• Nie Znaleziono Wyników

A univalence criterion for meromorphic functions

N/A
N/A
Protected

Academic year: 2021

Share "A univalence criterion for meromorphic functions"

Copied!
4
0
0

Pełen tekst

(1)

ANNALES

POLONICI MATHEMATICI LVI.1 (1991)

A univalence criterion for meromorphic functions

by J. Miazga and A. Weso lowski (Lublin)

Abstract. A sufficient univalence condition for meromorphic functions is given.

1. Let f denote a meromorphic and locally univalent function in E = {z : |z| > 1}, that is, f 0 (z) 6= 0 and any pole of f is simple.

In this note we give a univalence criterion for f in terms of the Schwarz derivative defined by

S f (z) =  f 00 (z) f 0 (z)

 0

− 1 2

 f 00 (z) f 0 (z)

 2

.

Epstein (see for example [4]) gives the following univalence criterion for meromorphic and locally univalent functions in the unit disk D = {z :

|z| < 1}.

Theorem E. Let f be meromorphic and g holomorphic in D. If both functions are locally univalent in D and if

1

2 (1 − |z| 2 ) 2 (S f (z) − S g (z)) + (1 − |z| 2 )z g 00 (z) g 0 (z)

≤ 1 , z ∈ D , then f is univalent in D.

In this section we transfer Theorem E to the exterior of the unit disk, which cannot be obtained immediately from Theorem E.

Theorem 1. Let f and g be meromorphic and locally univalent functions in E and let g(ζ) = bζ +b 0 +b 1 /ζ +. . . If there exists a holomorphic function h in E with Re h ≥ 1/2 in E and h(ζ) = 1 + h 2 /ζ 2 + . . . such that

(1) 1

2 (|ζ| 2 − 1) 2 (S f (ζ) − S g (ζ)) ζ ζ ¯ h(ζ)

−(|ζ| 2 − 1)  ζh 0 (ζ)

h(ζ) + ζg 00 (ζ) g 0 (ζ)



− h(ζ) − 1 h(ζ) |ζ| 2

≤ 1, ζ ∈ E ,

1991 Mathematics Subject Classification: 30A36.

Key words and phrases: L¨ owner chain, Schwarz derivative.

(2)

64 J. M i a z g a and A. W e s o l o w s k i

then f is univalent in E.

P r o o f. Without loss of generality we can consider the functions of the form

f (ζ) = ζ + a 1

ζ + . . . , g(ζ) = ζ + b 1

ζ + . . .

since the Schwarzian derivative is invariant under M¨ obius transformations.

The assumption h(∞) = 1 can be dropped (see [5]). Let

(2)

v(ζ) = s

g 0 (ζ)

f 0 (ζ) = 1 + β 1

ζ 2 + . . . , u(ζ) = f (ζ)v(ζ) = ζ + c 1

ζ + . . .

The functions u and v are meromorphic in E since f and g do not have multiple poles and f 0 and g 0 are different from zero.

For t ∈ I = [0, ∞), 1/ζ = z, we consider

(3) f (z, t) =  u( e z

t

) + (e −t − e t ) 1 z h( e z

t

)u 0 ( e z

t

) v( e z

t

) + (e −t − e t ) 1 z h( e z

t

)v 0 ( e z

t

)

 −1

, z ∈ D .

The function f (z, t) is meromorphic in D. By (2) the denominator in (3) in square brackets is 1 + O(z 2 ) as z → 0, uniformly in t. Hence there exist constants r 0 > 0 and K 0 such that

(4) |f (z, t)| ≤ K 0 e t for |z| < r 0 , t ∈ I . By (2) the numerator in (3) is e −t /z + O(z 2 ) as z → 0. Hence (5) f (z, t) = e t z + O(z 2 ) as z → 0 .

We set

f 0 (z, t) = ∂f (z, t)

∂z , f (z, t) = ˙ ∂f (z, t)

∂t . After simple calculations from (3) we obtain

w(z, t) = f (z, t) − zf ˙ 0 (z, t) f (z, t) + zf ˙ 0 (z, t) (6)

= −  1 h − 1



e 2t + (e −t − e t ) e 2t z

 h 0

h + u 00 v − uv 00 u 0 v − uv 0



+ (e t − e −t ) e 2t

z 2 h u 00 v 0 − u 0 v 00 u 0 v − uv 0

 , where

u 0 v − uv 0 = g 0 , u 00 v − uv 00 = g 00 ,

u 00 v 0 − u 0 v 00 = 1 2 g 0 (S f − S g ) ,

(3)

A univalence criterion 65

and u, v, u 0 , v 0 , u 00 , v 00 are calculated at e t /z. Hence

−w(z, t) = 1

2 (e −t − e t ) 2  e t z

 2

h  e t z



S f

 e t z



− S g  e t z



(7)

+ (1 − e 2t ) e t z

 h 0 ( e z

t

)

h( e z

t

) + g 00 ( e z

t

) g 0 ( e z

t

)

 +

 1

h( e z

t

) − 1

 e 2t . The right hand side is zero for t = 0, and is holomorphic in D = {z : |z| ≤ 1}

for t > 0.

Putting e t /z = e ζ ∈ E, e ζ = ζe t , e t = |e ζ| for |z| = 1, from (7) by assump- tion (1) replacing e ζ by ζ we have

|w(z, t)| =

f (z, t) − zf ˙ 0 (z, t) f (z, t) + zf ˙ 0 (z, t)

≤ 1 , so ˙ f (z, t) = zf 0 (z, t)p(z, t), Re p(z, t) > 0, z ∈ D, t ∈ I.

