• Nie Znaleziono Wyników

a viscous compressible heat conducting capillary fluid bounded by a free surface

N/A
N/A
Protected

Academic year: 2021

Share "a viscous compressible heat conducting capillary fluid bounded by a free surface"

Copied!
31
0
0

Pełen tekst

(1)

POLONICI MATHEMATICI LXV.1 (1996)

On a differential inequality for

a viscous compressible heat conducting capillary fluid bounded by a free surface

by Ewa Zadrzy´ nska and Wojciech M. Zaja ¸czkowski (Warszawa)

Abstract. We derive a global differential inequality for solutions of a free bound- ary problem for a viscous compressible heat concluding capillary fluid. The inequality is essential in proving the global existence of solutions.

1. Introduction. The motion of a viscous compressible heat conducting capillary fluid in a bounded domain Ω

t

⊂ R

3

(which depends on time t ∈ R

1+

) is described by the following system with the boundary and initial conditions (see [2], Chs. 2 and 5):

(1)

̺[v

t

+ (v · ∇)v] + ∇p − µ∆v − ν∇ div v = ̺f in e Ω

T

,

̺

t

+ div(̺v) = 0 in e Ω

T

,

̺c

v

t

+ v · ∇θ) + θp

θ

div v − κ∆θ

− µ 2

X

3 i,j=1

(v

i,xj

+ v

j,xi

)

2

− (ν − µ)(div v)

2

= ̺r in e Ω

T

,

Tn − σHn = −p

0

n on e S

T

,

v · n = −φ

t

/|∇φ| on e S

T

,

∂θ/∂n = θ

1

on e S

T

,

v|

t=0

= v

0

, ̺|

t=0

= ̺

0

, θ|

t=0

= θ

0

in Ω,

where φ(x, t) = 0 describes S

t

, n is the outward vector normal to the bound- ary (i.e. n = ∇φ/|∇φ|), e Ω

T

= S

t∈(0,T )

t

×{t}, Ω

0

= Ω is an initial domain, S e

T

= S

t∈(0,T )

S

t

×{t}. Moreover, v = v(x, t) (v = (v

1

, v

2

, v

3

)) is the velocity

1991 Mathematics Subject Classification: 35A05, 35R35, 76N10.

Key words and phrases : free boundary, compressible viscous heat conducting fluid, surface tension.

[23]

(2)

of the fluid, ̺ = ̺(x, t) the density, θ = θ(x, t) the temperature, f = f (x, t) the external force field per unit mass, r = r(x, t) the heat sources per unit mass, θ

1

= θ

1

(x, t) the heat flow per unit surface, p = p(̺, θ) the pressure, µ and ν the viscosity coefficients, κ the coefficient of heat conductivity, c

v

= c

v

(̺, θ) the specific heat at constant volume, and p

0

the external (constant) pressure. We assume that the coefficients µ, ν, κ are constants such that κ > 0, ν ≥

13

µ > 0 and moreover c

v

> 0, which results from thermodynamic considerations. Further, T = T(v, p) denotes the stress tensor of the form T = {T

ij

} = {−pδ

ij

+ µ(v

i,xj

+ v

j,xi

) + (ν − µ)δ

ij

div v} ≡ {−pδ

ij

+ D

ij

(v)}, where i, j = 1, 2, 3, and D = D(v) = {D

ij

} is the deformation tensor.

Finally, we denote by H the double mean curvature of S

t

which is neg- ative for convex domains and can be expressed in the form

Hn = ∆

St

(t)x, x = (x

1

, x

2

, x

3

),

where ∆

St

(t) is the Laplace–Beltrami operator on S

t

. Let S

t

be determined by x = x(s

1

, s

2

, t), (s

1

, s

2

) ∈ R

2

. Then we have

St

(t) = g

−1/2

∂s

α

g

−1/2

b g

αβ

∂s

β

= g

−1/2

∂s

α

g

1/2

g

αβ

∂s

β

(α, β = 1, 2),

where the convention summation over repeated indices is assumed, g = det{g

αβ

}

α,β=1,2

, g

αβ

= x

α

· x

β

, (x

α

= ∂x/∂s

α

), {g

αβ

} is the inverse matrix to {g

αβ

} and {bg

αβ

} is the matrix of algebraic complements of {g

αβ

}.

Assume that the domain Ω is given. Then by (1.1)

5

, Ω

t

= {x ∈ R

3

: x = x(ξ, t), ξ ∈ Ω}, where x = x(ξ, t) is the solution of the Cauchy problem

∂x

∂t = v(x, t), x|

t=0

= ξ ∈ Ω, ξ = (ξ

1

, ξ

2

, ξ

3

).

Hence

(1.2) x = ξ +

t

\

0

u(ξ, s) ds ≡ X

u

(ξ, t), where u(ξ, t) = v(X

u

(ξ, t), t).

Formula (1.2) yields the relation between the Eulerian x and Lagrangian ξ coordinates. Moreover, the kinematic boundary condition (1.1)

5

implies that the boundary S

t

is a material surface. Thus, if ξ ∈ S = S

0

then X

u

(ξ, t) ∈ S

t

and S

t

= {x : x = X

u

(ξ, t), ξ ∈ S}.

By the equation of continuity (1.1)

2

and (1.1)

5

the total mass of the drop is conserved and the following relation between ̺ and Ω

t

holds:

\

t

̺(x, t) dx = M.

(3)

In this paper we prove a global differential inequality for problem (1.1) (see Theorem 3.13) which we shall use in the next paper to prove the global- in-time existence of a solution to problem (1.1) close to a constant state. The paper is divided into three sections. In Section 2 we introduce some notation.

In Section 3 we formulate a series of lemmas (see Lemmas 3.1–3.12) which are used to derive the differential inequalities (3.46) and (3.47).

Problem (1.1) is also considered in [12]–[17]. In [12] we prove the local existence of a solution to problem (1.1) in Sobolev–Slobodetski˘ı spaces in two cases: σ = 0 and σ > 0. [14] and [15] are devoted to conservation laws for problem (1.1) in two cases: without surface tension and with it, respectively.

