• Nie Znaleziono Wyników

Technical note for sediment transport rate: Analysis of delta flume data and calculations

N/A
N/A
Protected

Academic year: 2021

Share "Technical note for sediment transport rate: Analysis of delta flume data and calculations"

Copied!
34
0
0

Pełen tekst

(1)

Technical Note for Sediment Transport Rate

A n a l y s i s o f D e l t a Flume Data and C a l c u l a t i o n s

Zhang Changkuan

F a c u l t y o f C i v i l E n g i n e e r i n g D e l f t U n i v e r s i t y o f T e c h l o g y

(2)

Technical Note for Sediment Transport Rate

Data A n a l y s i s o f D e l t a Flume and C a l c u l a t i o n s Zhang Changkuan

F a c u l t y o f C i v i l E n g i n e e r i n g , D e l f t U n i v e r s i t y o f T e c h n o l o g y ( R e s e a r c h f e l l o w from H o h a i U n i v e r s i t y , N a n j i n g , P . R . C h i n a )

1. I n t r o d u c t i o n

To a c h i e v e h i g h q u a l i t y and h i g h r e s o l u t i o n d a t a on h y d r o d y n a m i c s and s e d i m e n t t r a n s p o r t dynamics on a n a t u r a l 2DV beach, a programme o f d e t a i l e d measurements o f h y d r o d y n a m i c s and s e d i m e n t t r a n s p o r t i n t h e s u r f zone has been c a r r i e d o u t i n DELFT HYDRAULICS' D e l t a Flume i n 1993. The e x p e r i m e n t c o n s i s t s o f 7 s e p a r a t e t e s t s (DELFT HYDRAULICS 1994).

The o b j e c t i v e o f t h e p r e s e n t s t u d y i s t o a n a l y s e t h e measurement d a t a o f p r o f i l e s and v e l o c i t y moments, t o d e r i v e t h e measured c r o s s - s h o r e s e d i m e n t t r a n s p o r t r a t e s f r o m t h e p r o f i l e r e c o r d s and t o compare t h e o b s e r v e d t r a n s p o r t r a t e s w i t h t h e r e s u l t s f r o m s e v e r a l e x i s t i n g p r e d i c t i o n models o f c r o s s - s h o r e s e d i m e n t t r a n s p o r t . T h i s r e p o r t i s a summary o f p r e l i m i n a r y a n a l y s i s and c a l c u l a t i o n s o f 2 t e s t s w i t h t e s t number 2A and 2B. The r e p o r t i n c l u d e s p r o f i l e a n a l y s i s , t h e d e r i v a t i o n o f measured t r a n s p o r t r a t e s , t h e c o m p u t a t i o n s o f c r o s s - s h o r e t r a n s p o r t r a t e by B a i l a r d ' s f o r m u l a and t h e c o m p a r i s o n between t h e measured and t h e computed r e s u l t s .

2. P r o f i l e measurement a n a l y s i s

2.1 T e s t c o n d i t i o n s and measurement p a r a m e t e r s

P r o f i l e measurements used i n t h i s s t u d y come f r o m 2 o f 7 t e s t s w i t h t e s t number 2A and 2B.

The i n i t i a l beach geometry o f t e s t 2A was a Dean-type p r o f i l e i n t h e p r e s e n c e o f a l o w dune showing i n F i g . l . The i n i t i a l beach geometry o f t e s t 2B i s t h e r e s u l t o f t e s t 2A. The bed sand p r o p e r t i e s and h y d r a u l i c c o n d i t i o n s o f t h e t w o t e s t s a r e summarized i n T a b l e 1 .

D u r i n g t h e t e s t s t h r e e p r o f i l e s were measured each t i m e : one i n t h e m i d d l e o f t h e f l u m e and t w o a t t h e d i s t a n c e o f 0.85 m f r o m t h e f l u m e w a l l s . Three p r o f i l e s r e p r e s e n t a same w i d t h o f t h e f l u m e . The p r o f i l e d a t a were s t o r e d a t 0.01 m i n t e r v a l s . F o r t e s t 2A, p r o f i l e measurements were c a r r i e d o u t a t 1 h o u r i n t e r v a l s , t h a t i s , 13 p r o f i l e s a r e a v a i l a b l e ( a t 0, 1 , 2, 3, 4, 5, 6, 7,

(3)

8, 9, 10, 11 and 12 h o u r s a f t e r s t a r t o f t h e t e s t ) . For t e s t 2B, 10 p r o f i l e s a r e a v a i l a b l e ( a t 0, 1 , 2, 3, 4, 5, 6, 7, 8 and 12 h o u r s a f t e r s t a r t o f t h e t e s t ) .

V e l o c i t y measurements a t some c r o s s - s e c t i o n s a l o n g t h e wave f l u m e were c a r r i e d o u t t o o , b u t f o r a c e r t a i n s e c t i o n , say t h e s e c t i o n x=65 m, t h e f l o w v e l o c i t y was measured o n l y once. T a k i n g t e s t 2A as an example, t h e v e l o c i t y measurement a t x=65 m was c o n d u c t e d 1 h o u r a f t e r s t a r t o f t h e t e s t w h i l e i t was c a r r i e d o u t 2 h o u r s a f t e r s t a r t o f t h e t e s t a t x=100 m, e t c . A number o f v e l o c i t y p a r a m e t e r s such as t h e second o r d e r v e l o c i t y moments, t h e t h i r d o r d e r v e l o c i t y moments and t h e f i f t h o r d e r v e l o c i t y moments, a r e a v a i l a b l e f r o m DELFT HYDRAULICS' d a t a b a s e . T a b l e 1 T e s t c o n d i t i o n s T e s t D1 0 D5 0 D9 0 Hm 0 W.L. D u r a t i o n # (mm) (mm) (mm) (Ml) (s) (m) (h) 2A 0. 164 0.200 0.247 0.9 5 4 . 1 12 2B 0. 164 0.200 0.247 1.4 5 4 . 1 12 2.2 Data a n a l y s i s

