ern Carpathians (the Spišská Magura and Tatra Moun tains). Geol. Carpath., 61: 211–225.

WATYCHA L. (1959) – Re marks on ge ol ogy of the Podhale Flysch in the east ern part of Podhale (in Pol ish). Prz. Geol., 7 (8): 350–356.

WATYCHA L. (1968) – Pre lim i nary es ti ma tions of con di tions and pos si - bil i ties of for ma tion of oil de pos its in the east ern part of the Podhale Flysch (in Pol ish with Eng lish sum mary). Kwart. Geol., 12 (4):

898–915.

WATYCHA L. (1974) – Szczegółowa mapa geologiczna Polski w skali 1:50 000, ark. Nowy Targ. Wyd. Geol., Warszawa.

WATYCHA L. (1976) – Szczegółowa mapa geologiczna Polski w skali 1:50 000, ark. Czarny Dunajec. Wyd. Geol., Warszawa.

WATYCHA L. (1977) – Objaśnienia do Szczegółowej mapy geologicznej Polski w skali 1:50 000, ark. Czarny Dunajec. Wyd. Geol., Warszawa.

ZHANG D.D., ZHANG Y., ZHU A. and CHENG X. (2001) – Phys i cal mech a nism of river wa ter fall tufa (travertines) for ma tion. J. Sedim.

Res., A71: 205–216.

ZÝKA V. and VTĚLENSKÝ J. (1960) – Geochemie slovenskych travertinu. Geol. Pr., 17: 149–195.

ŻYTKO K., ZAJĄC R., GUCIK S., RYŁKO W., OSZCZYPKO N., GARLICKA I., NEMČOK J., ELIAŠ M., MENČIK E. and STRÁNIK Z. (1989) – Map of the tec tonic el e ments of the West ern Outer Carpathians and their fore land. In: Geo log i cal at las of the West ern Outer Carpathians and their fore land (eds. D. Poprawa and J.

Nemčok). Wyd. Geol., Warszawa.

Cytaty

Powiązane dokumenty

The Rzeszów thrust-top basin was formed on the active Skole thrust sheet of the Outer Carpathian fold-and- thrust belt and filled with Miocene syntectonic sediments.. New seismic

Stud ies of the low ter race de pos its of the Falsztyñski val ley have re con struc tion of en vi ron men tal changes on the ba sis of mol lusc as sem blage anal y sis,

The inoceramid record of the Upper Campanian and Lower Maastrichtian of the study area can be directly compared to the succession known from the Middle Vis- tula River

The application of malacological analysis in the study of slope deposits: late Pleis- tocene and Holocene of the Podhale Basin (Carpathians, Poland).. Acta Geologica Polonica, 65

Multi-stage development of the joint network in the flysch rocks of western Podhale (Inner Western Carpathians,

Ob ser va tions on the land slide on the Bystry Stream (Fig. 1) con cerned per ma nence of the land slide ponds; reg is tra tion of the lo ca tion and type of al ter ations

The Cergowa Beds of the Szczawa tectonic window, containing marls and thick-bedded sandstones, display lithological and age similarity not only to the Oligocene

A — gray marls of the Grybów Marls For ma tion (thrust-sheet I); B — mas sive gray brown ish marls, Grybów Marls For ma tion (thrust-sheet II); C — me - dium-bed ded sand stone