• Nie Znaleziono Wyników

Inter-compartment interaction in multi-impeller mixing

N/A
N/A
Protected

Academic year: 2021

Share "Inter-compartment interaction in multi-impeller mixing"

Copied!
16
0
0

Pełen tekst

(1)

Inter-compartment interaction in multi-impeller mixing

Part II. Experiments, sliding mesh and large Eddy simulations

Haringa, Cees; Vandewijer, Ruben; Mudde, Robert F.

DOI

10.1016/j.cherd.2018.06.007

Publication date

2018

Document Version

Final published version

Published in

Chemical Engineering Research and Design

Citation (APA)

Haringa, C., Vandewijer, R., & Mudde, R. F. (2018). Inter-compartment interaction in multi-impeller mixing:

Part II. Experiments, sliding mesh and large Eddy simulations. Chemical Engineering Research and Design,

136, 886-899. https://doi.org/10.1016/j.cherd.2018.06.007

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

(3)

ContentslistsavailableatScienceDirect

Chemical

Engineering

Research

and

Design

j o u r n a l ho me p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c h e r d

Inter-compartment

interaction

in

multi-impeller

mixing.

Part

II.

Experiments,

sliding

mesh

and

large

Eddy

simulations

Cees

Haringa

∗,1

,

Ruben

Vandewijer,

Robert

F.

Mudde

TransportPhenomena,DepartmentofChemicalEngineering,DelftUniversityofTechnology,vanderMaasweg9,

2629HZDelft,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19November2017 Receivedinrevisedform24April 2018

Accepted1June2018 Availableonline13June2018

MSC: 00-01 99-00Keywords: Mixing Schmidtnumber CFD Multipleimpellers Rushton

a

b

s

t

r

a

c

t

Steady state multiplereference frame-RANS (MRF-RANS)simulations frequently show strongover-predictionsofthemixingtimeinsingle-phase,multi-impellermixingtanks, whichissometimespatchedbyadhoctuningoftheturbulentSchmidt-number.InPartI ofthiswork,weexperimentallyrevealedthepresenceofmacro-instabilitiesintheregion betweentheimpellers,aswellasapeakintheturbulentkineticenergyintheregionwhere theflowfromtheindividualimpellersconverges.TheMRF-RANSmethodwasfoundunable tocaptureboth.Inthissecondpaper,weshowthatthesliding-meshRANS(SM-RANS) approachdoescapturetheeffectofmacro-instabilities,whilestillunderestimatingthe tur-bulentkineticenergy.Consequently,theSM-RANSmethodmildlyover-estimatesthemixing time,whilebeinglesssensitivetotheexactmeshgeometry.Largeeddysimulationswith thedynamicSmagorinskymodelreasonablycapturethekineticenergycontainedin macro-instabilities,andproperlyassesstheturbulentkineticenergyintheregionbetweenthe impellers,evenforcrudemeshes.Consequently,themixingtimeisreasonablyassessed, andevenunder-predictedatthecrudestmeshes.However,theturbulentkineticenergyand energydissipationintheimpellerdischargestreamarepoorlyassessedbythedynamic Smagorinskymodel.

©2018InstitutionofChemicalEngineers.PublishedbyElsevierB.V.Allrightsreserved.

1.

Introduction

Computational fluid dynamics (CFD) has frequently been appliedtosimulatemixingprocessesinstirredtanks. Espe-ciallyReynoldsaveragedNavierStokes(RANS)modelsprovide thepossibility toevaluatethe mixingperformanceof vari-ousimpeller configurations without requiringan extensive experimentalcampaign.Anassessmentofmixingliterature focusing on Rushton turbines, conducted in Part I of this work,reveals thatRANSsimulationsarecapableof

reason-Abbreviations: MI, macro-instability;LDA,laserDoppleranemometry;PIV,particleimagevelocimetry; RANS,Reynoldsaveraged

NavierStokes;MRF,multiplereferenceframes;SM,slidingmesh;(S/R)KE,standard/realizablek−;RSM,Reynoldsstressmodel;(D/L)ES, detached/largeEddysimulation.

Correspondingauthor.

E-mailaddress:cees.haringa@DSM.com(C.Haringa).

1 Currentaddress:DSMBiotechnologyCenter,AlexanderFleminglaan1,2613AXDelft,TheNetherlands.

ablypredictingthemixingbehaviorintanksstirredbyasingle impeller,albeitwiththerequirementofhighmeshdensities. Incontrast,thedimensionlessmixingtime95is

systemati-callyover-predictedinmulti-impellertankswithhighmutual impellerspacingwhenusingRANSmodels.Inparticular,for multiplereferenceframe(MRF)simulationsincreasingmesh densitiesresultsinanincreasingover-predictionof95

com-paredtoexperimentalresults.

Itiswellknownthatcompartmentsformaroundthe indi-vidualimpellersofamulti-Rushtontank.InPartIofthiswork,

https://doi.org/10.1016/j.cherd.2018.06.007

(4)

Nomenclature

Roman

Ct tracerconcentration,kg/m3

C off-bottomclearanceimpeller,m

CS Smagorniskyconstant,–

C inter-impellerclearance,m

D impellerdiameter,m D diffusioncoefficient,m2/s

Dt diffusioncoefficient,turbulent,m2/s

Ep/Et fractionofperiodicenergyinspectrumofu,–

f frequency,s−1 f1.1 basefrequency1,s−1 f2.1 basefrequency2,s−1 f1.2 harmonicfrequency1,s−1 f2.2 harmonicfrequency2,s−1 FQ pumpingnumber,– h axialcoordinate,m H tankheight,m

k slotnumber(autocorrelation),–

kt turbulentkineticenergy,m2/s2

kMI macro-instabilitykineticenergy,m2/s2

kt,* kt+kMI,m2/s2

kt,fit ktcomputedviaauto-correlationfit,m2/s2

kt,SI ktcomputedviaspectralintegration,m2/s2

kMI,fit kMIcomputedviaauto-correlationfit,m2/s2

kMI,SI kMIcomputedviaspectralintegration,m2/s2

N impellerrevolutions,1/s

P power,W

Po powernumber,W

Qax axialflowrate,L/s

r radialposition,m

R tankradius,m

Sij shearrate,s−1

Sct turbulentSchmidtnumber,–

T tankdiameter,m t timestepsize,s

u fluctuatingvelocity,m/s

U meanvelocitym/s

Utip impellertipspeed,m/s

V tankvolume,m3

Vi gridcellvolume,m3

w Tukey–Hanningwindow,–

Greek

 laserwavelength,nm  viscosity,dynamic,Pas

t viscosity,dynamic,turbulent,Pas

 viscosity,kinematic,m2/s

t viscosity,kinematic,turbulent,m2/s

 turbulentdissipationrate,m2/s3

ˆ auto-correlationcoefficient,– l density,kg/m3

noisecomponent,– lag lagtime,s

95 mixingtime,s

ij stresstensor,Pa

95 mixingnumberN·95,–

we posed the hypothesis that the over-predicted 95

origi-natesfrom anunder-predictioninmassexchangebetween thesecompartments,whilemixinginsidethecompartments is likelyproperly captured (Coroneo et al., 2011). Although stirredtankshavebeenstudiednumeroustimes,theregion betweenthe impellershadpreviouslyattractedlittle atten-tion.Wehencefocusedourstudyonthisregion,toprovide insightin theinter-compartment hydrodynamicsand their role in mixing. Using laser-Doppler anemometry (LDA),we observed thatthis transport isgoverned bytwo processes: macro-instabilities(MIs)atfrequenciesf/N=0.02–0.06(Nthe agitationrateins−1)inthehorizontalplaneseparatingthe compartments,andapeakinturbulentkineticenergy(kt)in

theplanesegregatingthecompartments,generatedbythe col-lisionoftheflow-loopsintheconvergingflowsectionnearthe wall.Boththeseeffectsareexpectedtoenhanceaxialmass exchange.

