• Nie Znaleziono Wyników

On the bivariate Baskakov-Durrmeyer type operators

N/A
N/A
Protected

Academic year: 2022

Share "On the bivariate Baskakov-Durrmeyer type operators"

Copied!
12
0
0

Pełen tekst

(1)

* Grażyna Krech (gkrech@up.krakow.pl), Renata Malejki, Institute of Mathematics, Pedagogical University of Cracow.

FUNDAMENTAL SCIENCES

1-NP/2016

NAUKI PODSTAWOWE

GRAŻYNA KRECH*, RENATA MALEJKI*

ON THE BIVARIATE BASKAKOV-DURRMEYER TYPE OPERATORS

O OPERATORACH DWÓCH ZMIENNYCH TYPU BASKAKOWA-DURRMEYERA

A b s t r a c t

In this paper we introduce some linear positive operators of the Baskakov-Durrmeyer type in the space of continuous functions of two variables. The theorems on convergence and the degree of approximation are established.

Keywords: Baskakov-Durrmeyer type operators, linear operators, approximation order S t r e s z c z e n i e

W artykule definiuje się dodatnie operatory liniowe typu Baskakowa-Durrmeyera w przestrze- ni ciągłych funkcji dwóch zmiennych. Formułuje się i dowodzi twierdzenia dotyczące zbież- ności oraz rzędu zbieżności.

Słowa kluczowe: operatory typu Baskakowa-Durrmeyera, operatory liniowe, rząd aproksy- macji

DOI: 10.4467/2353737XCT.16.142.5753

(2)

1. Introduction

In recent years, several researchers have studied various modifications of the Baskakov- -Durrmeyer operators. The approximation properties of these operators in many different spaces were considered, for example, in [4, 8, 10, 11, 18, 19].

A large amount of literature is available on approximation of function of one variable, but the corresponding problem for bivariate functions has received less attention. The bivariate Bernstein operator was first introduced by Dhingas [3] and it was also considered by Lorentz [9] and Stancu [14]. Recently, some positive linear operators for function of two variables and their approximation properties were investigated in a series of research articles (e.g.

[2, 5, 6, 7, 12, 13, 15, 17, 20, 21].

In this paper, we will introduce the Baskakov-Durrmeyer type operators in the space of continuous functions of two variables. This is an extension of the paper [10] for a bivariate case.

Let 02  

0 0

= [0, ) =

+ ¥ and + +× +. We denote by C( )2+ the space of all real-valued functions continuous on +2 and by CB(2+) ‒ the space of functions continuous and bounded on +2. The norm on CB(2+) is defined by

f C f x y

B( ) x y ( , )

2 = 2 ( , ) .

+ sup+

Let

W x e k

i n a x

k x

n ka ax

x i

k

i k i k

, 1 n k

=0

( ) = ( )

!(1 ) ,

+

+ +

where a∈+0, ( )n0=1, ( )ni =n n( +1) (… n i+ −1), i³1.

We consider the class of operators Mn mα β,, , ,a b given by the formula

M f x y mn W x W y

n ma b k

k l n ka m lb ,, , ,

, =0 , ,

( ; , ) = ( ) ( ) 1

( 1)

1 (

α β

α β

¥ Γ + + Γ +ll

e ns ns ke mz mz l f s z dsdz +

×

∫ ∫

+ +

1)

( ) ( ) ( , )

0 0

¥ ¥ α β

for ( , )x y ∈ ,2+ where m n, ∈, ,a b∈ α β >0+, , −1. It is clear that the operator Mn mα β,, , ,a b is linear and positive on +2. In this paper we study some approximation properties of

Mn mα β,, , ,a b in the space of continuous functions of two variables on a compact set. We find the order of this approximation using full and partial modulus of continuity.

Observe that if f s z( , ) = ( ) ( )f s f z1 2 , then

Mn mα β,, , ,a b( ; , ) =f x y Mnα,a( ; )f x M1 mβ,b( ; ),f y2 (1.1)

(3)

where

M f x n W x

k e ns f s ds

n a

k n ka ns k

α α

α

, 1

=0 , 0 1

( ; ) = ( ) 1

( 1) ( ) ( ) .

¥ ¥

Γ + +

+

Some properties of the operator Mnα,a, in particular, an estimation of the rate of convergence, were studied in [10].