The f o l l o w i n g p r o c e d u r e s have been t a k e n when t h e a n a l y s e s were p r o c e e d i n g : . e r r o r c h e c k i n g B e f o r e t h e d a t a a n a l y s i s , i t i s n e c e s s a r y t o do some e l a b o r a t i o n on t h e d a t a , c h e c k i n g t h e p o s s i b l e e r r o r s . To check t h e p o s s i b l e e r r o r s i n measured p r o f i l e s , t h e p r o f i l e d a t a were p l o t t e d . F i g . l shows t h e p r o f i l e development o f t e s t 2A i n c l u d i n g i n i t i a l p r o f i l e , 3-hour p r o f i l e , 6-hour p r o f i l e , 9-hour p r o f i l e and 12-h o u r p r o f i l e . More s p e c i f i c a l l y F i g . 2 t 12-h r o u g 12-h F i g . 4 s12-how some l o c a l p r o f i l e s a t d i f f e r e n t l o c a t i o n s . By e x a m i n i n g t h e p r o f i l e s some measurement e r r o r s can be c l e a r l y f o u n d . For example, i n t h e case o f 4.1 m w a t e r l e v e l and 0.9 m wave h e i g h t , t h e p r o f i l e above 5.5 m e l e v a t i o n ( f r o m t h e bed) can n o t change v e r y much. However, f r o m t h e F i g s . 3 and 4 i t can be seen t h a t t h e 3-hour p r o f i l e f r o m s e c t i o n x=178.0 m t o s e c t i o n x=200.0 m i s 5-10 cm h i g h e r t h a n t h e i n i t i a l p r o f i l e . T h a t can n o t be t r u e . The same s i t u a t i o n happens f o r t h e 1-hour p r o f i l e . So i t i s n e c e s s a r y t o c o r r e c t some e r r o r s i n t h e measured p r o f i l e r e c o r d s . The p r o f i l e c o r r e c t i o n was c a r r i e d o u t by a v e r a g i n g t h e i n i t i a l p r o f i l e and 2-hour p r o f i l e t o g e t a c o r r e c t 1-hour p r o f i l e f o r x>=178.0 m.

(4)

The same was done f o r t h e 3-hour p r o f i l e .

F i g . 5 d e m o n s t r a t e s t h e p r o f i l e development o f t e s t 2B showing t h a t no e r r o r was f o u n d i n t h e measured p r o f i l e d a t a o f t e s t 2B.

. p r o f i l e a v e r a g i n g

As m e n t i o n e d above, t h r e e p r o f i l e s were measured a t t h e same t i m e a c r o s s t h e f l u m e s e c t i o n . One i s i n t h e m i d d l e o f t h e wave f l u m e and t w o a r e a t t h e d i s t a n c e o f 0.85 m f r o m t h e wave f l u m e w a l l s . For t h e p r e s e n t u t i l i z a t i o n t h e y have been a v e r a g e d w i t h t h e same w e i g h t t o o b t a i n a r e p r e s e n t i n g mean p r o f i l e ( t h e f o l l o w i n g p r o f i l e r e f e r s t o t h i s mean p r o f i l e ) .

. sand g a i n / l o s s c o n s i d e r a t i o n

A c c o r d i n g t o t h e measured p r o f i l e s , t h e t o t a l sand volume i n t h e f l u m e a t a m e a s u r i n g moment was c a l c u l a t e d . I f t h e measurement and t h e p r e s e n t a t i o n a r e p e r f e c t , t h e t o t a l sand volumes a t each m e a s u r i n g t i m e s h o u l d be e q u a l . A c t u a l l y , t h e r e a l w a y s a r e d i f f e r e n c e s o f t h e t o t a l volumes among d i f f e r e n t measurements, namely sand g a i n s o r sand l o s s e s .

The p o s s i b l e r e a s o n s o f t h e s e d i f f e r e n c e s c o u l d be sand p o r e d i f f e r e n c e s i n t h e volume o r m e a s u r i n g e r r o r s o r o t h e r s . I f i t

i s due t o t h e p o r e volume r e d u c t i o n , t h e t o t a l sand volume i n t h e f l u m e s h o u l d be g r a d u a l l y r e d u c e w i t h t i m e . However, f r o m F i g . 6 i t can be seen t h a t t h e m a g n i t u d e o f t o t a l sand volume f l u c t u a t e s a r o u n d a mean v a l u e i n s t e a d o f j u s t d e c l i n i n g w i t h t i m e . T h e r e f o r e i n a u t h o r ' s o p i n i o n t h e p o r e volume d e c r e a s e i s n o t an o b v i o u s r e a s o n o f t h e t o t a l volume d i f f e r e n c e s . A f t e r t h e e r r o r c h e c k i n g , t h e m e a s u r i n g e r r o r s can n o t be c o n s i d e r e d as a r e a s o n o f t h e d i f f e r e n c e s t o o . As measured s e d i m e n t t r a n s p o r t r a t e s a r e v e r y s e n s i t i v e t o ' a r t i f i c i a l ' sand l o s s e s and g a i n s , t h e a p p a r e n t f l u c t u a t i o n s i n sand volume i n t h e f l u m e must be c a r e f u l l y c o n s i d e r e d and t r e a t e d . F i g . 7 shows t h e e f f e c t s o f sand g a i n on t h e r e s u l t s o f s e d i m e n t t r a n s p o r t r a t e . I t can be seen t h a t w i t h o u t sand g a i n / l o s s c o r r e c t i o n t h e m a g n i t u d e o f t r a n s p o r t a t a c e r t a i n f l u m e s e c t i o n c o u l d be v e r y d i f f e r e n t d e p e n d i n g on w h i c h c a l c u l a t i o n approache i s used. Moreover, a s i g n i f i c a n t sand t r a n s p o r t , w i t h a m a g n i t u d e o f 10*10"6 m3/m/s, e x i s t s c r o s s - t h o u g h t h e l o w e r end o f t h e f l u m e (x=19 m) o r c r o s s - t h r o u g h t h e u p p e r end o f t h e f l u m e (x=203 m) . B u t , i n r e a l i t y , b o t h cases above w i l l n e v e r o c c u r s i n c e i t i s supposed t h a t no sand pass t h r o u g h

(5)

t h e s e c t i o n s x=19 m and x=203 m a t a l l . Thus t h e appearance o f s e d i m e n t t r a n s p o r t a t t h e s e t w o s e c t i o n s w h o l l y a t t r i b u t e t o sand g a i n s / l o s s e s .

The p r e s e n t c o n s i d e r a t i o n i s a v e r a g i n g t h e t o t a l volumes o v e r a l l p r o f i l e measurements and t a k i n g t h e mean v a l u e as a " t r u e " volume, t h e n a d d i n g o r e x t r a c t i n g sand o v e r t h e w h o l e bed s u r f a c e

( m o d i f y i n g t h e bed e l e v a t i o n z) t o e n s u r e t h a t t h e e x a c t same t o t a l sand volume a t each measurement i s a c h i e v e d . I t i s o u r c h o i c e , and o f c o u r s e b e s i d e s t h e p r e s e n t method t h e r e a r e o t h e r p o s s i b i l i t i e s w h i c h one can choose. For example, r e l a t i n g t h e c o r r e c t i o n t o t h e d i f f e r e n c e s i n p r o f i l e , t h a t i s , u n e v e n l y s p r e a d i n g o f t h e r e q u i r e d volume o v e r t h e p r o f i l e . However, i t i s h a r d t o d e c i d e t h e w e i g h t f o r d i f f e r e n t p a r t s o f t h e p r o f i l e . T h e r e f o r e , f o r t h e t i m e b e i n g , i t m i g h t be w i s e t o t a k e t h e d i f f e r e n c e as a s y s t e m a t i c e r r o r and e v e n l y s p r e a d o v e r t h e w h o l e s u r f a c e o f t h e bed. T a b l e 2 g i v e s t h e t o t a l sand volumes and g a i n s / l o s s e s a t d i f f e r e n t t i m e s o f t e s t s 2A and 2B.