In [14] and [15] we prove that we can choose ̺

0

, v

0

, θ

0

, θ

1

, p

0

, κ, σ (in the case σ > 0) and the form of the internal energy per unit mass ε = ε(̺, θ) in such a way that var

t

|Ω

t

| is as small as we need. In [16] the global differential inequality in the case σ = 0, analogous to inequality (3.46) is obtained. [17]

is concerned with the global-in-time existence of solutions to problem (1.1) when σ = 0. Finally, [13] contains a review of results from [12], [1]–[17] and this paper.

In order to prove the main result of the paper, i.e. Theorem 3.13, we apply the same method as in [18], [19] and [16], which is very close to the methods used in [10] and [11] (see also [4]–[7] and [8]).

Papers [18] and [19] of W. M. Zaj¸aczkowski and [9] of V. A. Solonnikov and A. Tani refer to the problem corresponding to (1.1) for a compressible barotropic fluid.

In [8] K. Pileckas and W. M. Zaj¸aczkowski proved the existence of sta- tionary motion of a viscous compressible barotropic fluid bounded by a free surface governed by surface tension.

Finally, the motion of a viscous compressible heat conducting fluid in a fixed domain was considered by A. Matsumura and T. Nishida in [3]–[7] and by A. Valli and W. M. Zaj¸aczkowski in [11].

2. Notation. Let Q = Ω

t

or Q = S

t

(t ≥ 0). We denote by k · k

l,Q

(l ≥ 0) and | · |

p,Q

(1 ≤ p ≤ ∞) the norms in the usual Sobolev spaces W

2l

(Q) and L

p

(Q) spaces, respectively.

Next, we introduce the space Γ

kl

(Q) of functions u with the norm kuk

Γl

k(Q)

= X

i≤l−k

k∂

ti

uk

l−i,Q

≡ |u|

l,k,Q

, where l > 0 and k ≥ 0.

We shall use the following notation for derivatives of u. If u is a scalar- valued function we denote by D

x,tk

u or u

x...xt...t

| {z }

k times

the vector (D

xα

it

u)

|α|+i=k

.

(4)

Similarly, if u = (u

1

, u

2

, u

3

) we denote by D

x,tk

u or u

x...xt...t

| {z }

k times

the vector (D

αx

ti

u

j

)

|α|+i=k, j=1,2,3

. Hence

|D

kx,t

u| = X

|α|+i=k

|D

αx

ti

u|.

We use the following lemma:

Lemma 2.1. The following imbedding holds:

W

rl

(Q) ⊂ L

αp

(Q) (Q ⊂ R

3

),

where |α| + 3/r − 3/p ≤ l, l ∈ Z, 1 ≤ p, r ≤ ∞; L

αp

(Q) is the space of functions u such that |D

xα

u|

p,Q

< ∞, and W

rl

(Q) is the Sobolev space.

Moreover , the following interpolation inequalities are true:

(2.1) |D

αx

u|

p,Q

≤ cε

1−κ

|D

xl

u|

r,Q

+ cε

−κ

|u|

r,Q

,

where κ = |α|/l + 3/(lr) − 3/(lp) < 1, ε is a parameter , c > 0 is a constant independent of u and ε;

(2.2) |D

xα

u|

q,∂Q

≤ cε

1−κ

|D

lx

u|

r,Q

+ cε

1−κ

|u|

r,Q

,

where κ = |α|/l + 3/(lr) − 2/(lq) < 1, ε is a parameter , c > 0 is a constant independent of u and ε.

Lemma 2.1 follows from Theorem 10.2 of [1].

3. Global differential inequality. In this section we assume that ν >

1

3

µ. Further, assume that the existence of a sufficiently smooth local solution of problem (1.1) has been proved. To prove the desired differential inequality we assume that Ω

t

(t ≤ T , T is the time of local existence) is diffeomorphic to a ball, so S

t

can be described by

|x| ≡ r = R(ω, t), ω ∈ S

1

, where S

1

is the unit sphere.

Moreover, we consider the motion near the constant state v

e

= 0, p

e

= p

0

+2σ/R

e

, θ

e

= (1/|Ω|)

T

θ

0

dξ, ̺

e

= M/((4π/3)R

3e

), where R

e

is a solution of the equation

p

 M

(4π/3)R

3e

, θ

e



= p

e

.

(Obviously, we assume that the above equation is solvable with respect to R

e

> 0.)

Let

p

σ

= p − p

0

− q

0

, ̺

σ

= ̺ − ̺

e

, ϑ

0

= θ − θ

e

, ϑ = θ − θ

t

,

(5)

where q

0

= 2σ/R

e

and θ

t

= (1/|Ω

t

|)

T

t

θ dx. Then problem (1.1) takes the form

(3.1)

̺[v

t

+ (v · ∇)v] − div T(v, p

σ

) = ̺f in Ω

t

, t ∈ [0, T ],

̺

t

+ div(̺v) = 0 in Ω

t

, t ∈ [0, T ],

̺c

v

(̺, θ)(ϑ

0t

+ v · ∇ϑ

0

) + θp

θ

(̺, θ) div v

− κ∆ϑ

0

− µ 2

X

i,j

(∂

xi

v

j

+ ∂

xj

v

i

)

2

− (ν − µ)(div v)

2

= ̺r in Ω

t

, t ∈ [0, T ], T(v, p

σ

)n = σ∆

St

x · n n + q

0

n on S

t

, t ∈ [0, T ],

∂ϑ

0

/∂n = θ

1

on S

t

, t ∈ [0, T ],

where T(v, p

σ

) = {µ(∂

xi

v

j

+ ∂

xj

v

i

) + (ν − µ)δ

ij

div v − p

σ

δ

ij

} and T is the time of local existence.

