• Nie Znaleziono Wyników

On Orlicz spaces with mixed norms (I)Inequalities for trigonometric polynomials *

N/A
N/A
Protected

Academic year: 2021

Share "On Orlicz spaces with mixed norms (I)Inequalities for trigonometric polynomials *"

Copied!
7
0
0

Pełen tekst

(1)

Seria I: PRACE MATEMATYCZNE X I (1968) ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X I (1968)

Z. St y p i ń s k i (Poznań)

On Orlicz spaces with mixed norms (I)

Inequalities for trigonometric polynomials *

1. In the paper [4] there are given inequalities for the norm of an integral function and a trigonometric polynomial in the space IP. The purpose of the present paper is to prove analogus inequalities for trig­

onometric polynomials of n variables in OrUcz spaces.

Let us denote by у (u) a convex, non-decreasing function defined and continuous for и > 0, <p(0) = 0, satisfying the following conditions:

(1) lim

«—>•0 (p(u)

и 0, lim <p{u) = o o , (p{u) > 0 for и > 0 (2) cp(uv) < c<p{u) (p (-»), e > 1, 0, v ^ 0 (condition A').

Let f ( x x, . . . , xn) be a measurable function with period 2tu in each variable. Applying the notation of [1] we write

27T

(a) ll/f e , •• • j i ? 1 x k+1? • ■• • ) ^ra)||ę> = / l/(®i, •••, xn)\dxk 0

if (p{u) = и

(b) • ? ffijc—1 J * )i ? • •• ) **'w)||ę> := sup ess 1 f { x 1, ..., xn)\

0<a5fc<27i:

if p('a) — °°

(e) № u •• •, %k— 1 1 1 ffik+ij •• * ?

C / l/Caq, ...,a?n)| \ d ,, s > 0: rp I ---Мхи < 1> otherwise.

o ' £

A function f ( x x, ..., xn) is said to belong to the space L*QM){n) if the following proceeding gives a finite value in each step. In the first step we calculate

* The results were presented April 14th 1966 in a Seminar of Dr. J. Musielak, Department of Mathematics, A. Mickiewicz University in Poznań.

(2)

2 4 8 Z. S t y p i ń s k i

||/(*, x 2, .. . , %n)\\<p by means of the formulae (a), (b) or (c) depending on the definition of cp. Here, <0, 2ти> (j ~ 2 , 3 , n) are parameters.

In the second step we calculate j|/(*, •, x s, ..., xJIJ^ = ||||/(-, x 2, . . . , x n) |]„||^

again by means of one of the formulae (a), (b), (c). After n — 1 steps we obtain ||/(«, and in the nt~h step we calculate ||/(*, ..., •)!!,,

= ||ll/(*,---, • applying (a), (b) or (c). The number ||/( • , ..., -)IU obtained in this manner is denoted by Ц/Ц,, and is called a mixed norm:

(3) ll/ll, = l l / ( - ) l l , .

Thus, L*ot2n>(n) is the Orlicz space of functions / such that ||/||ф < o©.

Moreover, we denote by T the space of finite sequences, i.e. sequences containing a finite number of elements different from zero only. The norm of the element a = {ak} e l is defined as

(4) \\a\\Tip = in f j £ > 0: J ? <p < l j .

Similarly as in case of a function one may define a mixed norm of a sequence.

The following Jensen’s inequality will be of importance in our con­

siderations :

(6)

f f ( x ) d x \ j(p{f{x))dx --- 1 < - A---

mesA / mesA

We shall denote by T Vl...v (xlt ..., xn) a trigonometric polynomial of degrees vx, ..., vn with respect to variables x x, ..., xn, respectively.

We have

»■ ' n

1 П I 2 k SXS

(®) ^-Vx,...,Vn {XX ! •••! ®») = ^ --- Gkl---kn (i kl = ~ vl kn = ~ vn

Theorem 1.1 (a generalization of Bernstein’s inequality). Let Tn(x) be a trigonometric polynomial of degree n of one variable. There holds the following inequality:

(7) W T X ^ n W T X -

Proof. For the sake of completeness we give a simple proof of this inequality which is known in an even more general case (see [2]). By [6], Theorem 3.16, we have

2tt , 2tc

f V ^ ^ f <p(\Tn{x)\)dx.

o ' 0

(3)

Let us choose a number e > 0 such that

Then

Hence

\Tn(x)\

dx < 1.

dx.