T a b l e 2 Sand g a i n s and sand l o s s e s ( p e r r u n n i n g m e t e r )

T e s t # 2A 2A 2B 2B Time (h) T o t a l Volume (m3/m) Gain/Loss (m3/m) T o t a l Volume (m3/m) Gain/Loss (m3/m) 0 497.248 -0.393 497.939 -0.327 1 497.250 -0.392 498.275 0. 009 2 497.962 0.321 497.759 -0.507 3 498.086 0 . 444 497.757 -0.509 4 497.664 0. 022 498.252 -0.014 5 497.629 -0.013 498.315 0 . 049 6 497.609 -0.033 498.299 0. 033 7 497.709 0. 067 499.075 0 .809 8 497.151 -0.490 498.585 0. 319 9 497.221 -0.421 10 497.989 0. 347 11 497.885 0 .243 12 497.939 0. 297 498.404 0 . 138 mean 497.642 0 . 000 498.266 0 . 000

(6)

.measured sediment t r a n s p o r t r a t e

For each p r o f i l e , a c c u m u l a t i v e sand volumes a t d i f f e r e n t s e c t i o n s w i t h 0.01 m i n t e r v a l s were worked o u t . A t a c e r t a i n s e c t i o n t h e volumes o f sand f o r two p r o f i l e s , say i n i t i a l p r o f i l e and 12-hour p r o f i l e , a r e d i f f e r e n t . T h i s d i f f e r e n c e was caused by t h e sediment t r a n s p o r t . So sediment t r a n s p o r t r a t e c r o s s t h i s s e c t i o n e q u a l s t h e volume d i f f e r e n c e between t h e two p r o f i l e s d i v i d e d by t i m e i n t e r v a l s . Based on t h e computed r e s u l t s o f a c c u m u l a t i v e volumes, measured sediment t r a n s p o r t r a t e s a t any s p e c i f i c s e c t i o n can be o b t a i n e d .

There a r e t w o c h o i c e s o f s t a r t i n g t h e a c c u m u l a t i v e volume c a l c u l a t i o n t h a t i s e i t h e r s t a r t i n g f r o m t h e l o w e r end p a r t o f t h e p r o f i l e o r s t a r t i n g f r o m t h e upper end p a r t o f t h e p r o f i l e . S i n c e sand g a i n s / l o s s e s have been t a k e n i n t o a c c o u n t and t h e volumes o f sand i n t h e f l u m e a r e e x a c t l y t h e same f o r d i f f e r e n t p r o f i l e measurements, t h e s e two methods have no e f f e c t s on t h e r e s u l t s o f measured sediment t r a n s p o r t r a t e and b o t h can be chosen. O t h e r w i s e , as m e n t i o n e d above, w i t h o u t sand g a i n / l o s s s m o o t h i n g two c h o i c e s w i l l d e f i n i t e l y g i v e two d i f f e r e n t r e s u l t s

(see F i g . 7 )

T a b l e 3 summarizes t h e r e s u l t s o f sediment t r a n s p o r t r a t e s d e r i v e d f r o m p r o f i l e measurements a t v e l o c i t y measurement p o s i t i o n s a l o n g t h e f l u m e over d i f f e r e n t t i m e spans. The m a g n i t u d e o f t r a n s p o r t g i v e n i n t h e t a b l e i n c l u d e s p o r e s . An o v e r v i e w o f averaged t r a n s p o r t r a t e o v e r d i f f e r e n t d u r a t i o n s (0-6 h o u r s , 6-12 h o u r s and 0-12 h o u r s ) a l o n g t h e f l u m e i s shown i n F i g . 8 and F i g . 9 f o r t e s t 2A and t e s t 2B r e s p e c t i v e l y . The v a r i a t i o n s o f t r a n s p o r t r a t e w i t h t i m e i n some s e c t i o n s a r e p l o t t e d i n Fig.10 t h r o u g h Fig.19 f o r t e s t 2A, and F i g . 2 0 t h r o u g h Fig.28 f o r t e s t 2B. The f i g u r e s g e n e r a l l y show l a r g e v a r i a t i o n b u t no s y s t e m a t i c t r e n d s .

2.3 D i s c u s s i o n on t h e r e s u l t s o f measured t r a n s p o r t r a t e s

As m e n t i o n e d above, d u r i n g t h e t e s t d u r a t i o n , f o r a c e r t a i n s e c t i o n t h e v e l o c i t y measurement was c a r r i e d o u t o n l y once, t h e v e l o c i t y moments a t d i f f e r e n t f l u m e - c r o s s s e c t i o n s were o b s e r v e d a t d i f f e r e n t t i m e i n t e r v a l s , t h u s t h e p r e d i c t i o n o f t h e t r a n s p o r t r a t e by a m a t h e m a t i c a l model i s based on t h e one-hour t i m e averaged v e l o c i t y moments. For t h e comparison between measured and computed r e s u l t s t h e d e t e r m i n a t i o n o f a c c u r a t e v a l u e s o f measured t r a n s p o r t r a t e s i s t h e f i r s t s t e p . However, t h e r e e x i s t s a l i t t l e b i t o f u n s u r e o f t h e measured sediment t r a n s p o r t r a t e .

(7)