Hence from (4) and (5) it follows that f (z, t), z ∈ D, t ∈ T , is a L¨ owner chain (see [5], Th. 6.2) and so f (z, t) is univalent in D. From (2) and (3) it follows in particular that

f (z, 0) = 1

f (ζ) = v(ζ) u(ζ) , 1

ζ = z ∈ D . For h ≡ 1 in E the inequality (1) reads

(8) 1

2 (|ζ| 2 − 1) 2 ζ

ζ ¯ (S f (ζ) − S g (ζ)) − (|ζ| 2 − 1) ζg 00 (ζ) g 0 (ζ)

≤ 1 , ζ ∈ E . This inequality is a sufficient univalence condition of Epstein type on the exterior of the unit disk obtained earlier by the second author [6].

If in Theorem 1 we take g(z) = z, h = 1/c, |c − 1| < 1, c 6= 0, then the resulting inequality

(9)

1

2 (|ζ| 2 − 1) ζ

ζ ¯ S f (ζ) − c(1 − c)|ζ| 2

≤ |c| , ζ ∈ E ,

is a sufficient univalence condition on the exterior of the unit disk of Ahlfors type [1] and for c = 1 of Nehari type [3].

On putting f = g, h = 1/c, |c−1| ≤ 1, c 6= 0 in Theorem 1, the inequality (1) reads

(10)

(|ζ| 2 − 1) ζg 00 (ζ)

g 0 (ζ) − (1 − c)|ζ| 2

≤ 1 , ζ ∈ E .

For c = 1, this is a known univalence condition for functions in E obtained by Becker [2].

To show that Theorem 1 is an essential generalization of known univa-

lence conditions for functions defined in the exterior of the unit disk we

(4)

66 J. M i a z g a and A. W e s o l o w s k i

consider the following example.

Example. Define

f (ζ) = ζ 2

(ζ − 1) 2 , g(ζ) = 2ζ 2 2ζ − 1 , and let

h(ζ) = (ζ − 1/2) 2 ζ − 1 .

Then Re h(ζ) ≥ 1/2, ζ ∈ E. It is easy to show that the left hand side of (1) is

ζ 2 4ζ(ζ − 1) + 1

=

ζ 2ζ − 1

2

≤ 1 , ζ ∈ E . On the other hand, the left hand side of (8) is

|ζ| 2 − 1

|(ζ − 1)(2ζ − 1)| ≤ |ζ| + 1 2|ζ| − 1 . So for ζ ∈ E, f and g do not satisfy the inequality (8).

Neither (9) nor (10) are satisfied by the function f or g in E.

References

[1] L. V. A h l f o r s, Sufficient conditions for quasiconformal extension, in: Ann. of Math.

Stud. 79, Princeton Univ. Press, 1974, 23–29.

[2] J. B e c k e r, ¨ Uber hom¨ oomorphe Fortsetzung schlichter Funktionen, Ann. Acad. Sci.

Fenn. 538 (1973), 3–11.

[3] Z. N e h a r i, The Schwarzian derivative and schlicht functions, Bull. Amer. Math.

Soc. 55 (1949), 545–551.

[4] Ch. P o m m e r e n k e, On the Epstein univalence criterion, Results Math. 10 (1986), 143–146.

[5] —, ¨ Uber die Subordination analytischer Funktionen, J. Reine Angew. Math. 218 (1965), 159–173.

[6] A. W e s o l o w s k i, On certain univalence criteria, Colloq. Math. 62 (1991), 39–42.

INSTITUTE OF MATHEMATICS DEPARTMENT OF APPLIED MATHEMATICS MARIA CURIE-SK LODOWSKA UNIVERSITY MARIA CURIE-SK LODOWSKA UNIVERSITY PL. MARII CURIE-SK LODOWSKIEJ 1 PL. MARII CURIE-SK LODOWSKIEJ 1

20-031 LUBLIN, POLAND 20-031 LUBLIN, POLAND

Re¸ cu par la R´ edaction le 23.5.1990

R´ evis´ e le 25.1.1991

Cytaty

Powiązane dokumenty

— Pracownia Radiodiagnostyki Ogólnej, kierowana przez ówczesnego zastępcę kierownika Zakładu Urszulę Grze- siakowską, wykonywała pełny zakres badań podstawo- wych..

Referring to previous research examining political participatory activities, this study evaluates the relationship between individual social capital and political

Uczestnictwo w nowych ruchach religijnych warunkowane jest przede wszystkim poszukiwaniem - zwłaszcza przez ludzi młodych - nowych wartości, nowego sensu życia

This paper proposes a discretization technique for a descriptor differential system. The methodology used is both triangular first order hold discretization and zero order hold for

Komisja Wspólnot Europejskich, Komunikat Komisji do Parlamentu Europejskiego, Rady Europejskiego Komitetu Ekonomiczno-Społecznego i Komitetu Regionów, Wspólne zasady wdrażania

Thörnqvist, Migrant precarity and future challenges to labour standards in Sweden, „Economic and Industrial Democracy” 2014,

nance Division Business and Finance supports the educational mission of the California State University through effective leadership, asset management, technology use,

Zycie Piotra i Marii układałoby się cał ­ kowicie szczęśliwie,gdyby mogli zupełnie się poś­.. wiecić pasjonującej walce z