Let ( , )x y ∈2+ and

e s zi j, ( , ) =s zi j, φi jx y,, ( , ) = (s z s x z y− ) (i − ) ,j i j, = 0 1,2,4, , ( , )s z ∈∈+2.

Now, we give some lemmas which will be useful in the future proofs of the main results.

The following lemmas are simple consequences of the above definitions and the results obtained in [10, Lemma 2.2, Lemma 2.3].

Lemma 1. Let m n, ∈, ,a b∈0+, ,α β >−1. For ( , )x y ∈2+ we get

Mn mα β,, , ,a b(e0,0; , ) = 1,x y (1.2)

M e x y

n x ax

n x

n ma b

,, , , ( 1,0; , ) = 1

(1 ),

α β α +

+ + + (1.3)

M e x y

m y by

m y

n ma b

,, , , ( 0,1; , ) = 1

(1 ),

α β β +

+ + + (1.4)

M e x y

n

x x

n x a x

n ma b n

,, , , 2,0

2

2 2 2 2

( ; , ) = ( 1)( 2) 2( 2) 2

(1

α β α+ α+ α

+ + +

+ +

++

+ + + +

+

x ax

n x

ax

n x

) 2

(1 )

2( 2) (1 ) ,

2 2

2

α (1.5)

M e x y

m

y y

m y b y

n ma b m

,, , , 0,2

2

2 2 2 2

( ; , ) = ( 1)( 2) 2( 2) 2

(1

α β β+ β+ β

+ + +

+ +

++

+ + + +

+

y by

m y

by

m y

) 2

(1 )

2( 2) (1 )

2 2

2

β .

(1.6)

Lemma 2. Let m n, ∈, ,a b∈0+, ,α β >−1. For ( , )x y ∈2+ we get

M x y

n

ax

n x

n ma b

,, , , ( 1,0x y; , ) = 1

(1 ),

α β φ α

, + +

+

M x y

m

by

m y

n ma b

,, , , ( 0,1x y; , ) = 1

(1 ),

α β φ β

, + +

+

M x y

nm

by nm y

n ma b ,, , , x y

1,1,

( ; , ) = ( 1)( 1) ( 1) (1 )

( 1)

α β φ α+ β+ + α+ β

+ + + aax nm x

abxy

nm x y

(1 ) (1 )(1 ),

+ +

+ +

(4)

M x y

n

x x n

a x

n x

n ma b x y ,, , , 2,0

2

2 2 2

2 2

( ; , ) = ( 1)( 2) 2

(1 )

α β φ α α

, + +

+ +

+ + + 22( 2)

(1 ) ,

2

α + +

ax

n x

M x y

m

y y m

b y

m y

n ma b ,, , , x y0,2

2

2 2 2

2 2

( ; , ) = ( 1)( 2) 2

(1 )

α β φ β β

, + + + + +

+ + 22( 2) (1 ).

2

β + +

by

m y

Theorem 1. For each f CB( ,2+) we have Mn ma b f f

CB CB

,, , ,

( ) ( )

( ) 2 2

α β

+ £ +

for all n m, ∈ .

Proof. Using the definition Mn mα β,, , ,a b, we obtain

M f x y mn W x W y

n ma b k

k l n ka m lb ,, , ,

, =0 , ,

( ; , ) ( ) ( ) 1

( 1)

1 (

α β

α β

Γ + + Γ +ll

e ns e mz f s z dsdz f

ns k mz l

s z

+

×

∫ ∫

+ +

+

1)

( ) ( ) ( , )

0 0

2

∞ ∞

α β

sup

( , )  (( , ) ( ) ( ) 1

( 1)

1

( 1)

, =0 , ,

0 0

s z mn W x W y

k l

e

k l n ka m lb

∞ ∞

∫ ∫

+ + + +

×

Γ α Γβ

nns k mz l

s z n ma b

ns e mz dsdz f s z M e

( ) ( )

= ( , ) (

2 ,, , , 0

α β

α β

+ +

+ ( , ) sup

,,

( , )sup ,

0; , ) ( , ) x y 2 f s z f

s z

= =

+

which gives the result. 

Theorem 2 [22]. Let I1 and I2 be compact intervals of the real line. Let n m, ∈  and Tn m, : (C I I1× 2)→C I I( 1× 2) be linear positive operators. If

n m Tn m ei j ei j i j

,

, ,

( ) = , , { 0,0 1 0 0 1 }

lim¥ , ( ) ( ),( , ),( , ) and

n m Tn m e e e e

,

2,0 0,2 2,0 0,2

( ) =

+ +

lim¥ , ,

uniformly on I1 × I2, then the sequence (Tn,m f) converges to f uniformly on I1 × I2, for any f C I I∈ (1× 2).