In the sequel we shall use the following Taylor formula for p

σ

: p

σ

= p(̺, θ) − p(̺

e

, θ

e

)

(3.2)

= p(̺, θ) − p(̺

e

, θ) + p(̺

e

, θ) − p(̺

e

, θ

e

)

= (̺ − ̺

e

)

1\

0

p

̺

e

+ s(̺ − ̺

e

), θ) ds

+ (θ − θ

e

)

1\

0

p

θ

e

, θ

e

+ s(θ − θ

e

)) ds

≡ p

1

̺

σ

+ p

2

ϑ

0

. We shall also use the formula:

p

σ

= p(̺, θ) − p(̺

t

, θ

t

) (3.3)

= (̺ − ̺

t

)

1\

0

p

̺

t

+ s(̺ − ̺

t

), θ) ds

+ (θ − θ

t

)

1\

0

p

θ

t

, θ

t

+ s(θ − θ

t

)) ds

≡ p

3

̺

t

+ p

4

ϑ,

where the function ̺

t

= ̺

t

(t) is a solution of the problem (3.4) p(̺

t

, θ

t

) = p

e

, ̺

t

|

t=0

= ̺

e

and

̺

t

= ̺ − ̺

t

.

The functions p

i

(i = 1, 2, 3, 4) in (3.4) and (3.5) are positive.

(6)

Set

̺

= min e

T

̺(x, t), ̺

= max e

T

̺(x, t), θ

= min

e

T

θ(x, t), θ

= max e

T

θ(x, t).

Now we point out the following facts concerning the estimates in Lemmas 3.1–3.12 and Theorem 3.13:

1. We denote by ε small constants and for simplicity we do not distinguish them.

2. We denote by C

1

and C

2

constants which depend on ̺

, ̺

, θ

, θ

, T ,

TT

0

kvk

23,Ω

t′

dt

, kSk

4+1/2

, on the parameters which guarantee the existence of the inverse transformation to x = x(ξ, t) and also on the constants of imbedding theorems and Korn inequalities. C

1

is always the coefficient of a linear term, while C

2

is the coefficient of a nonlinear term. For simplicity we do not distinguish different C

1

’s and C

2

’s.

3. We denote by c absolute constants which may depend on such param- eters as µ, ν, κ, and by c

0

< 1 positive constants which may depend on µ, ν, κ, ̺

, ̺

, θ

, θ

. For simplicity we do not distinguish different C’s and C

0

’s.

4. We underline that all the estimates are obtained under the assump- tion that there exists a local-in-time solution of (1.1), so all the quantities

̺

, ̺

, θ

, θ

, T ,

TT

0

kvk

23,Ω

t′

dt

, kSk

4+1/2

are estimated by the data func- tions. Moreover, the existence of the inverse transformation to x = x(ξ, t) is guaranteed by the estimates for the local solutions (see [12]).

Lemma 3.1. Let v, ̺, ϑ

0

be a sufficiently smooth solution of (3.1).

Then (3.6) 1

2 d dt

\

t



̺v

2

+ p

1

̺ ̺

2σ

+ ̺

2t

+ p

2

̺c

v

p

θ

θ ϑ

20

 dx

+ σ 2

d dt

\

St

 g

αβ

n ·

t

\

0

v

sα

dt

n ·

t

\

0

v

sβ

dt



ds + c

0

kvk

21,Ωt

+ (ν − µ)kdiv vk

20,Ωt

+ c

0

0x

k

20,Ωt

≤ ε 

kp

σ

k

20,Ωt

+ kϑ

0tx

k

20,Ωt

+

t

\

0

v

s

dt

2 0,St

+ kH(·, 0) + 2/R

e

k

20,S1

 + C

1

(kvk

20,Ωt

+ krk

20,Ωt

+ krk

0,Ωt

+ kθ

1

k

21,Ωt

+ kθ

1

k

1,Ωt

+ kf k

20,Ωt

) + C

2

X

1

Y

1

,

(7)

where ε > 0 is sufficiently small, s = (s

1

, s

2

) and

X

1

= kvk

22,Ωt

+ k̺

σ

k

22,Ωt

+ kϑ

0

k

22,Ωt

+ k̺

t

k

20,Ωt

, Y

1

= X

1

+

1

\

0

v dt

2 2,St

.

P r o o f. Multiplying (3.1)

1

by v, integrating over Ω

t

and using the con- tinuity equation (3.1)

2

, boundary condition (3.1)

4

and (3.2) we obtain

1 2

d dt

\

t

̺v

2

dx + µ

2 E

t

(v) + (ν − µ)kdiv vk

20,Ωt

(3.7)

\

t

p

1

̺

σ

div vdx −

\

t

p

2

ϑ

0

div v dx

− σ

\

St

(∆

St

x · n + 2/R

e

)n · v ds =

\

t

̺f v dx,

where E

t

(v) =

T

t

P

3

i,j=1

(∂

xi

v

j

+ ∂

xj

v

i

)

2

dx.

First, we consider the sum of the second and third terms on the left-hand side of (3.7). We have

(3.8) µ

2 E

t

(v) + (ν − µ)kdiv vk

20,Ωt

= µ 2

\

t

(v

i,xj

+ v

j,xi

)

2

dx + (ν − µ)

\

t

(div v)

2

dx

= µ 2

X

i6=j

\

t

(v

i,xj

+ v

j,xi

)

2

dx + µ 2

X

i=j

\

t

(v

i,xj

+ v

j,xi

)

2

dx

+ (ν − µ)

\

t

(div v)

2

dx

= µ 2

X

i6=j

\

t

(v

i,xj

+ v

j,xi

)

2

dx + µ 2 ε

1

X

i=j

\

t

(v

i,xj

+ v

j,xi

)

2

dx

+ µ

2 (1 − ε

1

) · 4 X

i

\

t

(v

i,xj

)

2

dx + (ν − µ)

\

t

(div v)

2

dx ≡ I,

where ε

1

∈ (0, 1). Since (ξ

1

+ ξ

2

+ ξ

3

)

2

≤ 3(ξ

12

+ ξ

22

+ ξ

32

) the last two terms in I are estimated from below by

[ν − (1 + 2ε

1

)µ/2]

\

t

(div v)

2

dx.

(8)

Assuming that ν = (1 + 2ε

1

)µ/3 we obtain ε

1

=

3

(ν − µ/3), so (3.9) I ≥ µ

2 ε

1

\

t

(v

i,xj

+ v

j,xi

)

2

dx = 3 4

 ν − µ

3



\

t

(v

i,xj

+ v

j,xi

)

2

dx.