Besides experimental results, we reported steady state MRF simulationsinPartIofthis study.Due totheirsteady statenature,theyare inherentlyincapableofcapturing the influence of macro-instabilities. Combined with an under-estimated turbulent kinetic energy (kt), attributed to poor

capturingofturbulencegenerationinthecollidingflowregion byvirtueofReynoldsaveraging,thisleadstoahighly over-estimated95; 95wasfurthermore stronglyaffectedbythe

axial flowrate between the compartments, which in turn was highly mesh sensitive. This explained the increasing 95 with increasing mesh density. In this second part, we

assesswhethertransientsimulations,bothslidingmesh(SM) RANSandlargeEddysimulations(LES),docaptureallrelevant hydrodynamicsbetweenthe impellers,and properly assess themixingtimesinmulti-impellerstirredtanksystems.

2.

Literature

review:

Rushton

turbines,

LES

and

DES

Inthepreviouspartofthisworkwediscussedtheliterature regarding experimental assessment of flows in Rushton-stirredtanks,andtheuseofRANSmodelstomodelsuchflows. MixingresultsforLESwerealsoincludedinPartI,andarenot listedhere.Here,wediscussLESanddetachededdy simula-tions(DES)forflowmodeling.Toourknowledge,DEShasnot beenusedformixingstudiesinbaffledRushton-stirredtanks. 2.1. LES

Revstedt et al.(1998) usedfinitevolumeLES(FV-LES), with 2.12×105 gridcells,animplicitclosure modeland

momen-tumsourcetermsforimpellermodeling.DecentresultsforU

andktwerereportedinthebulk,withpooreragreementnear

theimpeller.Yeohetal.(2004,2005)appliedtheSmagorinsky (SGS)subgridmodelwithconstantCS=0.1(FV-LES,4.9×105

cellswithsliding-deforminggrid),reportinggoodresultsfor

U and kt, but providing no data on . Zhang et al. (2006)

reported similarresults. Alattice-Boltzmannapproach (LB-LES)isfrequentlyappliedinLESstudies(Eggels,1996).Eggels (LB-LES,SGS,CS=0.1)showedsomelocalunder-predictionof

Uax,butoverallagoodagreementwithdatabyBakker(1996)

wasreported.DerksenandVandenAkker(1999)(SGS-model,

CS=0.12,6×106gridnodes)reportedaccurateresultsforthe

dischargestreamvelocities,kt,andtrailingvortexbehavior.

Theyreportedaphase-averagedmaximumenergydissipation intheimpellerdischargeofmax¯ /N3D2≈4.6,over50%lower thanmeasuredexperimentally(DucciandYianneskis,2005).

(5)

Hartmannetal.(2004)reportedasimilarunder-estimationof withLB-LES,resultsthatarefurthersupportedbyMicheletti etal.(2004)(SGS,CS=0.1)withFV-LES.

Delafosse etal. (2008,2009)(sliding mesh,106 cells,

FV-LES,SGSmodel)explicitlynotedthatsettingCS=0.1leadsto

asignificant under-predictionof inthedischarge stream.

CS=0.1 was selected based on testing for awide range of

flows,withhighervaluesofCSleadingtoexcessiveturbulence

dampening.SettingCS=0.2stronglyimprovespredictionsfor

,withoutsignificantlyaffectingthepredictionsforvelocity andkt.Soosetal.(2013)(slidingmesh,1.6×106cells)alsoused

CS=0.2.ComparedtothedataofbothEscudiéetal.(2004),

and Wu and Patterson(1989), theyreported amild under-predictionofthevelocities andthe periodickinetic energy, whilektwaswellpredicted.Thevaluesforareinaccordance

withDelafosseetal.

TheworkofDelafosseetal.andSoosetal.indicatesa case-by-casetuningofCSmay berequired,whichisundesirable

fromtheperspectiveofpredictivecapabilities.Thedynamic SGS (DYN)model aims atsolving this issue by computing ratherthanprescribingCS.MurthyandJoshi(2008)(FV-LES,

DYN,1.3×106cells,slidingmesh)reportgoodresultsforthe

dissipationbasedpowernumberPo,butshownoprofilesof

orvaluesofCS.Jahodaetal.(2007)applythedynamicmodel

formixingin1and2impellergeometriesbutdidnotreport orPo.TheydidshowlocalvaluesofCS,whichwereinthe

rangeof0.05–0.1,belowthedefaultCS=0.1.

AdirectcomputationofCSusingdirectnumerical

simu-lation(DNS) byGillissen and Vanden Akker(2012) yielded

CS≈0.1,inagreementwiththeirowndynamicLES.This

indi-catesthattheCStuningconductedbyDelafosseetal.andSoos

etal.isnotinaccordancewithDNSobservations.Gillisenand vandenAkkernotedthattheunder-predictioninmaybethe resultofanunder-predictedkt-productionduetoinsufficient

meshresolutioninthevicinityofwalls.

2.1.1. DES

Detachededdysimulations(DES)blendaLESapproachinthe free-streamwithRANSinunder-resolved(wall)regions,and maytherebyreduceanydependenceofthebulkflowonwall effects,possiblyimprovingthepredictionsforifthe hypoth-esisbyGillisseniscorrect.Ofcourse,theaccuracyofthewall flowitselfwillstillbelimited,duetotheinherentassumptions oftheRANSmethodology.

Gimbunetal.(2012)presentedSpalart-Allmaras-DES sim-ulationsofaRushton-stirredtank,extensivelycomparingthe resultswith bothSKE-RANS and FV-LES (SGS, CS=0.1). The

bulkvelocitypredictionwasverysimilarbetweenthemodels. DESgenerallyyieldsthebestagreementwithexperimentalkt

data(Derksenetal.,1999),predictingslightlyhighervalues thanSKEandLES.LESandDESperformedsimilarinassessing thequalitativetrailingvortexbehavior,withtheSKEmodel predictingsignificantlylower radialspreadingofthevortex core,similartothestudyofSinghetal.(2011).DEScompared favorabletotheothermodelsinpredictingvelocitiesandkt

inthevortexcore.Overall,DESoutperformedRANS,and out-performedLESinregionswherewalleffectsaresignificant.

Charaetal.(2016)cametosimilarconclusions,observinggood agreementindischargevelocitiesandtrailingvortexbehavior. Theynotedthatthetangentialspreadofthetrailingvortexis slightlynarrowerthanexperimental(PIV)resultsshow.

Lane (2015) reported the energy dissipation behavior of variousturbulencemodelswithanA-310impeller(13.1×106

gridcells).Apowerrecoveryof69%wasobserved,i.e.PDES=

Table1–Meshesusedinthiswork.2IFrepresentsa 360domain.Thelastletter(s)representthemesh quality(C=crude,M=medium,F=fine,SF=super-fine).

Name Cells Domain Methods

2IF-C 648k 360◦ LES

2IF-M 1997k 360◦ SM-RKE,SM-RSM,LES

2IF-F 5884k 360◦ SM-RKE

2IF-SF 10584k 360◦ LES



(+t)S2ijdVis69%ofthepowerinputbasedontorque.For

various SST and KE formulations,theenergy recoverywas 68–91%andstronglymeshdependent,supportingthe obser-vationsbyCoroneoetal.(2011).Thelowenergyrecoveryfor DES,atthefinestmeshused,doeshintthatthewall treat-mentofDESdoesnotprovideasignificantimprovementover LESintermsofresolving.Acomprehensivecomparisonof LESandDESwithvariouslevelsofwallresolution,possibly supportedbyDNS,isrequiredtoprovidefurtherinsightin thereportedunder-predictionsof.Thatisoutofthecurrent scope,however.

3.