Let A,B > 0. Throughout the rest of this paper we will denote 2AB= [0, ] [0, ]A× B. Theorem 3. Let ( , )x y ∈ 2AB are fixed. If f C∈ (2AB), then

n m Mn ma b f x y f x y

, ,, , , ( ; , ) = ( , )

lim→¥ α β .

(5)

Moreover, this convergence is uniform on 2AB. Proof. Using (1.2)‒(1.6), we have

n m Mn ma b ei j x y ei j x y i j

, ,, , , ( , ; , ) = , ( , ), , { 0,0 1 0

lim¥ α β ( ) ( ),( , ),,( , )0 1 } and

n m Mn ma b e e x y e x y e x y

, ,, , , ( 2,0 0,2; , ) = 2,0( , ) 0,2( , )

+ +

lim¥ α β

uniformly on 2AB. Applying Theorem 2, the proof of the theorem is completed. 

2. Local approximation results

In this section we will investigate the degree of approximation for functions of two variables by operators Mn mα β,, , ,a b in terms of the modulus of continuity on a compact set.

Let f C∈ (2AB) and δ > .0 The full continuity modulus of the function f is defined as (see [1], [16])

ω δ

δ

( ; ) = ( , ) ( , )

( ( , ),( , ))2 ( )22 2

f f s z f x y

s x z y

s z x y AB

+ −

£

sup

and its partial continuity moduli are given by

ω δ

δ (1)

|0 |

( ; ) =f f s z( , ) f x z( , ) ,

s xz B

£ £sup£

ω δ

δ (2)

|0 |

( ; ) =f f s z( , ) f s y( , ) .

z ys A

£ £sup£

It is known that limδ→0ω( ; ) = 0 ( ; )f δ , ω f δ1 ≤ω( ; )f δ2 for 0<δ1≤δ2 and for any λ>0 ( ; ) (1, ω f λδ ≤ +λ ω) ( ; )f δ. The same properties are satisfied by partial continuity moduli. The details of the modulus of continuity for the bivariate case can be found in [1].

Theorem 4. Let f C∈ (2AB).For x y( , )∈2AB, we have Mn mα β,, , ,a b( ; , )f x yf x y( , ) £2 ( ; ),ω f δ where

δ α α α

β

= ( 1)( 2) 2

(1 )

2( 2) (1 ) (

2

2 2 2

2 2 2

+ +

+ +

+ +

 + +

+

+ +

n

x x n

a x

n x

ax

n x

11)( 2) 2

(1 )

2( 2) (1 )

2

2 2 2

2 2 2

β+ β 1/2

+ +

+ + + +

+



m

y y m

b y

m y

by

m y .

(6)

Proof. Let δ > 0. If (s x− )2+ −(z y)2 £ δ, then f s z( , )−f x y( , ) £ ω( ; ).f δ If (s x− )2+ −(z y)2> δ, then

(s x− )2+ −2(z y)2 (s x− )2+ −(z y)2 1.

δ > δ >

Therefore, we obtain

f s z f x y f s x z y

s x z y

( , ) ( , ) ; ( ) ( )

1 ( ) ( )

2 2

2 2

(

− + −

)

+ − + −





£

£

ω

δ ω ff;δ 1 (s x)2 2(z y)2 f; .

δ ω δ

( )

+ + −

 



( )

£

The operator Mn mα β,, , ,a b is positive and linear, so

M f x y f x y M f f x y x y

f

n ma b

n ma b ,, , ,

,, , ,

( ; , ) ( , ) ( , ) ; ,

( ; )

α β α β

ω δ

£

(

)

£ MMn mα β,, , ,a b(e0,0; , ) 1x y 2Mn mα β,, , ,a b( 2,0x y 0,2x y; , )x y

δ φ φ

+ , + ,



 

.

From Lemma 2 we obtain

M f x y f x y M f f x y x y

f

n ma b

n ma b ,, , ,

,, , ,

( ; , ) ( , ) ( , ) ; ,

( ; )

α β α β

ω δ

£

(

)

£ 11 1 ( 1)( 2) 2

(1 )

2( 2)

2 2

2 2 2

2 2 2

+ + +

+ +

+ +





 + +

δ

α α α

n

x x n

a x

n x

ax n ((1 ) ( 1)( 2) 2

(1 )

2( 2) (1 )

2

2 2 2

2 2 2

+

+ + + + + +

+ + +

+



x

m

y y m

b y

m y

by

m y

β β β





,

which ends the proof. 