T a b l e 3.1 Summary o f sediment t r a n s p o r t r a t e s o f t e s t 2A ( U n i t o f t r a n s p o r t r a t e i s 10"6(m3/m)/s ) X(m) Time(h) 65 100 115 125 130 138 145 152 160 170 0-1 38.9 43.8 41.1 34.4 30.9 9.1 -5.4 -7.1 -15.4 -35.8 1-2 -27.6 -9.8 -1.7 1.3 3.6 -5.8 -5.2 8.7 11.2 9.7 2-3 -3.5 3.0 2.7 2.2 0.2 -17.5 -21.6 -12.2 -17.6 -26.7 3-4 12.8 18.5 20.4 20.5 20.5 8.1 5.0 11.5 5.4 -10.3 4-5 1.3 3.5 1.6 -3.4 -5.5 -22.2 -22.9 -11.0 -14.5 -19.5 5-6 1.9 5.6 5.7 4.0 1.8 -15.2 -15.8 -4.6 -8.2 -12.2 6-7 10.5 16.1 16.5 14.3 12.9 -6.2 -4.7 3.8 -5.4 -6.3 7-8 12.6 11.3 11.5 10.1 6.7 -16.0 -11.0 -3.6 -16.8 -15.0 8-9 -4.6 -1.3 -0.7 -3.5 -6.3 -25.0 -19.9 -8.2 -18.4 -11.9 9-10 8.6 6.8 5.9 3.8 2.1 -18.2 -17.0 -5.7 -18.1 -13.9 10-11 -2.6 3.0 2.2 -0.2 -2.9 -22.0 -14.3 -6.5 -18.6 -12.7 11-12 4.0 8.3 7.6 7.3 4.1 -15.5 -6.3 5.8 -6.6 -4.4 0-6 4.0 10.8 11.7 9.8 8.6 -7.2 -11.0 -2.4 -6.5 -15.8 6-12 4.7 7.4 7.2 5.3 2.8 -17.2 -12.2 -2.4 -14.0 -10.7 0-12 4.3 9.1 9.4 7.6 5.7 -12.2 -11.6 -2.4 -10.2 -13.2 T a b l e 3.2 Summary o f sediment t r a n s p o r t r a t e s o f t e s t 2B ( U n i t o f t r a n s p o r t r a t e i s 10"6(m3/m)/s ) x(m) Time(h) 65 100 115 130 138 145 152 160 170 0-1 -2.1 0.7 -7.7 -23.8 -54.5 -41.3 -23.3 -36.1 -24.3 1-2 1.9 13.6 11.0 -1.5 -27.1 -14.9 -6.7 -18.1 -19.0 2-3 -10.0 3.8 4.6 -3.8 -28.6 -6.6 1.0 -11.0 -6.4 3-4 2.6 4.6 2.0 -15.8 -38.4 -19.1 -18.9 -33.2 -29.3 4-5 -2.1 9.5 8.4 -9.0 -27.5 -9.7 -4.8 -18.9 -19.6 5-6 -3.0 20.5 20.4 -0.4 -12.5 2.0 7.5 -4.8 -1.3 6-7 -11.9 3.0 4.7 -10.4 -21.5 1.1 7.6 -3.0 2.1 7-8 -15.0 -7.5 -8.7 -33.0 -46.3 -28.5 -22.4 -35.5 -36.3 8-12 -14.0 33.5 34.7 -90.6 -70.2 -16.3 10.0 -35.4 -21.9 0-6 -2.1 8.8 6.5 -9.1 -31.4 -14.9 -7.5 -20.4 -16.6 6-12 -6.8 4.8 5.1 -22.3 -23.0 -7.3 -0.8 -12.3 -9.4 0-12 -4.5 6.8 5.8 -15.7 -27.2 -11.1 -4.2 -16.3 -13.0

(8)

T a b l e 4 Measured s e d i m e n t t r a n s p o r t r a t e o v e r 3 t i m e spans ( U n i t o f t r a n s p o r t r a t e i s 10"6(m3/m)/s ) T e s t # Wave Hour (h) X (m) Smed1 Sm e d 3 Sm e d 1 2 2A 1 65 38 . 9 5.7 4 . 3 2A 2 100 -9 . 8 12 . 3 9.1 2A 3 115 2.7 7 . 1 9 . 4 2A 4 130 20.5 5 . 1 5 . 7 2A 5 138 -22 . 2 -9 . 8 -12 . 2 2A 6 145 -15 . 8 -14 . 5 - 1 1 . 6 2A 7 152 3 . 8 -1.5 -2.4 2A 8 160 -16.8 -13 . 5 -10. 2 2A 9 170 - 1 1 . 9 -13 . 6 -13 . 2 2A 10 102 5.9 2 . 7 9 . 4 2A 11 125 -0 . 2 3 . 6 7 . 6 2A 12 130 4 . 1 0 . 6 5 . 7 2B 1 65 -2 . 1 -0.1 -4 . 5 2B 2 100 13 . 6 6 . 0 6 . 8 2B 3 115 1.0 1.5 5.8 2B 4 130 -15.8 -9 . 5 -15 . 7 2B 5 138 -27 . 5 -26.1 -27 . 2 2B 6 145 2 . 0 -2 . 2 - 1 1 . 1 2B 7 152 7 . 6 -2.4 -4.2 2B 8 160 -35 . 5 -24 . 6 -16 . 3 2B 12 170 -21.9 -29 . 1 -13 . 0

Note: Sm e d l denotes t h e t r a n s p o r t r a t e a t v e l o c i t y measuring time Sm e d 3 denotes t h e averaged t r a n s p o r t r a t e over 3 hours smedi2 denotes t h e averaged t r a n s p o r t r a t e over 12 hours

As t o t h e v a r i a t i o n o f t r a n s p o r t r a t e w i t h t h e t e s t t i m e a o b v i o u s f l u c t u a t i o n can be n o t i c e d and i t i s h a r d t o j u d g e w h i c h t r a n s p o r t i s t h e t r u e one. F i g . 1 0 t h r o u g h F i g . 1 4 s u g g e s t t h a t a

(9)

s i g n i f i c a n t onshore s e d i m e n t t r a n s p o r t t o o k p l a c e d u r i n g t h e f i r s t t e s t hour f o l l o w i n g by a s i g n i f i c a n t o f f s h o r e t r a n s p o r t o r a s m a l l onshore t r a n s p o r t d u r i n g t h e n e x t h o u r . Then, t w o h o u r s l a t e r a r e m a r k a b l e onshore t r a n s p o r t r e a p p e a r e d a g a i n . A t o t h e r t i m e t h e d i f f e r e n c e s among t h e t r a n s p o r t r a t e s d u r i n g d i f f e r e n t t i m e i n t e r v a l s a r e a l s o n o t i c e a b l e . A t l e a s t t h r e e v a l u e s can be chosen t o r e p r e s e n t t h e " t r u e " measured s e d i m e n t t r a n s p o r t r a t e : t r a n s p o r t r a t e a t v e l o c i t y m e a s u r i n g moment, averaged t r a n s p o r t r a t e o v e r t h r e e h o u r s ( t h e f o r m e r h o u r , t h e v e l o c i t y m e a s u r i n g h o u r and t h e l a t e r h o u r ) , and a v e r a g e d t r a n s p o r t r a t e o v e r 12 h o u r s ( t e s t d u r a t i o n ) . T a b l e 4 summaries t h e r e s u l t s . A g a i n f r o m t h e t a b l e i t i s d i f f i c u l t y t o make a judgement w h i c h v a l u e c o u l d be t h e " t r u e " t r a n s p o r t r a t e . B e f o r e a f i n a l d e c i s i o n more c o n s i d e r a t i o n s s h o u l d be t a k e n i n t o a c c o u n t and more t e s t d a t a need t o be a n a l y s e d .