Corollary. Let T v (хг, . . . , xn) be a trigonometric polynomial of degrees v1} ..., vn with respect to variables x x, .. . , xn. Then —dTv is

dxk a trigonometric polynomial of degree vk with respect to the variable xk and

(8) dT*h <vn

dxk < vk IItVi

<p •vn19»*

2. Theorem 2.1. Let T v{x) be a trigonometric polynomial of degree v1 and let us write h — 2n/v, xk = Ш (h = 0,1, ...), xk < xk < xk-\-rh, where r is a non-negative integer. Then

о) <р-лтт£т\ = ’Р-лттл^'Лт, « с а + г ^ м ,,

where <p_x(h) is the inverse of the function cp{h).

Proof. Let us write

In

Q{Ty) =

J

<p(\Tv(x)\)dx.

Then

xk+1

e{T.) = £ j <p{\T.m)dx = f?< p к як

\<P-i(h)Tv(h)\

Hence

Thus

for

\<P-iWTv(h)\

Cs

< р ~ л т щ \! * < с \\т х

(4)

260 Z. S t y p i ń s k i

Next, applying triangle inequality for norms, substituting t — ruĄ-xk — rxk

— v and applying (2) and (5) we observe that

x k + r h

0 0 \\ J

11 x k

dt

xk+1

/

[Tvm<p-x(h)r\

du xk

inf £ > 0

xk+1

/ (1Д0 / \iTv{v)]'<p_l {h)r\du 2 ' ---;---

2к

J — ;—

X k r ^ J

q— e—

Г -

But

J" <p j (\[Tv{v)]'\rh ■IL '— I d u <

\ s

2n

/ * (

\T'v{t)rh\

dt.

Hence

<P

_1

W I

m \ł„ - \\T,\\f*I

<

inf

je > 0: j

<p

j1--**— )<H <

l |

<

Ч.Г.Г

||T„||,.

Finally,

V - l W и г р \\x k ^ У - Л ^ 1 ) I n ^ 7 иX k u r n n l f e l , | | | fc

i » ; <

< (1 +2iTir)\\Tv\\ę .

Corollary. Theorem 2.1 remaim true if we replace the trigonometric polynomial T v by an arbitrary function f continuous in <0, 2tc).

Indeed, trigonometric polynomials are dense in the space L*$My.

Hence there exists a sequence of trigonometric polynomials {Tn(x)} such that \\Тп\\,р -> ||/||v. Moreover, we may suppose that \\Tn{xk)\\T<p -> H /M Iliy Consequently,

1|/<®*)||г, = lim * = M - Ш х к)\\г < lim(l +2*r)||TJ|,.

C ■ę rtr^oo c * n-+oo

(5)

Th e o r e m 2 . 2 . Let Tv%....Vn(xx, . . . y xn) . be a trigonometric polynomial of degrees rx, . . . , vn with respect to variables aq, ..., xn. Let us write

2n

hk = — (7c = О, 1, ..., n), %ik )= lh k (I = 0 , 1 , . . . ) , Vk

x {k) < x{k) < x\k)+rhk, where r is an integer. The following inequality holds:

(10)

П

max

П

<P~i(hk)\\... \\TVl

k—1

,-(n)

<P

< [c{l+2nr)]n\\TVl....,J , . Proof. The variables и being fixed, the trigonometric polynomial Tv ....(aq — ux, .. . , xn — is a polynomial of degrees vx, ..., vn satisfying the equality

\\TVl,...,Vn{Xx Ux, . . . , Xn Un)\\Ty \\TVl....vn (®n • • • j МпШТу'

Hence it is sufficient to prove the inequality

n . - (1) ~ ( n )

П г - Л Щ - ц т . ,.... .„Igi . . . ] | > < [ с ( 1 + 2 т г г )Г ц г ,1.... „j i„.

fc=i

The proof will be performed by induction with respect to the number of variables. If n = 1, the inequality is already proved. Let us fix the variables xk+2, ..., xn and let us suppose the inequality is true for n = 1c.

Applying the previous Theorem and the Corollary we obtain [G (l+ 2ur)f\\TVl_ Vn( - , . . . , - , x k+1,...)\\4>

^ 1 1 || • • • II ^ (* ? • • • > * ? ^k+1 j • • -AO ~(k I >, Hence

[^ (1 A )] ' 11 11-^ vb ...,vn ( * 1 • • • ) * ? & k+ 1 J • • • llę>||ę>

....