By the continuity equation (3.1)

2

, energy equation (3.1)

3

and boundary condition (3.1)

5

we have

\

t

p

1

̺

σ

div v dx =

\

t

p

1

̺ ̺

σ

σt

+ v · ∇̺

σ

) dx (3.10)

= 1 2

d dt

\

t

p

1

̺

2σ

̺ dx + I

1

, where

|I

1

| ≤ ε(kv

x

k

20,Ωt

+ kϑ

0x

k

20,Ωt

) + C

1

(krk

20,Ωt

+ kθ

1

k

21,Ωt

) (3.11)

+ C

2

(k̺

σ

k

41,Ωt

+ kvk

21,Ωt

σ

k

22,Ωt

+ kvk

21,Ωt

0

k

22,Ωt

+ kvk

22,Ωt

σ

k

21,Ωt

+ k̺

σ

k

22,Ωt

σ

k

21,Ωt

).

Now, we consider the boundary term in (3.7). In the same way as in Lemma 4.1 of [19] we obtain

(3.12) −

\

St

(∆

St

x · n + 2/R

e

)v · n ds

= 1 2

d dt

\

St

 g

αβ

n ·

t

\

0

v

sα

dt

n ·

t

\

0

v

sβ

dt



ds + I

1

, where

|I

1

| ≤ ε 

t

\

0

v

s

dt

2 0,St

+ kH(·, 0) + 2/R

e

k

20,S1

+ kvk

21,Ωt

 (3.13)

+ C

1

kvk

20,Ωt

+ C

2

t

\

0

v dt

2 2,St

kvk

22,Ωt

.

Next, dividing (3.1)

3

by θp

θ

, multiplying the result by p

2

ϑ

0

and inte- grating over Ω

t

we get

(3.14)

\

t

p

2

̺c

v

θp

θ



t

ϑ

20

2 + v · ∇ ϑ

20

2

 dx +

\

t

p

2

ϑ

0

div v dx

\

t

p

2

κ∆ϑ

0

θp

θ

ϑ

0

dx −

\

t

p

2

µ 2θp

θ

X

i,j

(∂

xj

v

i

+ ∂

xi

v

j

)

2

ϑ

0

dx

\

t

p

2

(ν − µ) θp

θ

(div v)

2

ϑ

0

dx =

\

t

p

2

̺r θp

θ

ϑ

0

dx.

(9)

Therefore, using the same argument as in Lemma 3.1 of [16], by (3.7)–(3.14) we have

(3.15) 1 2

d dt



̺v

2

+ p

1

̺

2σ

̺ + p

2

̺c

v

θp

θ

ϑ

20

 dx

+ σ 2

d dt

\

St

g

αβ

n ·

t

\

0

v

sα

dt

n ·

t

\

0

v

sβ

dt

ds + c

0

kvk

21,Ωt

+ (ν − µ)kdiv vk

20,Ωt

+ c

0

0x

k

20,Ωt

≤ ε 

t

\

0

v

s

dt

2 0,St

+ kH(·, 0) + 2/R

0

k

20,S1

 + C

1

(kvk

20,Ωt

+ krk

20,Ωt

+ krk

0,Ωt

+ kθ

1

k

21,Ωt

+ kθ

1

k

1,Ωt

+ kf k

20,Ωt

) + C

2

X

1

Y

1

. Finally, by (3.1)

2

and (3.5) we have

(3.16) ∂

t

̺

t

+ v · ∇̺

t

+ ̺ div v + ∂

t

̺

t

= 0, where in view of (3.4) we get

(3.17) ∂

t

̺

t

= − p

θΩt

p

̺Ωt

t

θ

t

. Using the definition of θ

t

we calculate

t

θ

t

= 1

|Ω

t

|

\

t

ϑ

0t

dx + 1

|Ω

t

|

\

t

θ div v dx (3.18)

− 1

|Ω

t

|

2



\

t

θ dx 

\

t

div v dx  . Equation (3.16) and formulas (3.17), (3.18) yield

1 2

d dt

\

t

̺

2t

dx ≤ ε(k̺

t

k

20,Ωt

+ kϑ

0tx

k

20,Ωt

) (3.19)

+ C

1

(kv

x

k

20,Ωt

+ kϑ

0x

k

20,Ωt

+ krk

20,Ωt

+ kθ

1

k

21,Ωt

) + C

2

(kvk

21,Ωt

0

k

22,Ωt

+ kvk

42,Ωt

+ k̺

t

k

41,Ωt

+ k̺

σ

k

22,Ωt

0

k

22,Ωt

+ kϑ

0

k

42,Ωt

).

By (3.3) and the Poincar´e inequality

(3.20) kϑk

0,Ωt

≤ kϑ

0x

k

0,Ωt

we get

(3.21) k̺

t

k

0,Ωt

≤ C

1

(kϑ

0x

k

0,Ωt

+ kp

σ

k

0,Ωt

).

The estimates (3.15), (3.19) and (3.21) yield (3.6).

(10)

Lemma 3.2. Let v, ̺, ϑ

0

be a sufficiently smooth solution of (3.1). Then (3.22) 1

2 d dt

\

t



̺v

t2

+ p

σ̺

̺ ̺

2σt

+ ̺c

v

θ ϑ

20t

 dx

+ σ 2

d dt

\

St

g

αβ

v

sα

· nv

sβ

· n ds + c

0

kv

t

k

21,Ωt

+ (ν − µ)kdivv

t

k

20,Ωt

+ c

0

0t

k

21,Ωt

≤ ε(kvk

21,Ωt

+ kv

xx

k

20,Ωt

+ kϑ

0x

k

20,Ωt

)

+ C

1

(|f |

21,0,Ωt

+ |r|

21,0,Ωt

+ krk

0,Ωt

+ |θ

1

|

22,1,Ωt

+ kθ

1

k

1,Ωt

) + C

2

X

22

(1 + X

2

),

where X

2

= |v|

22,1,Ω

t

+ |̺

σ

|

22,1,Ωt

+ |ϑ

0

|

22,1,Ωt

.