Materials

and

methods

3.1. CFDsetup

3.1.1. Geometry

A2-impellerstirredtankwithH=2T,D=T/3,C=T/3andC=T

wasmodeled,withT=0.29m,andanagitationrateN=5s−1. Note that our own experiments were conducted after the CFD work, and because ofthe equipment availablein our labwereperformedwithT=0.26andN=5.78s−1.Thisgives

Re=4.34×104,comparedto4.67×104byJahodaetal.(2007)

and inour CFD work. We donot expect the results tobe affected;allresultsarepresentedindimensionlessform,and allworkwasconductedinthefullyturbulentregime.Detailed informationontheexperimentsispresentedinPartIofthis work.Allinternalsweremodeledassheetbodies(Gunyoland Mudde,2009;Coroneoetal.,2011).LESandSM-RANS Simula-tionswereconductedwitha360◦domain,asusingaperiodic meshwillconstrainthemotionofmacro-instabilities(seePart I ofthis study).In accordance withthe experimentalwork ofJahodaetal.,thetracerconcentrationistrackedwithtwo probes,thebottomprobeatheightT/4andtopprobeatheight 1.25T,placedbetweenthebaffles,atT/20fromthewall.

3.1.2. Numericalsetup

Thenumericalsettingswerelargelysimilartothoseusedin PartI.Spatialdiscretizationwassetto2ndupwind(Gunyoland Mudde,2009;Coroneoetal.,2011)withRANS,andbounded centraldifferenceswithLESsimulations.Standardwall func-tionswereemployedforallsimulations.Thefreesurfaceat thetopwasmimickedbyusingano-shearsurface,allwalls weresettono-slip.Convergencewasdeclaredwhenthe resid-ualswerebelow10−5withinatimestep.Themeshesusedin thiswork areequaltothoseinPartIofthe work,withcell countslistedinTable1.Duetothecomputationtimerequired

forSM-RANSandSM-LES,itwasnotpossibletotestall

mod-elswithallmeshes.Additionalinformationonthemeshesis providedinSupplementarymaterialA.

Tracerwasinjectedinasphericalvolumewitharadiusof 0.0125m;thevolumecenterwasaty=0.551m(fromthe bot-tom),atr=0.0725m,inthebaffleplane.Wesett=0.00333s withslidingmeshandthe2IF-C LESsimulation.The2IF-SF

(6)

LESsimulationwasconductedwitht=0.001667s.Mixingin mesh2IF-M was studiedin triplicate withLES; twice with t=0.00333s,andoncewitht=0.001667s,totesthow repro-duciblethe resultsare.Temporaldiscretizationwassecond orderimplicit.The tracerand bulkfluidhad equal proper-ties,=1000and=0.001,suchthatthetracerwillnotdisturb theflowfield.Subgridspeciesdiffusioniscoupledtothe sub-gridturbulentviscositytviatheturbulentSchmidtnumber,

Sct=t/(Dt)=0.7,givingaspeciesfluxJi=−(lD+t/Sct)∇Ci

withD=10−9themoleculardiffusioncoefficientandCi the

scalarconcentration. 3.2. Turbulencemodels

Therealizable k− (RKE)and Reynolds stressmodel (RSM) used in SM-RANS modeling are well established, we refer to,e.g.GunyolandMudde(2009)fortheirdescription.Based onpreviousliterature,wefocus onthedynamic Smagorin-sky(LES-DYN)modelforLES.Thismodelassumesisotropic subgrid turbulence, using an eddy viscosity formulation with t being the subgrid turbulent viscosity. The filtered

Navier–Stokesequationsforanincompressiblefluidread: ∂ ¯ui ∂t + ¯ui ∂ ¯ui ∂xj =− 1  ∂ ¯p ∂xi + ∂ ∂xj



[+t] ∂ ¯ui ∂xj



(1)

Here, t is the kinematic turbulent viscosity, t/. The

dynamicturbulentviscositytiscalculatedfromEq.(2)

ij−

1

3kkıij=−2tS¯ij (2) With Sij is the resolved-scalerate ofstrain tensor. The

subgrid-scalestresstensorijiscalculatedbytheapplied

sub-gridmodel.Thebasisofthedynamicsubgridmodel(LES-DYN) isformedbytheturbulentviscosityformulationofthe stan-dardSmagorinskymodel,Eq.(3):

t=L2s·



2 ¯SijS¯ij (3)

where Ls is the mixing length calculated as Ls=

min( d,CSV1/3c ) with the Von Karman constant, d the

nearest wall distance and CS the Smagorinsky constant.

Whereas the standard Smagorinsky model typically pre-scribesCS=0.1,thedynamicmodelcomputesCSbasedonthe

localresolvedmotionsusingatest-filterapproachbasedon theworkofGermanoetal.(1990)andLilly(1992).Wereferto

Kimetal.(2004)fordetailsontheimplementationinFLUENT. Forstability,CSiscappedbetween0and0.23.

3.3. Analysismethods

WerecordedvelocitytimeseriesinthebaffleplaneinourLES simulations.Intheimpelleroutflow,theimpellerfrequency andthefirstandsecondharmonicthereofwereremovedvia Eq.(6),similartotheexperimentalprocedurereportedinPart I.Dataintheregionbetweentheimpellers,referredtoasthe inter-compartmentregion(withthehorizontalplane segre-gatingthecompartmentsreferredtoasinter-compartment plane),wasanalyzedforthepresenceofMIs.Thevelocitytime seriesatthepointscoincidingwiththeexperimentallyused gridwereanalyzedbyfittingtheauto-correlationsignal(Eq.

(4))andbyanalysisofthespectraldensityfunction(Eq.(5)), equaltotheexperimentalassessment:

ˆfit()=b+c0e−˛0+˙ni=1cne−˛ncos(2·nf ) (4)

S(f)= t



1

2ˆ(klag)w(klag)cos(kflag)



(5) Forthesemethods,theinfluenceofperiodiccomponents canberemovedfromthefluctuatingvelocityviaEq.(6)incase oftheauto-correlationsignal,andEq.(7)incaseofthespectral densityfunction: ut=u·



1−˙(cn) (6) ut=u·

1−Ep Et (7)

HereEp/Etisthefractionofenergycontainedinthe

macro-instability componentsofthe u-spectrum;weassumed all frequencies below f/N=0.1 contribute to Ep. The influence

ofmacro-instabilities inthe inter-compartmentregion was addressedwithbothmethodsforLESsimulations.Inthiscase, twobasefrequenciesandtheirfirstharmonicswereincluded inEq.(6).Intheinter-compartmentregion,ktistheturbulent

kineticenergybasedonut,kt*thetotalfluctuatingenergy,and

the macro-instability kineticenergykMI=kt*kt. Subscripts

fitandSIareusedtodistinguishbetweenresultscalculated using Eqs. (6) and (7), respectively. For sliding mesh simu-lations, thereisnoturbulent componentinthe fluctuating velocity,hencekMIwasdirectlycomputedfromthefluctuating

Reynolds-averagedvelocity,whilektisprovidedbythe

turbu-lencemodel,andkt*followsfromtheirsum.Thelocationy=0

isusedtoindicatethehorizontalplaneexactlybetweenthe twoimpellers,ataheight5T/6.Adetaileddiscussionofthe experimentalanalysismethodsisprovidedinPart Iofthis paper.

4.

Results

and

discussion

4.1. Validation:theimpelleroutflow

InFig.1,theimpellerdischargestreamprofilesareshown,in comparisontoexperimentalresultsfromliteratureaswellas PartIofthiswork.Experimentaldataonwasnotcollected inthecurrentstudyduetolimitationsintheequipment.As fortheMRFsimulationsinPartI,theSMsimulationsshow goodagreementwithexperimentaldataintheimpeller out-flow.Again,theRSMsimulationpredictsadecreaseinktand

nearthebladetip,wheretheRKEmodeldoesnot.Inthebulk oftheoutflow,RKEandRSMareinexcellentagreement.LESis wellcapableofcapturingUrad,butperformspoorerforktand

especiallyfor.Powernumbersandadditionaldiscussionon meshdependencyareavailableinSupplementarymaterialA. For the LES simulations, kt is computed based on the

resolved scales, removingperiodiccomponents (blade pas-sages)byEq.(6).Subgridkineticenergyisnotincludedinthe figures,whichmeans2IF-SFisexpectedtoyieldhigherktthan

2IF-Cand2IF-M,asisindeedobserved.However,2IF-SF,which isstillinsufficientlyfinetocaptureallenergycarryingeddies, doesover-estimatetheexperimentalkt.Thedissipationrate

ontheotherhandisstronglyunderestimated.Overall,the powernumberonenergydissipationfluctuatesaroundPo≈8,

(7)

Fig.1–ProfilesofUrad,ktandinthetopimpelleroutflowcomparedwithLDAdata.Bottomimpellerresultsareomitteddue tosimilarity.Toprow:SMsimulations.Solidline:2IF-F,SM-RKE.Dashedline:2IF-M,SM-RKE.Dottedline:2IF-M,SM-RSM.