3. S e d i m e n t t r a n s p o r t r a t e c a l c u l a t i o n

3.1 Sediment t r a n s p o r t model

A number o f s e d i m e n t t r a n s p o r t models have been p r o p o s e d by r e s e a r c h e r s . For t h e t i m e b e i n g , B a i l a r d ' s c r o s s - s h o r e t r a n s p o r t model i s a d o p t e d ( 1 9 8 1 a , 1 9 8 1 b ) . B a i l a r d ' s model i s based on an a d a p t a t i o n o f Bagnold's e n e r g e t i c approach w i t h s e p a r a t e b e d l o a d and suspended l o a d e f f i c i e n c y f a c t o r s . The model i s g e n e r a l i z e d f o r t i m e - v a r y i n g f l o w o v e r an a r b i t r a r y s l o p i n g b o t t o m , r e s u l t i n g i n : S(t) -Sb(t) +Sg(t) (1) sb=- .p c 'e V [ l u ( t ) l2 u ( t ) - - ^ lu<t)l»] (2) * (p s-p) g(l-p) tan(p tan(p ss=~, PC\ftï* w7[ \u(t)\3 u ( t ) - 4 f t a n p l u ( f c ) l5 ] (3) (p s-p) ff(i-p) w w where S(t) : t o t a l i n s t a n t a n e o u s v o l u m e t r i c s e d i m e n t t r a n s p o r t r a t e (m3/m/s) Sb(t) : b e d l o a d i n s t a n t a n e o u s v o l u m e t r i c s e d i m e n t t r a n s p o r t r a t e (m3/m/s) Ss(t) : suspended i n s t a n t a n e o u s v o l u m e t r i c s e d i m e n t t r a n s p o r t r a t e (m3/m/s) p : mass d e n s i t y o f w a t e r (kg/m3) p : mass d e n s i t y o f s e d i m e n t (kg/m3)

(10)

p : p o r o s i t y o f bed cf : d r a g c o e f f i c i e n t o f t h e bed eb : t h e bed l o a d e f f i c i e n c y f a c t o r <p : i n t e r n a l a n g l e o f f r i c t i o n o f t h e s e d i m e n t (degree) tan/3 : t h e bed s l o p e es W : suspended l o a d e f f i c i e n c y f a c t o r es W : t h e f a l l v e l o c i t y o f t h e s e d i m e n t (m/s) u(t) : i n s t a n t a n e o u s near b o t t o m f l u i d v e l o c i t y (m/s) < > : t i m e - a v e r a g e I t s h o u l d be n o t e d t h a t i n B a i l a r d ' s o r i g i n a l e q u a t i o n a v a l u e

o f Cf=0.005 was recommended w h i l e i n some o t h e r p a p e r s l / 2 * fw i s

used t o r e p l a c e Cf, i n w h i c h f w i s wave f r i c t i o n f a c t o r .

I n p r e s e n t s t u d y t h e f o l l o w i n g p a r a m e t e r s a r e s p e c i f i e d : tan</?=0.625 ( f r i c t i o n a n g l e e q u a l s 32 d e g r e e ) , eb= 0 . 1 , es=0.02, p=1000.0 kg/m3, jOs=2650.0 kg/m3, W=0.023 m/s ( a c c o r d i n g t o

D50= 0 . 0 0 0 2 m) , p=0.4. For t h e wave f r i c t i o n f a c t o r Jonsson's

f o r m u l a t i o n i s a p p l i e d r e s u l t i n g i n : f„=exp[5.21(-^)-°-194-5.9 8] f o r - ^ 1 . 5 9 (4) f =0 .3 f o r - ^ - < l .59 (5) r where a0 : s e m i - e x c u r s i o n l e n g t h o f w a t e r p a r t i c l e s due t o t h e h o r i z o n t a l o s c i l l a t o r y f l o w (m) r : roughness h e i g h t o f t h e bed (m) 3.2 P r e d i c t e d r e s u l t s o f t r a n s p o r t r a t e by B a i l a r d ' s f o r m u l a For t h e u t i l i z a t i o n o f t h e B a i l a r d ' s model t h e v a l u e s o f t h e s e m i - e x c u r s i o n l e n g t h and t h e roughness h e i g h t o f t h e bed s h o u l d be s p e c i f i e d . A c c o r d i n g t o Al-Salem's r e s e a r c h ( 1 9 9 3 ) , t h e f o l l o w i n g f o r m u l a t i o n can be employed:

3 = 0 . 8 6 - ^ ^ (6)

where ur m s : r o o t mean square v e l o c i t y (m/s)

T : wave p e r i o d ( s )

Much u n c e r t a i n t y e x i s t s w i t h r e s p e c t t o t h e f o r m u l a t i o n o f t h e r o u g h n e s s . As a f i r s t c h o i c e a bed roughness h e i g h t r=D5 0=0.2 mm i s assumed.

(11)

T a b l e 5 i s t h e summary o f t h e main r e s u l t s o f computed s e d i m e n t t r a n s p o r t r a t e s . For c o m p a r i s o n measured s e d i m e n t t r a n s p o r t r a t e s a r e a l s o l i s t e d i n t h e t a b l e . The v a l u e s i n t h e s e v e n t h column o f t h e t a b l e , S ., a r e p r e d i c t e d r e s u l t s f r o m B a i l a r d s1 model. The r e s u l t s i n d i c a t e t h a t f o r t h o s e p r o f i l e measurement p o i n t s where measured t r a n s p o r t r a t e i s h i g h e r t h a n 10*10"6 m2/s t h e B a i l a r d f o r m u l a g i v e s a q u i t e good agreement w i t h t h e measurements ( w i t h a f a c t o r 2 - 3 ) , and f o r t h o s e p o i n t s where measured t r a n s p o r t r a t e i s l e s s t h a n 10*10"6 m2/s t h e B a i l a r d f o r m u l a does n o t g i v e b e l i e v a b l e r e s u l t s . T a b l e 5 Summary o f main r e s u l t s T e s t # T e s t Hour ( h ) X (m) (m/s) a0 (m) ( 1 03) (10 W s ) Smed12 (10"em2/s) ^medl d o V / s ) Smed3 (10"em2/s) 2A 1 65 0.349 0.478 8.0 0.37 4.30 38.9 5.7 2A 2 100 0.413 0.565 7.7 2.02 9.10 -9.8 12.3 2A 3 115 0.419 0.573 7.7 1.62 9.40 2.7 7.1 2A 4 130 0.468 0.641 7.5 -4.29 5.70 20.5 5.1 2A 5 138 0.509 0.697 7.4 -21.31 -12.20 -22.2 -9.8 2A 6 145 0.468 0.641 7.5 -32.35 -11.60 -15.8 -14.5 2A 7 152 0.397 0.543 7.8 -11.76 -2.40 3.8 -1.5 2A 8 160 0.466 0.638 7.5 -21.79 -10.20 -16.8 -13.5 2A 9 170 0.448 0.613 7.6 -17.01 -13.20 -11.9 -13.6 2A 10 102 0.411 0.563 7.7 0.70 9.40 5.9 2.7 2A 11 125 0.433 0.593 7.6 -1.31 7.60 -0.2 3.6 2A 12 130 0.468 0.641 7.5 4.96 5.70 4.1 0.6 2B 1 65 0.516 0.706 7.4 -14.35 -4.47 -2.1 -0.1 2B 2 100 0.482 0.660 7.5 -7.76 6.81 13.6 6.0 2B 3 115 0.479 0.656 7.5 -10.27 5.79 1.0 1.5 2B 4 130 0.532 0.728 7.3 -16.89 -15.68 -15.8 -9.5 2B 5 138 0.545 0.746 7.3 -53.11 -27.21 -27.5 -26.1 2B 6 145 0.460 0.630 7.5 -34.10 -11.11 2.0 -2.2 2B 7 152 0.440 0.602 7.6 -21.16 -4.16 7.6 -2.4 2B 8 160 0.522 0.714 7.3 -32.91 -16.34 -35.5 -24.6 2B 12 170 0.474 0.649 7.5 -20.25 -13.00 -21.9 -21.9