Theorem 5. If f C∈ (2AB), then for all ( , )x y ∈  ,2AB we have M f x y f x y

n x x a x

n x

n ma b ,, , ,

2 2 2

2

( ; , ) ( , )

1 ( 1)( 2) 2

(1 )

α β

α α

+ + +

+ + +

+ +

£ 22( 2)

(1 ) ; 1

1 ( 1)( 2) 2

(1)

2

α ω

β β

+ +

 

 

 



+ + + +

+ + +

ax

n x f

n

m y y bb y

m y

by

m y f

m

2 2

2 (2)

(1 )

2( 2)

(1 ) ; 1 .

+ + +

+

 

 

 



β ω

(7)

Proof. Let f C∈ (2AB). Observe that

M f x y f x y mn W x W y

n ma b k

k l n ka m lb ,, , ,

, =0 , ,

( ; , ) ( , ) ( ) ( ) 1

(

α β

− α

+ +

Γ 11)

1

( 1)

( ) ( ) ( , ) ( , )

0 0

Γ β

α β

+ +

×

∫ ∫

+ +

l e ns ns ke mz mz l f s z f x z dsdz

∞ ∞

++ + + + +

×

∫ ∫

mn W x W y

k l

e n

k l n ka m lb ns

, =0 , ,

0 0

( ) ( ) 1

( 1)

1

( 1)

(

∞ ∞

Γ α Γ β

ss e mz f x z f x y dsdz J J

k mz l

) ( ) ( , ) ( , )

= 1 2.

α+ β+

+

Using the properties of the modulus of continuity and (1.5), we have

J mn W x W y

k l

e

k l n ka m lb ns

1

, =0 , ,

0 0

= ( ) ( ) 1

( 1)

1

( 1)

(

∞ ∞

∫ ∫

+ + + +

×

Γα Γβ

nns e mz f s z f x z dsdz

f M

k mz l

n n n m

) ( ) ( , ) ( , )

( ; ) 1 1

(1) 2 ,,

α β

ω δ α

δ

+ +

≤ + ββ φ

α α

, , 2,0

2 2 2

( ; , )

1 ( 1)( 2) 2

(1

a b x y x y

n x x a x

n

,









+ + +

+ + +

≤ +

xx

ax

n x f

n )

2( 2)

(1 ) ; 1 ,

2 + + (1)

+

 

 

 



α ω

where δn

= 1 . Similarly, we obtainn

J m y y b y

m y

by

m y

2 2 2 2

1 ( 1)( 2) 2 2

(1 )

2( 2) (1 )

£ + + +

+ + +

+ + +

+

 



β β β

ω((2) f; 1 . m

 



Hence, the proof is completed. 

Now, we consider the mixed modulus of smoothness and the modulus of smoothness (see [16]). Let δj > 0, j = 1,2.

The mixed modulus of smoothness is defined as

ω δ δ

δ δ

mix( ; , ) =1 2 ( , )

( , ),( , )

| | , | |

1 2 2

f f s z f

x y s z

s x z y

AB

£sup £ (( , )x zf s y( , )+ f x y( , ) and the modulus of smoothness of the first and the second order are given by

ω δ δ

δ δ

1 1 2

( , ),(0 , 0, )

( ; , ) = ( , )

1 22

f f x h y k

x y x h y kh k + + ∈ AB

+ +

£ £sup£ £ −−f x y( , ) ,

(8)

ω δ δ

δ δ

2 1 2

( , ),( 2 , 2 )0 , 0

( ; , ) = ( 2 ,

1 2 2

f f x h y

x y x h y kh k + + AB

+

£ £sup£ £ ++2 ) 2 (kf x h y k+ , + )+ f x y( , ) , respectively.

Theorem 6. Let f C∈ (2AB) and

H f x y M f x y f

n x ax

n x

n ma b

n ma b ,, , ,

,, , ,

( ; , ) = ( ; , ) 1

(1 ), 1

α β α β α β

− +

+ + +

+ m

m y by

m y f x y

+ + +

 

 + (1 ) ( , ).