Bottomrow:LESsimulations.Solidline:2IF-SF.Dashedline:2IF-M.Dottedline:2IF-C.Symbolsrepresentexperimental data.Abbreviations:W.P.=WuandPatterson(1989),M.J.=MurthyandJoshi(2008),D.Y.=DucciandYianneskis(2005).The bluecrossesintheUradplotrepresenttheupper-andlowerboundofthestudiesreviewedbyRanadeandJoshi(1990).

(2004) and Derksenand Van den Akker (1999) reported an under-estimationofwiththestandardSmagorninskymodel usingconstantCS=0.1.Delafosseetal.andSoosetal.found

thatsettingCS=0.2increasedagreement;ishighlysensitive

toCS.InagreementwithJahodaetal.(2007),weobservethe

dynamicmodelyieldsCS inthe range0.01–0.06.Theselow

CSvaluesareconsistentwiththestrongunder-predictionof

(Delafosse etal.,2008).Unfortunately,Jahodaetal.donot reportktandforverification.Clearly,accuratepredictionof

instirredtanksusingLESrequiresfurtherattention. 4.2. Mixingtimes

Themixingtimeisreportedindimensionlessform,95=N95,

with95beingthetimeinsecondsbeyondwhichCt/ ¯Ctisbound

between0.95and1.05,withCtthetracerconcentration.The

CoMquantifiesmixingintheentiredomain,andisdefinedas Eq.(8): CoM=

˙i



(Ct,i− ¯Ct)/ ¯Ct



2 Vi ˙iVi



(8)

where95,CoMisachievedwhenCoM<0.0283(Hartmannetal.,

2006). The results for all SM-RANS and LES simulations are giveninTable2.SM simulationspredict aprobe-based 95≈110forRKEbased onthe bottomprobe, inagreement

with the SM simulation of Jahoda et al. (2007), and 15% abovetheexperimentalvalue,bothforthebottomandtop probe.Overall,95predictedwithSM-RKEisconsistentlylower

thanwithMRF-RKE(PartI)atthesamemesh,whichimplies

thateitherturbulentmassexchangebetweenthe compart-ments (t) ishigher inSM simulations,or MIs, which are

inherentlysuppressedinMRFsimulations,resultinahigher

Table2–Comparisonofdimensionlessmixingtimes95

fortheSM-RANSandSM-LESmethods,forthemeshes studiedinthiswork.botandtoprepresentthe

probe-basedresults,CoMthecoefficientofmixing.The workofHartmannisfollowedtosettheCoM-boundary.

Mesh bot/top CoM

2IF-M-SMRKE 112.7/89.5 126.5 2IF-F-SMRKE 110.1/84.9 122.0 2IF-M-SMRSM 133.3/107.9 147.0 2IF-C-LES 80.0/71.1 86.0 2IF-M-LES(t=1.67ms) 80.7/69.6 88.0 2IF-M-LES(t=3.33ms,run1) 81.6/69.6 n.m. 2IF-M-LES,(t=3.33ms,run2) 78.5/71.4 n.m. 2IF-SF-LES 94.0/79.1 99.0 Jahoda(LES) 81.5/n.r. n.m. Jahoda(EXP) 92.0/≈75 n.m.

n.m.=notmeasured,n.r.=notreported.

inter-compartmentmassexchange.Probeprofiles,reportedin

Fig.2AforMRFandSM,hintatthelatter:whereastheMRF

resultsshowaconstantincreaseindimensionless concentra-tionCt/ ¯Ct,wigglesintheprofilesforSMhintatthepresence

ofoscillatorymotionsintheinter-compartmentplane.

TheSM-RKEresultsaresimilarforbothmeshes,forprobe

dynamicsaswellas95.Reasonablesimilarityisobservedin

inter-compartmenthydrodynamicsbetweenthemeshes(see Section4.3),incontrasttoMRF-RKEinPartI.Thisgivessome confidencethatthenear-equal95isasignofmesh

indepen-denceforSM-RKE.TheresultsfromPartI,however,showthat

dataforSM-RKEonmesh2IF-SFisrequiredinordertomake

suchastatementwithconfidence;thecomputational require-mentsdidnotallowustoconductsuchasimulationwithin thisproject.Moregenerally,theMRFresultswerehighly

(8)

sen-Fig.2–Mixingprofilesfordifferentsimulations(bottomprobesignal).Black:typicalexperimentaldata,Jahodaetal.(2007). Top:RANSsimulations,including2MRFsimulations(reportedinPaperI).Bottom:LESsimulations.

sitivetodifferencesinQaxbetweenthemeshes,duetothe

flowfieldbeingfrozenduringmixing.Forslidingmesh sim-ulations,thedynamicratherthanfrozeninter-compartment flowfieldisexpectedtoleadtoalowermeshsensitivitythan wasobserved withMRF. OnlyoneSM-RSM simulation was conducted, yielding a higher 95, as well as shifted

inter-compartmentplane(seeSection4.3).Ingeneral,theinclusion ofturbulenceanisotropydoesnotseemtoimprovethe agree-ment withexperimentaldata, in the SM simulations,MRF simulationsofPartI,andsingle-impellerworkofGunyoland Mudde(2009).Hence,thereappearstobelittlereasontoopt forthemorecomputationallyexpensiveRSMmodel Rushton-stirredtankapplications,andwedidnotexploreSM-RSMat finermeshes.

TheLESsimulations with 2IF-C and 2IF-Myield95≈80

based on the bottom probe, in agreement with 95=81.5

observedbyJahodaetal.,usingasimilarmeshdensity.No effectofthetimestepsizeisobservedfor2IF-M.Simulation 2IF-SFyields95=94,inverygoodagreementwiththe

exper-imentalvalue 95=92 reported byJahoda et al. (2007). The

bottom-proberesponseprofilesforLESareshowninFig.2B. Itmustbekeptinmindthatthefiguresshowsingle realiza-tions,exceptforLESrunswithmesh2IF-M.Theresultsforthis caseshowlimitedvariationin95,whichgivesconfidencethe

differencein95betweenthismeshand2IF-SFisnotdueto

regularvariabilityintheLESmethod.Forthetopprobes,95

isinlinewiththeroughestimation madefromthemixing profilesofJahodaetal.Additionalproberesults,studyingthe sensitivityoftheresponsetoprobelocation,arereportedin SupplementarymaterialB.

4.3. Inter-compartmentdynamics:slidingmesh

SMsimulationspredictalower95 thanMRF,althoughthey

stillover-estimatetheexperimentalvalue.ThewigglesinFig.2

hintthedifferencebetweenMRFandSMliesintheinclusionof MIs.Inter-compartmentdata(Fig.3)showskt*ishigherforSM

simulationsthanforMRFduetotheinclusionofkMI,whichis

0inMRFsimulationsbyconstruction.Comparedtothe exper-iments,kt*isstillunder-estimatedeverywhereexceptnearest

to theshaft; hence 95 inSM simulations stillexceeds the

experimentalobservation. For SMRKE, kt* isquite similar

betweenthetwomeshes,butthecontributionbykMIdiffers:

approx.10–25%formesh2IF-F,and5–60%for2IF-M.Closeto thewall,kMIisindecentagreementwithexperimentaldata

for2IF-M,butduetoanunder-estimationofkt,kt*islower

overall.