F i g . 2 9 and F i g . 3 0 a l s o show t h e c o m p a r i s o n between t h e measured ( a v e r a g e d o v e r 0-12 h o u r s ) and t h e computed n e t t r a n s p o r t r a t e s a l o n g t h e wave f l u m e f o r t e s t 2A and t e s t 2B r e s p e c t i v e l y i n d i c a t i n g a p o o r agreement between them. I t s h o u l d be n o t i c e d

(12)

t h a t c a l c u l a t i o n p o i n t s i n t h e f i g u r e s a r e f r o m v e l o c i t y moments measured i n d i f f e r e n t t i m e i n t e r v a l s .

F i g u r e s 3 1 , 32 and 3 3 a r e f u r t h e r c o m p a r i s o n s between computed and measured t r a n s p o r t r a t e s . Three d i f f e r e n t measured v a l u e s , t h a t i s , Sm e d 1 2 ( a v e r a g e d o v e r 12 h o u r s ) and Sm e d 1 ( a t v e l o c i t y m e a s u r i n g t i m e ) as w e l l as Sm e d 3 ( a v e r a g e d o v e r 3 h o u r s ) a r e used r e s p e c t i v e l y . I n t h e f i g u r e s , dashed l i n e s w i t h a s l o p e 1:1 i n d i c a t e t h e p e r f e c t r e l a t i o n s h i p between computed and measured t r a n s p o r t r a t e s and t h e r e f o r e t h e b e s t agreement between them s h o u l d be a l l p o i n t s f i t t i n g i n t h e l i n e s . However, f r o m t h e f i g u r e s i t can be seen t h a t a l m o s t a l l p r e d i c t i o n p o i n t s a r e p o s i t i o n e d below t h e dashed l i n e s i m p l y i n g t h a t B a i l a r d ' s f o r m u l a o v e r p r e d i c t s t h e o f f s h o r e s e d i m e n t t r a n s p o r t r a t e s ( w i t h a f a c t o r 2-3) w h i l e i t u n d e r p r e d i c t s t h e onshore s e d i m e n t t r a n s p o r t r a t e s , and t h a t t h e f o r m u l a p r e d i c t s o p p o s i t e d i r e c t i o n t r a n s p o r t i n some cases, e s p e c i a l l y , i n t h e low t r a n s p o r t r a t e r e g i m e . T h i s s y s t e m a t i c a l t r e n d e x i s t s no m a t t e r Sm e d l 2 o r Sm e d 3 o r Sm e d l i s s e l e c t e d .

F i g s . 3 4 and 3 5 show t h e comparisons between Sm e d 1 2 and Sm e d l as

w e l l as between Sm e d 1 2 and Sm e d 3. I t can be seen t h a t t h e r e l a t i o n between Sm e d l 2 and Sm e d 3 i s b e t t e r t h a n t h e r e l a t i o n between Sm e d l 2 and Sm e d 1. C a r e f u l l y l o o k i n g i n t o F i g . 31 t h o u g h F i g . 3 5 i t seems t h a t Sm e d 1 i s n o t a good r e p r e s e n t a t i o n f o r t h e measured s e d i m e n t t r a n s p o r t r a t e w h i l e e i t h e r Sm e d 1 2 o r Sm e d 3 c o u l d be a c h o i c e . 3.3 E f f e c t o f wave f r i c t i o n f a c t o r

As m e n t i o n e d above, much u n c e r t a i n t y e x i s t s w i t h r e s p e c t t o t h e f o r m u l a t i o n o f t h e roughness h e i g h t o f t h e bed. S i n c e wave f r i c t i o n f a c t o r i s a f u n c t i o n o f t h e r o u g h n e s s h e i g h t , t h e wave f r i c t i o n f a c t o r w i l l a l s o show some u n c e r t a i n t y . I n t h e above

c a l c u l a t i o n r=D50=O.2OO mm has been assumed. As a c o m p a r i s o n t w o

a l t e r n a t i v e s , r=D1 0=O.l64 mm and r=D9 0=0.247 mm, were used. T a b l e

6 shows t h e r e s u l t s o f wave f r i c t i o n f a c t o r w i t h d i f f e r e n t roughness h e i g h t s . I t can be seen t h a t compared w i t h t h e v a l u e s o f f w t a k i n g r = D5 0, t h e v a l u e s o f f w w i t h r = D? 0 a r e 5% i n c r e a s i n g w h i c h w i l l r e s u l t i n a same p e r c e n t a g e i n c r e a s e o f s e d i m e n t t r a n s p o r t r a t e because t h e wave f r i c t i o n f a c t o r i n B a i l a r d f o r m u l a i s a l i n e a r f a c t o r . The v a l u e s o f f w w i t h r = D1 0 a r e 4% d e c r e a s i n g , and s i m i l a r l y t h e same d e c r e a s e o f s e d i m e n t t r a n s p o r t w i l l r e s u l t e . S i n c e 5% d i s c r e p a n c y o f s e d i m e n t t r a n s p o r t can n o t be c o n s i d e r e d as a s i g n i f i c a n t d i f f e r e n c e , i n t h e p r e s e n t s t u d y r = D5 0 i s i m p l i e d .