P r o o f. By the same argument as in Lemma 3.2 of [16] we have (3.23) 1

2 d dt

\

t



̺v

t2

+ p

σ̺

̺ ̺

2σt

+ ̺c

v

θ ϑ

20t



dx + kv

t

k

21,Ωt

+ (ν − µ)kdivv

t

k

20,Ωt

+ kϑ

0t

k

21,Ωt

\

St

[T(v, p

σ

)]

,t

n · v

t

ds

≤ ε(k̺

σt

k

20,Ωt

+ kv

t

k

20,Ωt

+ kϑ

0t

k

20,Ωt

+ kϑ

0tx

k

20,Ωt

) + C

1

(krk

20,Ω

t

+ kr

t

k

20,Ωt

+ |θ

1

|

22,1,Ωt

) + C

2

X

22

(1 + X

2

).

By the boundary condition (3.1)

4

and the same argument as in Lemma 4.2 of [19] we get

(3.24) −

\

St

[T(v, p

σ

)]

,t

n · v

t

ds = σ 2

d dt

\

St

g

αβ

v

sα

· nv

sβ

· n ds + I

2

, where

(3.25) |I

2

| ≤ ε(kv

t

k

21,Ωt

+ kv

xx

k

20,Ωt

) + C

1

kvk

20,Ωt

+ C

2

X

22

. From the continuity equation (3.1)

2

it follows that

(3.26) k̺

σt

k

20,Ωt

≤ C

1

kvk

21,Ωt

+ C

2

kvk

21,Ωt

σ

k

22,Ωt

and equation (3.1)

3

yields

0t

k

20,Ωt

≤ εkϑ

0xt

k

20,Ωt

(3.27)

+ C

1

(kv

x

k

20,Ωt

+ kϑ

0x

k

20,Ωt

+ krk

20,Ωt

+ kθ

1

k

21,Ωt

) + C

2

(kvk

21,Ωt

0

k

22,Ωt

+ kvk

41,Ωt

+ k̺

σ

k

22,Ωt

0

k

22,Ωt

+ kϑ

0

k

42,Ωt

).

Therefore, taking into account (3.23)–(3.27) we obtain (3.22).

(11)

Lemmas 3.1 and 3.2 imply

Lemma 3.3. Let v, ̺, ϑ

0

be a sufficiently smooth solution of (3.1). Then 1

2 d dt

\

t



̺(v

2

+ v

2t

) + 1

̺ (p

1

̺

2σ

+ p

σ̺

̺

2σt

) + ̺

2t

+ ̺c

v

θ

 p

2

p

θ

ϑ

20

+ ϑ

20t



dx

+ σ 2

d dt

\

St

g

αβ

 n ·

t

\

0

v

sα

dt

n ·

t

\

0

v

sβ

dt

+ n · v

sα

n · v

sβ

 ds + c

0

(kvk

21,Ωt

+ kv

t

k

21,Ωt

) + (ν − µ)(kdiv vk

20,Ωt

+ kdiv v

t

k

20,Ωt

) + c

0

(kϑ

0x

k

20,Ωt

+ kϑ

0t

k

21,Ωt

)

≤ ε 

σ

k

20,Ωt

+ kv

xx

k

20,Ωt

+

t

\

0

v

s

dt

2 0,St

+ kH(·, 0) + 2/R

e

k

20,S1

 + C

1

(kvk

20,Ωt

+ |r|

21,0,Ωt

+ krk

0,Ωt

+ |θ

1

|

22,1,Ωt

+ kθ

1

k

1,Ωt

+ |f |

21,0,Ωt

) + C

2

[X

1

Y

1

+ X

22

(1 + X

2

)].

In order to obtain an inequality for derivatives with respect to x we rewrite problem (3.1) in the Lagrangian coordinates and next we introduce a partition of unity in the fixed domain Ω. Thus we have

(3.28)

ηu

it

− ∇

uj

T

iju

(u, p

σ

) = ηg

i

, i = 1, 2, 3, η

σt

+ η∇

u

· u = 0,

ηc

v

(η, Γ )γ

0t

− κ∇

2u

γ

0

= ηk − Γ p

Γ

(η, Γ )∇

u

· u + µ

2 X

3 i,j=1

kxi

ξk

u

j

+ ξ

kxj

ξk

u

i

)

2

+ (ν − µ)(∇

u

· u)

2

,

T

u

(u, p

σ

)n = σ∆

St

x(ξ, t) · n n + q

0

n, n · ∇

u

γ

0

= Γ

1

,

where η(ξ, t) = ̺(x(ξ, t), t), u(ξ, t) = v(x(ξ, t), t), g(ξ, t) = f (x(ξ, t), t), Γ (ξ, t) = θ(x(ξ, t), t), γ

0

(ξ, t) = ϑ

0

(x(ξ, t), t), Γ

1

(ξ, t) = θ

1

(x(ξ, t), t), n = n(ξ, t) and

T

u

(u, p

σ

) = {T

uij

(u, p

σ

)} = {−p

σ

δ

ij

+ µ(∇

ui

u

j

+ ∇

uj

u

i

) + (ν − µ)δ

ij

u

· u},

ui

= ξ

kxi

ξk

and div T

u

(u, p

σ

) = ∇

u

· T

u

(u, p

σ

).

By (3.4) and (3.5) we have respectively

p

σ

= p

1

η

σ

+ p

2

γ

0

(12)

and

p

σ

= p

3

η

t

+ p

4

γ,

where η

σ

= η − ̺

e

, γ

0

= Γ − θ

e

, η

t

= η − ̺

t

, p

1

=

T1

0

p

η

e

+ sη

σ

, Γ ) ds, p

2

=

T1

0

p

Γ

e

, θ

e

+ sγ

0

) ds, p

3

=

T1

0

p

η

t

+ sη

t

, Γ ) ds, p

4

=

T1

0

p

Γ

t

, θ

t

+ sγ) ds, p

i

> 0 (i = 1, 2, 3, 4).