UradiswellcapturedbySM-RKE,althoughtheMRF

simu-lationsperformedslightlybetterinquantitativelycapturing

Uax;still,thereversalfromconvergingtodivergingflowis

rea-sonably captured withSM-RKE.SM-RSM performspoorly:a shiftininter-compartmentplanepositionisclearlyobserved in theprofiles for Urad, Uax and kt*. In contrastto theMRF

simulations,reportedinPartI,thisdoesnotreduce95for

SM-RSM.IntheMRFsimulations,ashiftintheinter-compartment plane positionwas associatedwith ahigher axial flowrate

Qax between the compartments.Thefrozen planeposition

meantthishigherQaxledtoconsistentlyfastermixing.In

con-trast,inSMsimulationstheinter-compartmentplaneposition isdynamic,whichimpliesthateveniftheplanepositionis shiftedsomewhat,thisdoesnotresultinaconsistentincrease ofmassexchangebetweenthecompartments.

Probing Uax at several points inthe inter-compartment

region(SM-RKE)revealsstrong oscillationsinthe Reynolds-averagedvelocity,asshowninFig.4AandB.Sincethereare no turbulent oscillations inthe Reynolds-averagedvelocity profilebyconstruction,thereisnoneedforauto-correlation fittingtodeterminekMI.Therefore, theMIfrequencieswere

(9)

Fig.3–Axialprofiles(baffleplane)of(A):Urad,(B):Uax,(C):kt,comparingLDAresults(symbols)withSM-CFDdata(lines).In (C(,theblackrectanglesrepresentthetotalkineticenergykt*,thebluediamondstheturbulentkineticenergykt,andthered diamondstheMIenergykMI.Theblacklinesrepresentkt*,theredlineskMI.Lines:CFDresultsatdifferentmeshdensities (dotted:2IF-M,RSM,dashed:2IF-M,RKE,solid:2IF-F,RKE).(Forinterpretationofthereferencestocolorinthisfigurelegend, thereaderisreferredtothewebversionofthisarticle.)

theFourierspectrum.Thespectrumshowsvelocity oscilla-tionsarehighlyperiodicfor2IF-M(Fig.4C),withadominant frequency f/N=0.058 and its harmonics. This is in excel-lent agreement with the jet instability frequency reported byPagliantietal.(2008),andthevalueobserved experimen-tallyinPartIofthiswork.Experimentally,wealsoobserved aweakcontributionoff/N=0.02,andstrongcontributionof

f/N≈0.04inthe parallelflowregion. Averyweak f/N=0.02 canbeobservedwithSM,whilef/N=0.04isabsent.Case

2IF-Fshowsmorescatter(Fig.4D);thedominantpeaknowisat

f/N=0.045withastrongshoulderatf/N=0.06forr/R=0.512 andr/R=0.694.Thisisqualitativelymoreinlinewith exper-imentalobservations,althoughthecontributionoff/N=0.06 istoo low.Atr/R=0.694, anadditional peakis observedat

f/N≈0.01,whichrepresentstheveryslowoscillationvisible inFig.4BthatisabsentinFig.4A.

Thequalitativeexperimentalobservationthataxial oscil-lationsincrease withincreasing radialpositioniscaptured bySMsimulations.ThenextquestionishowmuchMIs con-tribute to mixing. Fig. 5 shows the velocity vectors in an axialcrosssection(baffle-plane)atseveralmomentsthough amacro-oscillation.Duringtheoscillatorymotion,cross-over flowfromthetoptobottomcompartmentconnectsthe down-wardnear-wall flowinthetopcompartment,toflowalong theshafttowardstheimpellerinthebottomcompartment (Fig.5Band D).Tracerconcentrationsnapshots(Fig.6) con-firmthattracertransportbetweenthecompartmentsoccurs

dominantlyalongtheshaft.Nearthewall,theparallel-flow planesegregatingthecompartmentsisdisplacedasawhole withnovisibleinter-compartmenttransport.Videosof inter-compartment mixing are availableonline, for anMRF-RKE,

SM-RKEandLESsimulation.

4.4. Inter-compartmentdynamics:largeEddy simulations

ThevelocitycomponentsresolvedinLESspanamuchwider rangeoffrequencies,wellintotheturbulentdomain.Hence, weanalyzethemwiththesamemethodsastheLDAdatain PartI:fittingofthevelocitysignalauto-correlationwith damp-ened cosines(Eq. (4)),and spectralintegration(Eq. (5)). For spectralintegration,thecut-off frequencybetweenMIsand regularturbulencewassetatf/N=0.1;theenergycontainedin thespectralrangef/N<0.1isfullyattributedtokMI.Thismay

beanover-estimationofthetrueMIenergy,butbecausethe samecut-offwasusedinLDA,thismethodprovidesthemost directcomparison.Duetothenegligibledifferencebetween simulations witht=0.0033andt=0.001667, thereported resultsfor2IF-Mareobtainedwitht=0.0033,forwhichmore datewasavailable.

Similar to the experimental procedure, the auto-correlation signal was fitted with2frequency components (f1.1 and f2.1) and their first harmonics (f1.2 and f2.2).Fig. 7

(10)

Fig.4–(A)Axialvelocityaty=0versustime,2IF-MSM-RKE.(B)Axialvelocityaty=0versustime,2IF-FSM-RKE.(C)Fourier transformofA;insetshowsthesamegraphonalogscale.(D)FouriertransformofB;insetshowsthesamegraphonalog scale.Blackline:r/R=0.2.Blueline:r/R=0.512.Lightblueline:r/R=0.694.(Forinterpretationofthereferencestocolorinthis figurelegend,thereaderisreferredtothewebversionofthisarticle.)

Table3–AxialRMS-velocity,oscillationfrequenciesandtheircontributionsfor2IF-M-LESand2IF-SF-LESintheplane

y=0atdifferentradialpositions,usingtheperiodic-fittingapproach.Thecoefficientcrepresentthecontributiontothe Reynoldsstress ¯uu,withci.jthejthharmonicoffrequencycomponenti.Forbrevity,onlyuaxisreported,tablesforurad andutanareinsupplementarymaterialC.Toprows:2IF-M.Bottomrows:2IF-SF.

r/R 0.200 0.358 0.435 0.512 0.566 0.694 0.765 uax,M(m/s) 0.089 0.111 0.126 0.147 0.164 0.181 0.148 c1.1,ax,M 0 0.026 0 0.001 0.022 0 0 c1.2,ax,M 0.033 0.011 0.033 0.08 0.117 0.110 0.049 c2.1,ax,M 0.002 0.005 0 0.007 0 0.015 0.023 c2.2,ax,M 0.003 0.071 0.017 0.141 0.065 0.045 0.039 f1.1,ax,M/N 0.014 0.010 0.012 0.012 0.012 0.012 0.013 f2.1,ax,M/N 0.019 0.022 0.017 0.021 0.018 0.022 0.023 103·k t,fit,M/U2tip 9.35 8.98 9.59 9.36 9.84 9.91 7.00 103·k MI,fit,M/U2tip 1.21 2.32 1.42 1.92 1.89 1.41 0.63 uax,SF (m/s) 0.088 0.106 0.117 0.132 0.148 0.208 0.174 c1.1,ax,SF 0 0 0.042 0.068 0.086 0.135 0.088 c1.2,ax,SF 0.011 0.007 0 0.014 0 0 0.039 c2.1,ax,SF 0 0 0.005 0 0 0.013 0 c2.2,ax,SF 0.022 0.09 0.006 0.030 0.006 0.210 0.108 f1.1,ax,SF/N 0.034 0.026 0.010 0.024 0.020 0.022 0.023 f2.1,ax,SF/N 0.043 0.042 0.042 0.036 0.040 0.036 0.035 103·k t,fit,SF/U2tip 6.48 8.22 8.90 7.37 8.28 10.2 8.06 103·k MI,fit,SF/U2tip 1.80 1.01 0.60 1.89 1.62 4.00 2.10

positionsat axial positiony=0. Thedominant frequencies foraxialoscillationsinLESsimulationsareless sharpthan the experimentalfrequenciesreported inPart I, leading to a poorer fit quality. On average, 2IF-SF gives f1.1/N≈0.023

and f2.1/N≈0.039, albeit with significant variation between

radial locations. For f2, the harmonic f2.2/N≈0.078 has a

highermagnitude thatf2.1/N. Thesefrequencies liearound

the experimental value of f2.1/N≈0.06, which itself is not

observed in 2IF-SF. TheLES data furthermore hints at the presence of higher frequency oscillations, which are not captured in the current auto-correlation fit. For the axial oscillationsatmesh2IF-M,f1.2/N≈0.024hasarelativelyhigh

magnitude,andisnearlyequalinfrequencytof2.1.Harmonic f2.2/N≈0.04alsohasahighmagnitude.Whilethisfrequency

was relatively prominent experimentally, the strongest experimental component f/N≈0.06 is again not observed