(13)

T a b l e 6 Wave f r i c t i o n f a c t o r T e s t # X f w(1 0"3) (m) r =D1 0 r=D 5 0 r= D9 0 2A 65 7.7 8.0 8 . 4 2A 100 7.4 7.7 8 .1 2A 115 7.4 7 . 7 8 .1 2A 125 7.3 7 . 6 8 . 0 2A 130 7 . 2 7 . 5 7 . 9 2A 138 7 . 1 7.4 7 . 7 2A 145 7 . 2 7.5 7 . 9 2A 152 7.5 7.8 8 . 2 2A 160 7 . 2 7.5 7 . 9 2A 170 7 . 3 7 . 6 7 . 9 3.4 E f f e c t o f h e i g h t o f v e l o c i t y measurements I n B a i l a r d ' s c r o s s - s h o r e s e d i m e n t t r a n s p o r t model, u ( t ) d e n o t e s i n s t a n t a n e o u s near b o t t o m f l u i d v e l o c i t y . I t i s n o t c l e a r l y p r e s c i b e d t h a t t h e v e l o c i t y measurement s h o u l d be c a r r i e d o u t a t w h i c h h e i g h t . Fig.32 and Fig.33 show how t h e c a l c u l a t e d s e d i m e n t t r a n s p o r t r a t e s change d e p e n d i n g on measured v e l o c i t y moments a t d i f f e r e n t h e i g h t s . I t can be seen t h a t a l t h o u g h t h e s e d i m e n t t r a n s p o r t r a t e s g e n e r a l l y d e c r e a s e w i t h t h e h e i g h t f r o m t h e bed, t h e r e s u l t s o f u s i n g 10 cm (above t h e bed) v e l o c i t y moments and t h e r e s u l t s o f u s i n g 2 0 cm v e l o c i t y moments have n o t shown much d i f f e r e n c e b u t r a t h e r u n i f o r m . F i g . 3 4 a l s o g i v e s t h e same i d e a t h a t s e d i m e n t t r a n s p o r t r a t e s d e r i v e d f r o m 10 cm v e l o c i t y

moments, S and t h e r a t e s f r o m 2 0 cm v e l o c i t y moments, Sc a l 2 0,

a r e a l m o s t t h e same. However, a l t h o u g h t h i s u n i f o r m i t y e x i s t s , y e t t h e q u e s t i o n o f t h e i m p a c t o f t h e boundary l a y e r on c r o s s -s h o r e -s e d i m e n t t r a n -s p o r t i -s open. 3.5 C o n t r i b u t i o n s o f d i f f e r e n t components i n B a i l a r d ' s f o r m u l a B a i l a r d ' s f o r m u l a o f c r o s s - s h o r e s e d i m e n t t r a n s p o r t r a t e s u g g e s t s t h a t t h e t o t a l r a t e c o n s i s t s o f t h e b e d l o a d t r a n s p o r t r a t e and t h e suspended l o a d t r a n s p o r t r a t e . The b e d l o a d t r a n s p o r t r a t e i s composed o f two components, one due t o t h e i n s t a n t a n e o u s v e l o c i t y

(14)

and t h e o t h e r t o t h e beach s l o p e . S i m i l a r a s s u m p t i o n h o l d s t o t h e suspended t r a n s p o r t r a t e .

T a b l e 7 shows t h e c o n t r i b u t i o n s o f d i f f e r e n t components i n B a i l a r d ' s f o r m u l a . I t can be seen t h a t suspended l o a d sediment r a t e h o l d s 70-80% o f t o t a l t r a n s p o r t r a t e w h i l e b e d l o a d t r a n s p o r t r a t e t a k e s 2 0-3 0% o f t h e t o t a l t r a n s p o r t r a t e . The sediment t r a n s p o r t caused by t h e beach s l o p e a r e n e g l i g i b l e . T a b l e 7 P e r c e n t a g e o f t r a n s p o r t r a t e o f d i f f e r e n t components i n B a i l a r d model T e s t # X (m) Component R a t e / T o t a l R a t e ( % ) T e s t # X (m) Sb 2A 130 33 7 46 14 39 61 2A 138 20 2 74 4 21 79 2A 145 19 1 78 2 20 80 2A 152 22 2 73 4 24 76 2A 160 16 2 76 5 18 82 2A 170 18 3 74 5 20 80 2B 65 20 2 73 5 22 78 2B 100 28 3 63 6 31 69 2B 115 24 2 69 5 27 73 2B 130 21 2 71 6 23 77 2B 138 18 1 79 2 18 82 2B 145 19 1 78 1 20 80 2B 152 17 1 78 3 19 81 2B 160 16 2 77 5 18 82 2B 170 17 3 74 7 20 80

Note: S, p r e s e n t s |u|2 u component 52 p r e s e n t s | u ]3 component 53 p r e s e n t s j u ]3 u component 54 p r e s e n t s | u ]6 component

Sb = S, + S2 i s bed load sediment t r a n s p o r t r a t e Ss = S3 + S4 i s suspended load sediment t r a n s p o r t r a t e T o t a l sediment t r a n s p o r t r a t e = Sb + S8

(15)

4. Remarks

As i n d i c a t e d a t t h e b e g i n n i n g , t h i s r e p o r t d e s c r i b e s j u s t a summary o f t h e p r e l i m i n a r y a n a l y s i s . A number o f q u e s t i o n s r e m a i n t o answer and more e l a b o r a t e r e s e a r c h e s a r e t o be c a r r i e d o u t , e.g. cause a n a l y s i s o f d i s c r e p a n c y between measured and computed s e d i m e n t t r a n s p o r t r a t e s , p r e d i c t i o n s by d i f f e r e n t models o f c r o s s - s h o r e s e d i m e n t t r a n s p o r t and e f f e c t s o f wave f r i c t i o n f a c t o r on p r e d i c t e d t r a n s p o r t r a t e s .

R e f e r e n c e s

Al-Salem, A.A.(1993) , Sediment t r a n s p o r t i n c s c i l l a t o r y boundary l a y e r s under s h e e t - f l o w c o n d i t i o n s , Ph.D. T h e s i s , D e l f t U n i v e r s i t y o f T e c h n o l o g y , 1993.

B a i l a r d , J.A. and D.L. I n m a n ( 1 9 8 1 a ) , An e n e r g e t i c s b e d l o a d model f o r a p l a n e s l o p i n g beach: l o c a l t r a n s p o r t , J . o f G e o p h y s i c a l Reach, v o l . 8 6 , No. C3, pp2035-2043, March 20,1981.

B a i l a r d , J . A . ( 1 9 8 1 b ) , An e n e r g e t i c s t o t a l l o a d s e d i m e n t t r a n s p o r t model f o r a p l a n e s l o p i n g beach, J . o f G e o p h y s i c a l Reach, v o l . 8 6 , No. C l l , ppl0938-10954, November 20,1981.

DELFT HYDRAULICS, L I P 11D D e l t a Flume E x p e r i m e n t s - d a t a r e p o r t , 1994 .