Theorem 2.3. Let Tt>b >Vn(x1, . . . , x n) be a trigonometric polynomial.

Then the following inequality holds:

4 ) ... . j , « <-nn y ...

(6)

252 Z. S f c y p iń s k i

P ro o f by induction. If n — 1 we have

/ cp(\Tn {xx)\)dx1 <

o ^ i 2rbxf ( \ T .l ( ^ ~ u 1)\).

h=i Hence

Thus

j

у n T ri(xx)cp_x{lf2r}i1)\

o ' C *i« i

\\TV1\

< G p y gd1)

Let us remark that the above inequality remains valid for every function continuous in <0,2лг>.

Now, let us suppose the theorem is true for n — 1c. If we fix the variables xk+2, .. . , xn we obtain

R em ark 1. If x[k) — xjk) (lk = 0 ,1 , ...), then the coefficient 2r at the right-hand side of inequality (11) may be replaced by 1. It is

M 2 rhi

sufficient to take in the proof integrals f in place of f .

о 0

Е е mar к 2. Writing

=<!)

...))* = сПП ™ H - ||r ”.... ' • • nr;

if x f ] = (l = 0 ,1 , ...), x\kk] = x\kk] (lk = 0 ,1 , ...), we have

n

112;,...., J , < «Г .,....< е2п(1 + 2к)п ... ..II,•

(7)

Theorem 2.4. I f <p{u) < y>(u) for и < we have

( 1 2 ) 1 И 1 т „ < I N l i y

n

(13) \\T'n ....J i , < C2n( l +2ТТ)” J 7 [?>_! (-^ ) , . 1 ( W ] 1

Proof. Let a?„ = (0, ..., ...) < {tx, ..., ...) = x. Applying mo-, notony of the norm (4) we get

\%I = Ы т у У - Л ! ) < INIz^V-iO-)- Hence

y J J A W y J - A U

4

" \MtJ ~ 4 \MtJ = 1, i-ev ll^llrr^ < INIrv •

Taking into account this inequality and inequalities (10) and (11) we obtain

П

.^<с”/

7

МйГ

max ITv vn"T.Ilf' —un

< C” ( l +2ru)

fj

|.Л , ( 2 - j ? _ ,(* * )] ‘ ||T ^ .... , J r .

Taking in the above results <p(u) — uv we obtain the respective results of [4].

R eferences

[1] J. 4 lb r y c h t, Teoria przestrzeni IP z mieszaną normą dla skończenie ad- dytywnych funkcji zbiorów, IJAM, Prace Wydziału Mat-Fiz-Chem, Poznań 1963.

[2] — A generalization of a Zygmund-Bernstein Theorem, Ann. Polon. Math.

2 (1955), pp. 64-66.

[3] M. А. К р а с н о с е л ь с к и й , Я. Б. Р у т и ц к и й , Выпуклые функции и пространства Орлича, Москва 1958.

[4] С. М. Н и к о л ь с к и й , Неравенства для целых функций конечной сте­

пени и их применение в теории дифференцируемых функций многих переменных, Труды Мат. ин-та АН 38(1951), рр. 244-278.

[5] A. Z y g m u n d , Trigonometric series, Cambridge 1959, vol. II.

Cytaty

Powiązane dokumenty

Тиман, Теория приближения функций действительного переменного, Москва 1960.. [6]

We are able to prove this estimate of the number of polynomials with 0, 1 coefficients possessing nontrivial di- visors of small degree.. 1991 Mathematics Subject

As consequences, we obtain classical theorems concerning absolute convergence of Fourier series, e.g.. Bernstein’s theorem, Zygmund’s theorem,

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXIII (1983) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

Keywords and Phrases: Polynomial, Inequality, Maximum modulus, Polar Deriva- tive, Restricted Zeros.. 1 Introduction and statement

We obtain extensions of some classical results concerning the number of zeros of polynomials in a prescribed region by imposing the restrictions on the moduli of the coeffi- cients,

We present here results for the trigonometric, Haar and Rademacher

Modular spaces of integrable functions (i. Orlicz spaces) have been investigated fairly well. This cannot be said about spaces whose elements are