(11)

Fig.5–Velocityvectorfields(2IM-RKE)duringfourstagesofamacro-oscillation.Thedashedredlinesindicatetheregions whereUax≈0,showingthatthroughouttheoscillationstheaxialseparationbetweenthecompartmentsislocallybroken, resultinginenhancedinter-compartmentmixing.

Fig.6–Snapshotsofmixingat6timepoints,2IF-M-SM,showingtracerexchangealongtheshaftisinfluencedbyMIs(video availableonline).

(12)

Fig.7–Fittedauto-correlationfunctionsfor2IF-M-LES(top)and2IF-SF-LES(bottom)aty=0,at3radialpositions.Blueline: rawdata.Redline:fitteddampedcosinefunction(seePartIfordetails).(Forinterpretationofthereferencestocolorinthis figurelegend,thereaderisreferredtothewebversionofthisarticle.)

in the simulation. As with the SM simulations, the radial oscillationshaveahighmagnitudeneartheshaft,dampening withincreasingradialposition,whiletheoppositeisobserved foraxialoscillations(Table3).

Thespectraldensity functions(Fig.8)show anf−1 scal-ingfor0.1<f/N<1,andanf−5/3scalingforf/N>1,inlinewith experimentalobservations.Themoderate spatialresolution ofthemeshesresultsinaquickdeviationfrom−5/3scaling atthehigh-frequencyendofthespectra.Forthe2IF-SF sim-ulations,thefilterlengthratiowasaround/=10−25with theKolmogorovlengthscale,thelowervalueneartheshaft andthehighernearthebaffle.Afinermeshmaybedesired, butforroutineusewithoutsuper-computingfacilities,2IF-SF isalreadymuchtoodemanding.

Inthelowfrequencyrange,thespectraldensityfunctions confirmthe observationsmadein theauto-correlation fits. Thespectrumfor2IF-Mdoesshowthebi-modalpeakobserved

experimentally,butatthelowerfrequenciesf1.2/N≈0.024and

f2.2/N≈0.04,whereasexperimentallyf/N=0.045and0.06were

observed. In2IF-SFthebimodal peakisnotobserved.Here

f1.1/N≈0.026andf2.2/N≈0.078contributemost,but,asinthe

auto-correlationdata,f/N≈0.045isabsent.

Boththeauto-correlationfitandspectraldensitymethod provideanestimateofthepercentageoffluctuatingkinetic energythatiscontainedinMIs.Firstwereportresultsforthe auto-correlationmethod.Usingthismethod,kMI,fit10–20%of

kt*atthemeasuredlocationsintheplaney=0for2IF-M,with

themaximumatr/R=0.358.2IF-SFyielskMI,fitis5–30%ofkt*,

withthemaximumatr/R=0.694.Forcomparison, experimen-taldatayieldedacontributionof8–20%withthemaximum atr/R=0.694whenusingtheauto-correlationmethod. Spec-tral integration gave anMI contribution iskMI,SI is25–30%

ofkt* for2IF-M,and 25–40%ofkt* for2IF-SF,comparedtoa

(13)

inte-Fig.8–Spectraldensityfunctionsofuax(darkblue)andurad (lightblue)at3radialpositions,intheplaney=0.(A)2IF-MLES.

(B)2IF-SFLES.(C)Experimentalresults.Dashedline:S(f/N)(f/N)−5/3.Dash-dotline:S(f/N)(f/N)−1.Dottedline:cut-off frequencybetweenMIandturbulence.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.)

gration.Thedifferencebetweenauto-correlationfittingand spectralintegrationarisingduetotheinclusionoflimited fre-quencies intheformer, and alllow-frequencycomponents inthelatter. Next,wecomparethe profiles ofvelocityand kineticenergyinthe inter-compartmentregion.Becauseof themorestraightforwardcomparisonwithexperimentaldata, thespectralintegrationmethodisusedtodeterminetheMI contributioninthekineticenergydatapresentedinFig.9.

Aside from an offset at the baffle position, which is attributed tothe 2D baffle geometry,Urad is well captured

(Fig.9).ThechangefromconvergingtodivergingflowinUaxis

excellentlyassessedbyallbutthecrudestmesh.Overallgood agreementinktisobserved(despitethepoorerperformance

intheimpellerdischargestream),with2IF-Mover-estimative neartheshaft,whereas2IF-SFissonearthebaffle.Both simu-lationsreasonablycapturekMI,SIneartheshaft,butonlywith

mesh2IF-SFthepeakatr/R=0.694isproperlycaptured.Even thoughthefrequencydistributiondoesnotcompletelyagree withexperiments,theoverallkMI,SIandkt,SIarewellcaptured

by2IF-SF,inlinewiththegoodassessmentof95.Theslight

under-estimationof95bythecrudeandmediummeshmay

bebyvirtueoftheirhigherktneartheshaft:axialtransportof

tracerisstrongestatthislocation,aswasshowninthemixing snapshotsfortheSM-RANSsimulations.

5.

Concluding

remarks

Inthiswork,wereportslidingmesh(SM)andlargeeddy sim-ulations(LES)ofastirredtankwith2Rushtonimpellersat largemutualclearance.Earlierstudiesreported(1) experimen-talevidenceformacro-instabilities(MIs)ina2-Rushtonstirred tank,(2)anover-estimationofmixingtime95withthe

multi-plereferenceframe(MRF)simulationmodel,increasingwith meshdensity,(3)amilderover-estimationof95withSM,and

slightunder-predictionof95withLES.

Compartmentformationaroundtheimpellersleadstoa parallel radial flow in the inter-compartment plane, caus-ingpoormassexchangebetweenthecompartments,thereby formingaratelimiting stepinmixing. Ourhypothesiswas thatRANSsimulationsover-predict95,asReynoldsaveraging

leadstoanear-shearfreeflowintheinter-compartmentplane, whichfailstoproperlycapturethegenerationofturbulence by the colliding flow. This in turn leads to a local under-predicting turbulent viscosity t. Both SM simulations and

MRFsimulations(PartI)indeedunder-predictedktinthe

inter-compartmentregion,comparedtoLDAmeasurements,which supports this hypothesis. Additionally, macro-instabilities (MIs)were observedtocontainaround30% ofthe fluctuat-ingkineticenergykt*intheinter-compartmentplane;these

(14)

pre-Fig.9–Axialprofiles(baffleplane)of(A):Urad,(B):Uax,(C):kt,comparingLDAresults(symbols)withLES-CFDdata(lines).In (C),theblackrectanglesrepresentthetotalkineticenergykt*,thebluediamondstheturbulentkineticenergykt,andthered diamondstheMIenergykMI.Theblacklinesrepresentkt*,thebluelineskt,theredlineskMI.Lines:CFDresultsatdifferent meshdensities(dotted:2IFC,dashed:2IFM,solid:2IFSF.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

dictthepresenceofsuchMIs,albeitslightlyunder-estimating theirkineticenergy,whereasthe frozen-flowfieldMRF sim-ulations byconstruction donot predict them. Overall, the under-predictedkt causes 95 to beover-predicted by both

SM-RANSandMRF-RANS,buttheinclusionofMIsmeansthe

over-predictionbySM-RANSislesssevere;approximately20% bySM-RKEwithrealizablek−(whichoutperformedSM-RSM),

whileanover-estimationofnear60%wasobservedwithMRF atsamemesh.Inthiswork,wehaveusedstructured hexa-hedralmeshes.Theresultsmaybedifferentatunstructured meshes of similar resolution, but the over-predictions are expectedtoholdoncemeshindependenceisachieved.