Let us introduce a partition of unity ({ e Ω

i

}, {ζ

i

}), Ω = S

i

Ω e

i

. Let e Ω be one of the e Ω

i,s

and ζ(ξ) = ζ

i

(ξ) be the corresponding function. If e Ω is an interior subdomain then let e ω be a set such that e ω ⊂ e Ω and ζ(ξ) = 1 for ξ ∈ e ω. Otherwise we assume that e Ω ∩ S = ∅, e ω ∩ S 6= ∅, e ω ⊂ e Ω. Take any β ∈ e ω ∩ S ⊂ e Ω ∩ S = e S∂ and introduce local coordinates {y} associated with {ξ} by the relation

(3.29) y

k

= α

kl

l

− β

l

), α

3k

= n

k

(β), k = 1, 2, 3,

where {α

kl

} is a constant orthogonal matrix such that e S is described by the equation y

3

= F (y

1

, y

2

), F ∈ W

24−1/2

and

Ω = {y : |y e

i

| < d, i = 1, 2, F (y

) < y

3

< F (y

) + d, y

= (y

1

, y

2

)}.

Next introduce functions u

, η

, Γ

, γ

0

, γ

, Γ

1

by means of the formulas u

i

(y) = α

ij

u

j

(ξ)|

ξ=ξ(y)

, η

(y) = η(ξ)|

ξ=ξ(y)

,

Γ

(y) = Γ (ξ)|

ξ=ξ(y)

, γ

0

(y) = γ

0

(ξ)|

ξ=ξ(y)

, γ

(y) = γ(ξ)|

ξ=ξ(y)

, Γ

1

(y) = Γ

1

(ξ)|

ξ=ξ(y)

,

where ξ = ξ(y) is the inverse transformation to (3.29). Further, we introduce new variables by

z

i

= y

i

(i = 1, 2), z

3

= y

3

− e F (y), y ∈ e Ω,

which will be denoted by z = Φ(y), where e F is an extension of F , so e F ∈ W

24

. Let b Ω = Φ( e Ω) = {z : |z

i

| < d, i = 1, 2, 0 < z

3

< d} and b S = Φ( e S).

Define

b

u(z) = u

(y)|

y=Φ−1(z)

, η(z) = η b

(y)|

y=Φ−1(z)

, Γ (z) = Γ b

(y)|

y=Φ−1(z)

, b γ

0

(z) = γ

0

(y)|

y=Φ−1(z)

,

bγ(z) = γ

(y)|

y=Φ−1(z)

, Γ b

1

(z) = Γ

1

(y)|

y=Φ−1(z)

.

Set b ∇

k

= ξ

lxk

(ξ)z

l

zi

|

ξ=χ−1(z)

, where χ(ξ) = Φ(ψ(ξ)) and y = ψ(ξ) is described by (3.29). We also introduce the following notation:

u(ξ) = u(ξ)ζ(ξ), e η(ξ) = η(ξ)ζ(ξ), e Γ (ξ) = Γ (ξ)ζ(ξ), e e γ

0

(ξ) = γ

0

(ξ)ζ(ξ),

e

γ(ξ) = γ(ξ)ζ(ξ), Γ e

1

(ξ) = Γ

1

(ξ)ζ(ξ)

(13)

for ξ ∈ e Ω, e Ω ∩ S = ∅ and

e u(z) = b u(z)b ζ(z), η(z) = b e η(z)b ζ(z), Γ (z) = b e Γ (z)b ζ(z), e γ

0

(z) = bγ

0

(z)b ζ(z),

eγ(z) = b γ(z)b ζ(z), Γ e

1

(z) = b Γ

1

(z)b ζ(z) for z ∈ b Ω = Φ( e Ω), e Ω ∩ S 6= ∅.

Using the above notation we can rewrite problem (3.28) in the following form in an interior subdomain :

ηe u

it

− ∇

uj

T

uij

(e u, e p

σ

) = ηeg

i

− ∇

uj

B

uij

(u, ζ) − T

uij

(u, p

σ

)∇

uj

ζ

≡ ηeg

i

+ k

1

, i = 1, 2, 3, η e

σt

+ η∇

u

· e u = ηu · ∇

u

ζ ≡ k

2

,

ηc

v

(η, Γ )eγ

t

− κ∇

2u

eγ + Γ p

Γ

(η, Γ )∇

u

· e u

= ηe k +

 µ 2

X

3 i,j=1

kxi

ξk

u

j

+ ξ

kxj

ξk

u

i

)

2

+ (ν − µ)(∇

u

· u)

2



ζ + Γ p

Γ

(η, Γ )u · ∇

u

ζ

− κ(∇

2u

ζγ + 2∇

u

ζ · ∇

u

γ) − ηc

v

(η, Γ )ζ∂

t

θ

t

≡ ηe k + k

3

, where e p

σ

= p

σ

ζ and

B

u

(u, ζ) = {B

uij

(u, ζ)} = {µ(u

i

uj

ζ + u

j

ui

ζ) + (ν − µ)δ

ij

u · ∇

u

ζ}.

In boundary subdomains we have

ηe b u

it

− b ∇

j

T b

ij

(e u, e p

σ

) = b ηeg

i

− b ∇

j

B b

ij

(b u, b ζ) − b T

ij

(b u, p

σ

) b ∇

j

ζ b (3.30)

≡ b ηeg

i

+ k

4i

, e

η

σt

+ b η b ∇ · e u = b ηb u · b ∇b ζ ≡ k

5

, b

ηc

v

(b η, b Γ )eγ

t

− κ b ∇

2

e γ + b Γ p

Γˆ

(b η, b Γ ) b ∇ · e u

= b ηe k +

 µ 2

X

3 i,j=1

( b ∇

i

b u

j

+ b ∇

j

b u

i

)

2

+ (ν − µ)( b ∇ · b u)

2

 ζ b

+ b Γ p

Γˆ

(b η, b Γ )b u · b ∇b ζ − κ( b ∇

2

ζbγ + b b ∇b ζ · b ∇bγ)

− b ηc

v

(b η, b Γ )∂

t

θ

t

b ζ ≡ b ηe k + k

6

, T(e b u, e p

σ

)b n − σ b ∆

ξ · b b nb nb ζ − σ b ∆

t

\

0

e u dt

· bnbn = 2σ R

0

ζ b b n + k

7

+ k

8

, b

n · b ∇eγ = e Γ

1

+ k

9

,

(14)

where k

7i

= b B

ij

(b u, b ζ)b n

j

, k

8

= −σ(2 b ∇

Tt

0

b u dt

∇b b ζ +

Tt

0

b u dt

∇ b

2

ζ) · b b nb n, k

9

= b

n · b ∇b ζbγ and b T, b B indicate that the operator ∇

u

is replaced by b ∇.