There exists a positive constant C such that, for all ( , )x y ∈  ,2AB we have

H g x y g x y C n

g

u m

g

n ma b v

C AB C AB

,, , , 2

2 ( )

2

2 ( )

( ; , ) ( , ) 1 1

2 2

α β − ∂

∂ + ∂

£ ∂

++ ∂

∂ ∂









1 2

( 2 )

nm g u v C

AB

for any function g, such that g g x

g y

g x y i

i i

i

, ∂ , i,

∂ ∂

2 ( = 1,2) belong to C(2AB).

Proof. Let ( , )x y ∈  .2AB Observe that g s z g x y s x g x y

x z y g x y y s u g u

x s

( , ) ( , ) = ( ) ( , ) ( ) ( , )

( ) 2 ( ,

− − ∂

∂ + − ∂

+ − ∂

u yy du y z v g x vv dv g u vu v dvdu z

x s

y

) ( ) ( , ) z ( , ) .

2

2 2

2

∂ + − ∂

∂ + ∂

∫ ∫ ∫

∂ ∂

We have

Hn mα β,, , ,a b(e0 0, ; , ) = 1,x y Hn mα β,, , ,a b1,0x y, ; , ) =x y Hn mα β,, ,a,,b0,1x y, ; , ) = 0.x y Let

ξi jg

x

s i

y

s z s u g u y z

u du z v g x v

, ( , ) = − ∂

 

 − ∂

( ) 2 ( , )2 

( ) 2( , )vv2 dvj, ,i j=0 1, and

ξg

x s

y

s z z g u v u v dudv

( , )= ∂ .

∫ ∫

2∂ ∂( , ) Hence

Hn mα β,, , ,a b( ; , )g x y g x y− ( , ) =Hn mα β,, , ,a b1 0g, ; ,x y H)+ n mα β,, ,a,,b0 1g,; ,x y H)+ n mα β,, , ,a bg; , .x y)

(9)

Using the definition of Hn mα β,, , ,a b, we can write Hn ma b g x y Mn ma b g x y

x

n x ax

n ,, , , 1 0

,, , , 1 0 1

(

; , = ; ,

α β α β

α

ξ ξ

( , ) ( , )

++ +

11 ) 2

2 ,, , , 1

1

(1 )

( , )

++ + + + −

 

∂

x

n ma b g

n x ax

n x u g u y

u du

M

α

α β ξ

≤ ( ,,0 )

1

(1 ) 2

; , 1

(1 )

( , ) x y

n x ax

n x u g u y

x

n x ax

n x

+ + + +

+ −

 

∂

++ +

α + α uu du

g u y

u M x y

u v n ma b

x y

AB

2

( , ) 2

2 ,, , , 2,0

1 2

( , ) ; ,

1

2

∂ +



sup α β, )

22

( , ) 1

(1 ) 1

( , ) 2

2

2

1 2

2 u v 2

C

AB

g u y

u n

ax

n x

C n g u

+ + +

 





sup α

((2AB)

and similarly, we get

H x y C

m g

n ma b v

g

C AB

,, , , 0 1

2 2

2 ( )

; , 1 ,

2

α β, )£ ∂

H x y C

nm g

n ma b u v

g

C AB

,, , ,

3 2

( )

; , 1 ,

2

α β (ξ ) £ ∂

∂ ∂

where C1,C2,C3 are positive constants. Hence H g x y g x y C

n g

x m

g

n ma b v

C AB C AB

,, , , 2

2 ( )

2

2 ( )

( ; , ) ( , ) 1 1

2 2

α β − ∂

∂ + ∂

£ ∂

++ ∂

∂ ∂









1 2

( 2 )

nm g u v C

AB

for some C > 0 and the theorem is proved.

Theorem 7. If f C∈ (2AB), then

M f x y f x y C f

n m f

n ma b n m

mix ,, , ,

( ; , ) ( , ) 2 ; 1 , 1 ; 1 , 1

α β − ω  ω

 

 + 

£  







+ + +

+

 

 + + +

 



 



ω1 ; 1 α 1 β

1 , 1 1

f 1 n

ax x m

by y



, where C > 0, ( , )x y ∈  .2AB

(10)

Proof. Let f C∈ (2AB) and δj > 0, j = 1,2. We shall use the Steklov function of second order defined by

fδ δ x y f x s s y z z

δ δ δ δ

δ δ

1 2

2 2 1 1

( , ) = 16 2 ( , )