TurbulentSchmidtnumber(Sct)tuningwassuggestedto

improveagreementin95onsomeoccasions(Montanteetal.,

2005;GunyolandMudde,2009).Thecurrentresultssuggests suchtuningisnotbasedonphysicalconsiderations,but as apatchwork solutiontorepairaninadequateestimationof

kt (hence t and the effect ofMIs on multi-impeller

mix-ing behavior. Whilesuch a patch bean adequate solution if approximatemixing dynamicssuffice, the limitations of multi-impellerRANSsimulationsmustbekeptinmind,and theRANSmodelsstudiedinthecurrentwork(realizablek− and RSM)seeminadequate forquantitativemixing assess-mentinmulti-impellersystems.

Themixingtimewasunder-estimatedapprox.13% with LESatcrudemeshes(below2milliongridcells),inaccordance

withJahodaetal.(2007).Withameshofapprox.10million cells,95wasinexcellentagreementwithexperiments.The

MIfrequenciesintheinter-compartmentregionaspredicted inLESsimulationsarenotassharplydistinguishableasinthe LDAdata, and differencesinthe dominantfrequenciesare observed.Atthecrude-andmediummesh,kMIwasstill

under-predictedingeneral,buthigherneartheshaft,highervalues wereobservedthanexperimentally.Theregionneartheshaft iswheremostmassexchangebetweenthecompartmentsis predictedtotakeplace,whichmayexplainthelower95with

acrudermesh.Despitethedifferenceinfrequencies,kMIisin

goodagreementbetweenthefine-meshLESandexperiments, asiskt.

TheappliedLESapproachdidover-predictkt and

under-predictintheimpellerdischargestream.Thisisattributed totheemployeddynamicSmagorinskymodel,whichpredicts lowvaluesofconstantCS.WhiletakingCSconstantand

fine-tuningitmay increaseagreement(Delafosse etal.,2014),a moreuniversalapproachisdesired.Assuch,thereisroom forfurtherexplorationofLESandothertransientsimulation approaches ((ID)DES, hybrid LES-RANS,etc.) instirredtank applications. Strictlyspeaking,the finestcurrent LESstudy wasunder-resolved,especiallyintheimpellerregion.Higher resolutionstudiesmaybedesirableforfurtherfundamental studies,butalreadythecurrentfinemeshisconsideredtoo demandingforroutinemixingstudies.Despitethein

(15)

predict-ing,LESperformedwellintermsofmixingassessment,even onthecrudestmesheswhichfarfromresolveallenergy car-ryingturbulencescales.AsbothSMand LESmispredict95

toasimilardegreeatthecrudemeshes,andbothhave simi-larcomputationaldemands,botharecurrentlyconsideredto bereasonablyoptionsformixingassessmentprovidedtheir degreeoferroriskeptinaccount;bothareclearlypreferred aboveMRF.However,ifcomputationalfacilitiesallowforfiner meshes,LESisthepreferredchoice.

Acknowledgements

Wewish tothank our colleagues at ECUST, Shanghai and DSM Sinochempharmaceuticals forourongoing collabora-tion.WearegratefultoProf.H.vandenAkker,Dr.S.Kenjeres, Dr. L. Portela and Prof. H.J. Noorman for their advice and insights.CHacknowledgesallstudentsfollowingM.Sc.course CH3421, who contributed to the simulation results aspart oftheircoursereports.EvertWagner,JosThieme,Christiaan Schinkel,StefantenHagen,YoupvanGoozenandRuudvan Tolaregratefullyacknowledgedfortheirtechnicalassistance. Thisworkhasbeenconductedwithinamulti-partyresearch project,betweenDSM-SinochemPharmaceuticals,TUDelft, East ChinaUniversityofScienceand Technologyand Guo-jia,subsidizedbyNWOandMoST(NWO-MoSTJointprogram 2013DFG32630).Allsponsorsaregratefullyacknowledged.

Appendix

A.

Supplementary

data

Supplementary data associated with this arti-cle can be found, in the online version, at

https://doi.org/10.1016/j.cherd.2018.06.007.

References

Bakker,R.,1996.Laser-DopplerMeasurementsinaBaffledStirred TankReactorWithaDiscTurbine(Ph.D.thesis).Delft UniversityofTechnology.

Chara,Z.,Kysela,B.,Konfrst,J.,Fort,I.,2016.Studyoffluidflowin baffledvesselsstirredbyaRushtonstandardimpeller.Appl. Math.Comput.272,614–628,

http://dx.doi.org/10.1016/j.amc.2015.06.044.

Coroneo,M.,Montante,G.,Paglianti,A.,Magelli,F.,2011.CFD predictionoffluidflowandmixinginstirredtanks:numerical issuesabouttheRANSsimulations.Comput.Chem.Eng.35 (10),1959–1968,

http://dx.doi.org/10.1016/j.compchemeng.2010.12.007. Delafosse,A.,Liné,A.,Morchain,J.,Guiraud,P.,2008.LESand

URANSsimulationsofhydrodynamicsinmixingtank: comparisontoPIVexperiments.Chem.Eng.Res.Des.86(12), 1322–1330,http://dx.doi.org/10.1016/j.cherd.2008.07.008. Delafosse,A.,Morchain,J.,Guiraud,P.,Liné,A.,2009.Trailing

vorticesgeneratedbyaRushtonturbine:assessmentof URANSandlargeEddysimulations.Chem.Eng.Res.Des.87 (4),401–411,http://dx.doi.org/10.1016/j.cherd.2008.12.018. Delafosse,A.,Collignon,M.-L.,Calvo,S.,Delvigne,F.,Crine,M.,

Thonart,P.,Toye,D.,2014.CFD-basedcompartmentmodelfor descriptionofmixinginbioreactors.Chem.Eng.Sci.106, 76–85http://www.sciencedirect.com/

science/article/pii/S0009250913007690.

Derksen,J.,VandenAkker,H.E.A.,1999.Largeeddysimulations ontheflowdrivenbyaRushtonturbine.AIChEJ.45(2), 209–221,http://dx.doi.org/10.1002/aic.690450202. Derksen,J.,Doelman,M.,VandenAkker,H.,1999.

Three-dimensionalLDAmeasurementsintheimpellerregion ofaturbulentlystirredtank.Exp.Fluids27(6),522–532,

http://dx.doi.org/10.1007/s003480050376.

Ducci,A.,Yianneskis,M.,2005.Directdeterminationofenergy dissipationinstirredvesselswithtwo-pointLDA.AIChEJ.51 (8),2133–2149,http://dx.doi.org/10.1002/aic.10468.

Eggels,J.G.M.,1996.Directandlarge-eddysimulationofturbulent fluidflowusingthelattice-Boltzmannscheme.Int.J.Heat FluidFlow17(3),307–323,

http://dx.doi.org/10.1016/0142-727X(96)00044-6.

Escudié,R.,Bouyer,D.,Liné,A.,2004.Characterizationoftrailing vorticesgeneratedbyaRushtonturbine.AIChEJ.50(1),75–86,

http://dx.doi.org/10.1002/aic.10007.