In the considerations below we denote z

1

, z

2

by τ and z

3

by n.

Lemma 3.4. Let v, ̺, ϑ

0

be a sufficiently smooth solution of (3.1). Then 1

2 d dt

\

t



̺v

x2

+ p

σ̺

̺ ̺

2x

+ ̺c

v

θ ϑ

20x

 dx

+ σ 2

d dt

\

St

1 2 δ e

αβ

n ·

t

\

0

v

ppα

dt

n ·

t

\

0

v

ppβ

dt

ds

+ σ 2

d dt

\

St

n ·

t

\

0

v

p1p2

dt

2

ds

+ σ 2

d dt

\

St

X

2 i=1

 1 2 n ·

t

\

0

v

pipi

dt

+ 2(H(·, 0) + 2/R

e

)



2

ds

+ c

0

(kv

x

k

21,Ωt

+ k̺

t

k

20,Ωt

+ k̺

σx

k

20,Ωt

+ k̺

σt

k

20,Ωt

+ kϑ

0xx

k

20,Ωt

)

≤ ε 

kv

xt

k

20,Ωt

+ kϑ

0xt

k

20,Ωt

+

t

\

0

v dt

2 0,Ωt

+ kH(·, 0) + 2/R

e

k

20,S1

+ kR(·, t) − R(·, 0)k

22,S1

 + C

1

(|v|

21,0,Ωt

+ k̺

t

k

20,Ωt

+ kϑk

20,Ωt

+ kϑ

0x

k

20,Ωt

+ kϑ

0t

k

20,Ωt

+ kf k

21,Ωt

+ krk

21,Ωt

+ kθ

1

k

22,Ωt

) + C

2

(X

3

Y

3

+ kH(·, 0) + 2/R

e

k

40,S1

),

where the summation over the repeated indices (α, β = 1, 2) and coordinates (x, p = (p

1

, p

2

)) is assumed, e δ

αβ

on each boundary part Σ

t

= S

t

∩{ζ(x) 6= 0}

(ζ belongs to a partition of unity of Ω

t

) is of the form e δ

αβ

= δ

αβ

+ 2ε

αβ

, ε

αβ

= −F

pα

F

pβ

(1 + F

p21

+ F

p22

)

−1

, F is the function such that in the local coordinates {y}, P

t

is described by the formula

(3.31) y

i

= p

i

(i = 1, 2), y

3

= F (p

1

, p

2

, t) and supp ζ is so small that |F

p

| ≤ 1/2. Moreover ,

X

3

= |v|

22,1,Ω

t

+ |̺

σ

|

22,1,Ωt

+ |ϑ

0

|

22,1,Ωt

+ k̺

t

k

20,Ωt

, Y

3

= X

3

+ kvk

23,Ω

t

+ kϑ

0x

k

22,Ωt

+ kϑk

20,Ω

t

+ k̺

t

k

20,Ωt

+

t

\

0

kvk

23,Ω

t′

dt

.

(15)

P r o o f. Similarly to [16] (see the proof of Lemma 3.4) we obtain the following estimate for interior subdomains:

(3.32) 1 2

d dt

\

e



ηe u

2ξ

+ p

ση

η eη

2tξ

+ ηc

v

Γ γ e

ξ2

 A dξ

+ µ

2 ke u

ξ

k

21,

e + κ

θ

keγ

ξξ

k

20,

e + ke η

t

k

21,

e

≤ ε(ke u

ξξ

k

2

0,

e + kη

σξ

k

2

0,

e + keγ

ξξ

k

2

0,

e ) + C

1

(|u|

2

1,0,

e + kvk

21,Ωt

+ kγ

k

20,

e + kγk

2

0,

e + kϑ

0t

k

20,Ωt

+ kη

t

k

20,

e

+ kegk

20,

e + ke kk

2

0,

e ) + C

2

h

X

3

( e Ω) +

t

\

0

kuk

2

3,

e dt



Y

3

( e Ω) + kγk

2

2,

e (kϑ

0t

k

20,Ωt

+ kvk

21,Ωt

) i , where

X

3

( e Ω) = |u|

2

2,1,

e + |̺

σ

|

22,1,

e + |γ

0

|

22,1,

e + kη

t

k

20,

e , Y

3

( e Ω) = X

3

( e Ω) + kuk

2

3,

e + kγk

2

3,

e + kη

t

k

20,

e +

t

\

0

kuk

23,

e dt

. Now, we consider subdomains near the boundary. Differentiate (3.30)

1

with respect to τ , multiply the result by e u

τ

J and integrate over b Ω (J is the Jacobian of the transformation x = x(z)). Next, divide (3.30)

3

by b Γ , differentiate the result with respect to τ , multiply by eγ

τ

J and integrate over Ω. Hence using Lemma 5.1 of [18] we get b

1 2

d dt

\

Ωˆ



b ηe u

2τ

+ p

σ ˆη

b

η eη

2tτ

+ ηc b

v

Γ b eγ

τ2



J dz + µ

2 ke u

τ

k

21,

b + κ

θ

keγ

τ z

k

2

0,

b −

\

(b nb T(e u, e p

σ

))

u e

τ

J dz

− κ

\

 b n 1

Γ b ∇eγ b



τ

J dz

≤ ε(ke u

zz

k

2

0,

b + kb η

σz

k

2

0,

b + kbγ

0zz

k

2

0,

b ) + C

1

(|b u|

2

1,0,

b + kvk

21,Ωt

+ kbγ

k

2

0,

b

+ kbγk

20,

b + kϑ

0t

k

20,Ωt

+ kb η

t

k

20,

b + kegk

21,

b + ke kk

2

1,

b ) + C

2

h

X

2

( b Ω) +

t

\

0

kb uk

2

3,

b dt



Y

2

( b Ω) + kbγk

22,

b (kϑ

0t

k

20,Ωt

+ kvk

21,Ω

t

) i

,

(16)

where X

2

( b Ω) and Y

2

( b Ω) are defined analogously to X

2

( e Ω) and Y

2

( e Ω).