12 22 02

0 2

0 2

0

2 1 2 1 2

∫ ∫ ∫ ∫

+ + + +

−− f x( +2(s s y1+ 2), +2(z z ds ds dz dz1+ 2)) 1 2 1 2. Observe that

fδ δ x y f x y ω f δ δ

1 2( , )− ( , )£ 2( ; , )1 2 and

f x y f s y z z dsd

x x

u u δ δ

δ δ δ δ

δ δ

1 2

2 2 1 1

( , ) = 32 ( , )

12 22 02

0

2 2 2

1 2

∫ ∫ ∫ ∫

+ + + + uudz dz

f s y z z dsdud

x x

u u

1 2

12 22 02

0

2 1 2

4 2 2 1 1 ( , 2( ))

δ δ

∫ ∫ ∫ ∫

δ δ +δ +δ + + zz dz f x s s w ds ds d

y y

v v

1 2

12

22 2 2

0 2

0

2 1 2 1 2

= 32 2 2 1 1 ( , )

δ δ

δ δ δ δ

+ +

∫ ∫ ∫ ∫

+ + wwdv

f x s s w ds ds dwdv

y y

v

12422

∫ ∫ ∫ ∫

+ v+ 0 ( +2 +2 , )

2 0

2 1 2 1 2

2 2 1 1

δ δ

δ δ δ δ

== 32 ( , )

4

12

22 02 2 0

2 2

2 2 2 2

2 2 1 1

δ δ

δ δ δ δ

∫ ∫ ∫ ∫

+ + + +

y y

x

x f u s v z duds dvdz

δδ δ

δ δ δ δ

12 22 02

0

2 2 2 2 2

2 2 1

1 ( 2 , 2 )

∫ ∫ ∫ ∫

y+ + + + y

x

x f u s v z duds dvdz

Hence

[

+ + +

− +

2

∫ ∫

2 12

22 02 0

2 1 1 2

1

1 2

2 2

( , ) = 32 ( , )

2 2

x f x y f x y z z

f x

δ δ

δ δ

δ δ δ

δ ,, ( , )

4 (

1 2 1 2 1 2

12 22 02

0

2 22

y z z f x y z z dz dz

f x

 + +

 

 + + + 



δ δ

∫ ∫

δ δ

[

++ + +

− + + + + + +

]

2 , 2( ))

2 ( , 2( )) ( , 2( ))

1 1 2

1 1 2 1 2 1

δ δ

y z z

f x y z z f x y z z dz ddz2

and ∂

 

 +

2

2 12 2 1 2

12 2 1 2

12

1 2( , ) 8 ; 2,

2

1 ; , 9

x fδ δ x y f f

δ ω δ δ

δ ω δ δ

≤ ( ) ≤δ ωω2(f; ,δ δ1 2). .

(11)

Similarly, we get

2

2 1 2( , ) 922 2 ; ,1 2 , y fδ δ x y f

δ ω δ δ

£ ( )

∂ ∂2

1 2 1 2 2

1 2( , ) 9 ; , , ( , ) .

x y fδ δ x y £δ δ ωmix(f δ δ ) x yAB From the above and by Theorem 6, we obtain

M f x y f x y

H f f x y H

n ma b n ma b

n m ,, , ,

,, , ,

,,

( ; , ) ( , )

1 2 ; ,

α β

α β δ δ α β

(

)

+

£ ,, , ( ; , ) ( , ) ( , ) ( , )

1 (

1 2 1 2 1 2

a b f x y f x y f x y f x y

f n x ax

n

δ δ δ δ δ δ

α

− + −

+ + + +

11 ), 1

(1 ) ( , ) ( ; , ) ( ; ,

2 1 2 1

+

+ + + +

 

 − +

x m y by

m y f x y

C f f

β

ω δ δ ω δ

£ mix δδ ω α β

2) 1 ; 1

(1 ), 1

(1 ) ,

+ + +

+

+ + +

 









f 

n

ax

n x m

by

m y

where C is a positive constant. This completes the proof.

The authors would like to thank the referees for their helpful remarks which improved the exposition of the paper.

R e f e r e n c e

[1] Anastassiou G.A., Gal S.G., Approximation theory: moduli of continuity and global smoothness preservation, Birkhauser, Boston 2000.

[2] Atakut Ç., Büyükyazıcı İ., Serenbay S., Approximation properties of Baskakov-Balazs type operators for functions of two variables, “Miskolc Math. Notes” 16.2/2015, 667–678.