Germano,M.,Piomelli,U.,Moin,P.,Cabot,W.H.,1990.Adynamic subgrid-scaleeddyviscositymodel.In:StudyingTurbulence UsingNumericalSimulationDatabases.3:Proceedingsofthe 1990SummerProgram,StanfordUniv,pp.5–17(SEEN92-30648 21-34).http://adsabs.harvard.edu/abs/1990stun.proc..5G. Gillissen,J.J.J.,VandenAkker,H.E.A.,2012.Directnumerical

simulationoftheturbulentflowinabaffledtankdrivenbya Rushtonturbine.AIChEJ.58(12),3878–3890,

http://dx.doi.org/10.1002/aic.13762.

Gimbun,J.,Rielly,C.D.,Nagy,Z.K.,Derksen,J.J.,2012.Detached eddysimulationontheturbulentflowinastirredtank.AIChE J.58(10),3224–3241,http://dx.doi.org/10.1002/aic.12807. Gunyol,O.,Mudde,R.F.,2009.Computationalstudyof

hydrodynamicsofastandardstirredtankreactoranda large-scalemulti-impellerfermenter.Int.J.Multisc.Comput. Eng.7(6),559–576.

Hartmann,H.,Derksen,J.,Montavon,C.,Pearson,J.,Hamill,I., vandenAkker,H.,2004.AssessmentoflargeeddyandRANS stirredtanksimulationsbymeansofLDA.Chem.Eng.Sci.59 (12),2419–2432,http://dx.doi.org/10.1016/j.ces.2004.01.065. Hartmann,H.,Derksen,J.J.,vandenAkker,H.E.A.,2006.Mixing

timesinaturbulentstirredtankbymeansofLES.AIChEJ.52 (11),3696–3706,http://dx.doi.org/10.1002/aic.10997.

Jahoda,M.,Moˇst ˇek,M.,Kukuková,A.,Machon,V.,2007.CFD modellingofliquidhomogenizationinstirredtankswithone andtwoimpellersusinglargeEddysimulation.Chem.Eng. Res.Des.85(5),616–625,http://dx.doi.org/10.1205/cherd06183. Kim,S.-E.,etal.,2004.Largeeddysimulationusingunstructured

meshesanddynamicsubgrid-scaleturbulencemodels.AIAA Paper,34thFluidDynamicsConferenceandExhibit2548.

Lane,G.,2015.Predictingtheenergydissipationrateina mechanicallystirredtank.In:EleventhInternational ConferenceonCFDintheMineralsandProcessIndustries. CSIROAustralia,Melbourne,Australia

http://www.cfd.com.au/cfdconf15/PDFs/129LAN.pdf. Lilly,D.K.,1992.AproposedmodificationoftheGermano

subgrid?Scaleclosuremethod.Phys.FluidsA:FluidDyn.4(3), 633–635,http://dx.doi.org/10.1063/1.858280.

Micheletti,M.,Baldi,S.,Yeoh,S.,Ducci,A.,Papadakis,G.,Lee,K., Yianneskis,M.,2004.Onspatialandtemporalvariationsand estimatesofenergydissipationinstirredreactors.Chem.Eng. Res.Des.82(9),1188–1198,

http://dx.doi.org/10.1205/cerd.82.9.1188.44172. Montante,G.,Moˇst ˇek,M.,Jahoda,M.,Magelli,F.,2005.CFD

simulationsandexperimentalvalidationofhomogenisation curvesandmixingtimeinstirredNewtonianand

pseudoplasticliquids.Chem.Eng.Sci.60(8-9),2427–2437,

http://dx.doi.org/10.1016/j.ces.2004.11.020.

Murthy,B.,Joshi,J.,2008.Assessmentofstandard,RSMandLES turbulencemodelsinabaffledstirredvesselagitatedby variousimpellerdesigns.Chem.Eng.Sci.63(22),5468–5495,

http://dx.doi.org/10.1016/j.ces.2008.06.019.

Paglianti,A.,Liu,Z.,Montante,G.,Magelli,F.,2008.Effectof macroinstabilitiesinsingle-andmultiple-impellerstirred tanks.Ind.Eng.Chem.Res.47(14),4944–4952,

http://dx.doi.org/10.1021/ie800253u.

Ranade,V.V.,Joshi,J.B.,1990.Flowgeneratedbyadiscturbine.II. Mathematicalmodellingandcomparisonwithexperimental data.Chem.Eng.Res.Des.68(1),34–50

http://cat.inist.fr/?aModele=afficheN&cpsidt=6817059. Revstedt,J.,Fuchs,L.,Trägårdh,C.,1998.LargeEddysimulations

(16)

(24),4041–4053,

http://dx.doi.org/10.1016/S0009-2509(98)00203-6. Singh,H.,Fletcher,D.F.,Nijdam,J.J.,2011.Anassessmentof

differentturbulencemodelsforpredictingflowinabaffled tankstirredwithaRushtonturbine.Chem.Eng.Sci.66(23), 5976–5988,http://dx.doi.org/10.1016/j.ces.2011.08.018. Soos,M.,Kaufmann,R.,Winteler,R.,Kroupa,M.,Lüthi,B.,2013.

Determinationofmaximumturbulentenergydissipationrate generatedbyaRushtonimpellerthroughlargeeddy

simulation.AIChEJ.59(10),3642–3658,

http://dx.doi.org/10.1002/aic.14206.

Wu,H.,Patterson,G.,1989.Laser-Dopplermeasurementsof turbulent-flowparametersinastirredmixer.Chem.Eng.Sci. 44(10),2207–2221,

http://dx.doi.org/10.1016/0009-2509(89)85155-3.

Yeoh,S.,Papadakis,G.,Yianneskis,M.,2004.Numerical

simulationofturbulentflowcharacteristicsinastirredvessel usingtheLESandRANSapproacheswiththe

sliding/deformingmeshmethodology.Chem.Eng.Res.Des. 82(7),834–848,http://dx.doi.org/10.1205/0263876041596751. Yeoh,S.,Papadakis,G.,Yianneskis,M.,2005.Determinationof

mixingtimeanddegreeofhomogeneityinstirredvessels withlargeeddysimulation.Chem.Eng.Sci.60(8-9), 2293–2302,http://dx.doi.org/10.1016/j.ces.2004.10.048. Zhang,Y.,Yang,C.,Mao,Z.,2006.LargeEddysimulationofliquid

flowinastirredtankwithimprovedinner-outeriterative algorithm.Chin.J.Chem.Eng.14(3),321–329,

Cytaty

Powiązane dokumenty

Albeit the numerous similarities with other chiral systems, the pronounced history and cooling rate dependence of the magnetic phase diagram on the magnetic history as well as

Jennifer OLDFIELD, Peter van OOSTEROM, Wilko QUAK, Jeroen van der VEEN and Jakob BEETZ, the Netherlands.. Key words: BIM, Open BIM, Industry Foundation Classes (IFC),

obniżającego się przedmiotu, gałka oczna porusza się szybciej od powieki (która nie nadąża za ruchem gałki ocznej),. odsłaniając rąbek twardowki między tęczówką a powieką

Obiekt Klubu „Politechnik” (obecnie Akademickie Centrum Kultury i Sportu), zrealizowany pod koniec lat sześćdziesiątych, nawiązuje do najlepszych rozwiązań okresu

Oryginalnym rysem Księgi Amosa są dwa elementy: obecność motywu rogu we fragmencie dotyczącym wezwa- nia do prorokowania (Am 3,6) oraz figury króla Dawida jako wynalazcy/

W tym aspekcie szczególnie inte­ resująca jest hipoteza odnosząca się do związku elit Ukrainy, Białorusi i Mołda­ wii z elitami politycznymi Rosji, a także kwestie

On the basis of obtained results of computed tomography application it is possible to state that this method can be very helpful when analysing various features of carbonate rocks

Spółdzielnie rolników a spółdzielcze grupy producentów rolnych Kwestią wartą poruszenia jest to, czy działające spółdzielnie, w tym spółdzielcze grupy producentów rolnych,