Using the boundary condition (3.30)

4

we have (3.33) −

\

b

S

(b nb T(e u, e p

σ

))

u e

τ

J dz

≤ − σ 2

d dt

\

b

S

g

αβ

n · b

t

\

0

u e

ppα

dt

b n ·

t

\

0

u e

ppβ

dt

J dz

− σ

\

b

S

( b H(·, 0) + 2/R

e

)b ζ · e u

pp

· bnJ dz

+ ε 

t

\

0

e u dt

2

2,S

b + ke u

zz

k

2

0,

b + k( b H(·, 0) + 2/R

e

)b ζk

2

0,S

b + kR(·, t) − R(·, 0)k

22,S1



+ C

2

 kb uk

2

0,

b + kb uk

2

2,

b

t

\

0

u dt e

2 3,

b

 .

By the boundary condition (3.30)

5

we get (3.34) − κ

\

b

S

 b n · 1

Γ b ∇bγ b



e γ

τ

J dz

≤ εkbγ

0zz

k

2

0,

b + C

1

(kbγk

20,

b + kbγ

0z

k

2

0,

b + k e Γ

1

k

2

2,

b ) + C

2

kbγk

22,

b

 kbγ

0

k

2

2,

b + kbγk

22,

b + kb η

σ

k

2

2,

b +

t

\

0

b u dt

2 3,

b

 . To obtain (3.33) and (3.34) we have applied the interpolation inequality (2.2) (see Lemma 2.1).

For the quantities 1

2 d dt

\

Ωˆ

p

σ ˆη

b

η eη

2tn

J dz + c

0

ke η

tn

k

2

0,

b , 1

2 d dt

\

Ωˆ

ηe b u

23n

Jdz + c

0

ke u

3nn

k

20,

b ,

ke η

t

k

20,Ωt

, ke u

k

20,

b , ke η

tτ

k

20,

b , ke u

nn

k

20,

b , 1 2

d dt

\

Ωˆ

ηe b u

2n

J dz, 1

2 d dt

\

Ωˆ

b ηc

v

Γ b γ e

n2

Jdz + κ

θ

keγ

nn

k

20,

b

(17)

we obtain the same estimates as in the proof of Lemma 3.4 of [16]. Therefore, we have

(3.35) 1 2

d dt

\

Ωˆ



ηe b u

2z

+ p

σ

b

η

b

η eη

2tz

+ ηc b

v

Γ b e γ

z2

 J dz

+ σ 2

d dt

\

h g

αβ

b n ·

t

\

0

e

u

ppα

dt

n · b

t

\

0

e u

ppβ

dt

+ 2( b H(·, 0) + 2/R

e

)b ζ b n ·

t

\

0

e u

pp

dt

i

J dz

+ µ 2 ke u

z

k

2

1,

b + κ

θ

keγ

zz

k

20,

b + c

0

ke η

t

k

21,

b

≤ ε  ke u

zz

k

2

0,

b + kb η

σz

k

2

0,

b + kbγ

0zz

k

2

0,

b + ke u

zt

k

2

0,

b + keγ

0zt

k

2

0,

b +

t

\

0

u dt e

2

2,S

b + k( b H(·, 0) + 2/R

e

)b ζk

2

0,S

b + kR(·, t) − R(·, 0)k

22,S1

 + C

1

(|b u|

2

1,0,

b + kvk

21,Ωt

+ kbγ

k

2

0,

b + kbγk

20,

b + kϑ

0t

k

20,Ωt

+ kb η

t

k

20,

b + kegk

21,

b + ke kk

2

1,

b ) + C

2

h

X

2

( b Ω) +

t

\

0

kb uk

2

3,

b dt



Y

2

( b Ω) + kbγk

22,

b (kϑ

0t

k

20,Ωt

+ kvk

21,Ωt

) i . We estimate the second term on the left-hand side of (3.35) in the same way as in the proof of Lemma 4.4 of [19]. Going back to the variables ξ in (3.35), next from the resulting estimate and (3.32), after summing over all neighbourhoods of the partition of unity and finally going back to the variables x and using (3.26) we get

(3.36) 1 2

d dt

\

t



̺v

x2

+ p

σ̺

̺ ̺

2σx

+ ̺c

v

θ ϑ

20x

 dx

+ σ 2

d dt

\

St

1 2 e δ

αβ

n ·

t

\

0

v

ppα

dt

n ·

t

\

0

v

ppβ

dt

ds

+ σ 2

d dt

\

St

n ·

t

\

0

v

p1p2

dt

2

ds

+ σ 2

d dt

\

St

X

2 i=1

 1 2 n ·

t

\

0

v

pipi

dt

+ 2( b H(·, 0) + 2/R

e

)



2

ds

Cytaty

Powiązane dokumenty

The equations of the laminar compressible boundary layer can be transformed (like in case of incompressible equations) such that similar solution are obtained i.e...

In the flood frequency analysis, the annual maximum sea levels and the corresponding Rhine flows are chosen, since the Rotterdam water level is mostly influenced by the sea

Despite the fact that in a few passages of the extant commentaries on the First Letter to Corinthians Origen claims that the dead should be resurrected in a like body as Christ,

The following could be included to the norms: (1) publicity of the criteria of the assessment of publications, (2) double anonymity of scientific reviews, (3) edition of

Rubber foam tube R1234yf Throttling device Vacuum pump Variable resistor MHS2 (a) MHS1 MHS2 Downstream TTV TTV 2 Gas Flowmeter Compressor Condenser Data Acquisition T5 T3

The scale of the case study in this paper is too small to address all the challenges identified in chapter 3. However, it provided an indication in which direction solution can

Życie kontem placyjne na tym więc polega, aby „uznać nieustanną obecność Boga i Jego czułą miłość dla nas w najdrobniejszych życiowych sprawach oraz być

B rak władzy despotycznej oraz -istnienie pryw atnych -f-orm w łasności ziem i świadczą -o antycz­ nych farm ach polityczno-sp ołecznych.. W rodai-ale pierw szym