[3] Dhingas A., Über einige Identitäten vom Bernstein Types, “Norske Vid. Selsk. Trodheim”

24/1951, 96–97.

[4] Erençin A., Durrmeyer type modification of generalized Baskakov operators, “Appl. Math.

Comput.” 218/2011, 4384–4390.

[5] Gurdek M., Rempulska L., Skorupka M., The Baskakov operators for functions of two variables,

“Collect. Math.” 50.3/1999, 289–302.

[6] İzgi A., Order of approximation of functions of two variables by new type gamma operators,

“General Mathematics” 17.1/2009, 23–32.

[7] Kajla A., Ispir N., Agraval P.N., Goyal M., Q-Bernstein-Schurer-Durrmeyer type operators for functions of one and two variables, “Appl. Math. Comput.” 275/2016, 372–385.

[8] Krech G., Wachnicki E., Direct estimate for some operators of Durrmeyer type in exponential weighted space, “Demonstratio Math.” 47.2/2014, 336–349.

[9] Lorenz G.G., Bernstein Polynomials, Univ. of Toronto Press, Toronto 1953.

[10] Malejki R., Wachnicki E., On the Baskakov-Durrmeyer type operators, “Comment. Math.”

54.1/2014, 39–49.

(12)

[11] Miheşan V., Uniform approximation with positive linear operators generalized Baskakov method, “Automat. Comput. Appl. Math.” 7.1/1998, 34–37.

[12] Rempulska L., Graczyk S., On generalized Szász-Mirakjan operators of functions of two variables, “Math. Slovaca” 62.1/2012, 87–98.

[13] Skorupka M., On approximation of functions of two variables by some linear positive operators,

“Le Matematiche” 50.2/1995, 323–336.

[14] Stancu D.D., On certain polynomials of two variables of Bernstein type and some applications of them, “Dokl. Akad. Nauk SSSR” 134.1/1960, 221–233.

[15] Taşdelen F., Olgun A., Başcanbaz-Tunca G., Approximation of functions of two variables by certain linear positive operators, “Proceedings of the Indian Academy of Sciences: Mathematical Sciences” 117.3/2007, 387–399.

[16] Timan A.F., Theory of Approximation of Functions of a Real Variable, Moscow 1960 [in Russian].

[17] Wachnicki E., Approximation by bivariate Mazhar-Totik operators, “Comment. Math.”

50.2/2010, 141–153.

[18] Wafi, A., Khatoon S., Direct and inverse theorems for generalized Baskokov operators in polynomial weight space, “An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.)” 50.1/2004, 159–173.

[19] Wafi, A., Khatoon S., On the order of approximation of functions by generalized Baskakov operators, “Indian J. Pure Appl. Math.” 35.3/2004, 347–358.

[20] Walczak Z., On certain modified Szász-Mirakyan operators for functions of two variables,

“Demonstratio Math.” 33.1/2000, 91–100.

[21] Walczak Z., Approximation by some linear positive operators of functions of two variables,

“Saitama Math. J.” 21/2003, 23–31.

[22] Volkov V.I., On the convergence of sequences of linear positive operators in the space of two variables, “Dokl. Akad. Nauk. SSSR” 115/1957, 17–19.

Cytaty

Powiązane dokumenty

Key words and phrases: regression line, replication model, variance component, esti- mator, maximum likelihood method, simulation

We investigate absolute continuity and continuity with respect to a modular, mutual relations of these two types of continuity of operators over the spaces L*9, V

Since we have here a concrete normal extension N (namely, multiplication by ψ on some L 2 -space of automorphic vector-valued functions on ∂D), we may directly establish in this

Considering the Theorem together with Motorny˘ı’s and Os- kolkov’s results, we might have reasons to guess that there might be some connections between the interpolation

In this paper we obtain a condition for analytic square integrable functions f, g which guarantees the boundedness of products of the Toeplitz operators T f T g ¯ densely defined on

The purpose of this paper is to develop the theory of Markov operators acting on the space M E of vector measures defined on Borel subsets of a compact metric space X.. These

In this paper we study approximative properties of modified Szasz-Mirakyan operators for functions of two variables from polynomial weight spaces.. We present some direct

In this paper we study approximation properties of partial modi- fied Szasz-Mirakyan operators for functions from exponential weight spaces.. We present some direct theorems giving