(16)

f

1 0 3 0 5 0 7 0 9 0 1 1 0 1 3 0 1 5 0 1 7 0 1 9 0 2 1 0

D i s t a n c e f r o m w a v e b o a r d x ( m )

Figure 1 Profile development of test 2A

1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9

D i s t a n c e f r o m w a v e b o a r d x ( m )

(17)

1 8 0 1 8 4 1 8 8 1 9 2 1 9 6 2 0 0

D i s t a n c e f r o m w a v e b o a r d x ( m )

Figure 3 Upper end part of profile of test 2A

1 7 0 1 7 2 1 7 4 1 7 8 1 7 8 1 8 0 1 8 2 1 6 4 1 8 6 1 8 8 1 9 0

D i s t a n c e f r o m w a v e b o a r d x ( m )

(18)

E, 1 0 1 2 - h o u r p r o f i l e 6-hour p r o f i l e I i n i t i a l p r o f i l e 9 0 1 1 0 1 3 0 1 5 0 D i s t a n c e f r o m w a v e b o a r d x ( m ) 2 1 0

Figure 5 Profile development of test 2B

4 9 8 . 5

( T e s t 2 A )

T i m e ( h )

(19)

( T e s t 2 B )

1 0 3 0 5 0 7 0 8 0 1 1 0 1 3 0 1 5 0 1 7 0 1 9 0 2 1 0

D i s t a n c e f r o m w a v e b o a r d ( m )

Figure 7 Comparison of transport rates (transport rates between t = 0 and t=12h)

1 0 3 0 5 0 7 0 9 0 1 1 0 1 3 0 1 5 0 1 7 0 1 9 0

D i s t a n c e f r o m w a v e b o a r d x ( m )

(20)

1 0

1 0 3 0 5 0 7 0 8 0 1 1 0 1 3 0 1 5 0 1 7 0 1 9 0 2 1 0

D i s t a n c e f r o m w a v e b o a r d x ( m )

Figure 9 Sediment transport rate along the flume of test 2B

cn S CO e CD b 4-> m M -p u O ft w c U +J +J C (U B -o 0) w 5 0 4 0 3 0 2 0 1 0 - 1 0 - 2 0 - 3 0 - 4 0 ( A t s e c t i o n x - 6 5 m ) v e l o c i t y m e a s u r e m e n t s a v a i l a b l e t r a n s p o r t f r o m t = l h t o t = 2 h 1 6 T i m e ( h ) 1 0 1 2

(21)

eft g CO & ID a -p id U •p u o ft tft c nl U •P - P c I T3 cl) W 5 0 4 0 3 0 2 0 1 0 - 1 0 - 2 0 ( A t s e c t i o n x - 1 0 0 m ) 6 T i m e ( h ) 1 0 1 2

Figure 11 Transport rate of test 2A at section x = 100 m

Cfl S e b Q) • P cd U + J Vh O ft w C cfl U +J •P c CD £ <]j w 5 0 4 0 3 0 2 0 1 0 - 1 0 - 2 0 ( A t s e c t i o n x = 1 1 5 m ) 6 T i m e ( h ) 1 0 1 2

(22)

w CO B CO b -p M +J u o ft to a M +J - P a d) e •H w 4 0 3 0 2 0 1 0 - 1 0 ( A t s e c t i o n x - 1 2 5 m ) v e l o c i t y m e a s u r e m e n t s a v a i l a b l e 1 6 T i m e ( h ) 1 0 1 2

Figure 13 Transport rate of test 2A at section x = 125 m

T i m e ( h )

(23)

( A t s e c t i o n x - 1 3 8 m )

0 2 4 6 8 1 0 1 2

T i m e ( h )

Figure 15 Transport rate of test 2A at section x = 138 m

CO B CD b w 4-1 rd U +J u 0 ft m c rd U 4-> 4J C CD E •r4 T3 CD W 2 0 1 0 - 1 0 H - 2 0 - 3 0 ( A t s e c t i o n x = 1 4 5 m ) I 6 T i m e ( h ) 1 0 1 2

(24)

2 0 1 5 1 0 1 " 5 oo - 1 0 - 1 5 - 2 0 ( A t s e c t i o n x - 1 5 2 m ) 2 4 T i m e ( h ) 1 0 1 2

Figure 17 Transport rate of test 2A at section x = 152 m

OJ +J crj l-l 4-> M 0 ft 01 C rd U +J 4-) G Q) Ë •H T) m 2 0 1 5 1 0 - 1 0 - 1 5 - 2 0 ( A t s e c t i o n x = 1 6 0 m ) 4 T i m s ( h ) 1 0 1 2

(25)

tl) e QJ -p id u +j u O ft ui c n) H -P - P C 0) e •rH T S OJ w 2 0 1 0 - 1 0 - 2 0 - 3 0 - 4 0 ( A t s e c t i o n x - 1 7 0 m ) 1 0 1 2 T i m e ( h )

Figure 19 Transport rate of tset 2A at section x = 170 m

0) -p id U -p u 0 ft in c SH -P G (1) a • H T i 0) w 1 0 8 6 4 2 O - 2 - 4 - 6 -e - 1 0 - 1 2 - 1 4 - 1 6 - 1 8 - 2 0 ( A t s e c t i o n x - 6 5 m ) t i 1 r 1 0 1 2 T i m e ( h )

(26)

4 0 ( A t s e c t i o n x - 1 0 0 m ) 3 0 1 0 cn CO £ CO b c—i 2 0 CD 4-> cfl rH •P U O ft W a Cfl rH + J + J a CD i •rH T l CD W - 1 0 - 2 0 T i m e ( h )

Figure 21 Transport rate of test 2B at section x = 100 m

cn £~ e CO b CD 4-> cfl U -P O ft in c cfl u 4-1 4-) C CD £ •rH •a CD CO 4 0 3 0 2 0 - \ 1 0 - 1 0 - 2 0 ( A t s e c t i o n x - 1 1 5 m ) 1 0 1 2 T i m e ( h )

(27)

1 0 0 - 1 0 J , - 2 0 CD -P id U 4J U 0 ft U) c cti n 4 J 4-1 a a) £ - H -a 0) CO - 9 0 - 1 0 0 - 3 0 - 4 0 - \ - 5 0 - 6 0 - 7 0 - 8 0 ( A t s e c t i o n x - 1 3 0 m ) 1 6 T i m e ( h ) 1 0 1 2

Figure 23 Transport rate of test 2B at section x = 130 m

cn ~ £ CO £ CD b CD 4-> cti U 4J U O ft cn fi U 4-1 +J c CD £ •rH •o CD CO 1 0 O - 1 0 - 2 0 3 0 -- 4 0 - 5 0 - 1 0 0 - 6 0 - 7 0 - 8 0 - 9 0 - \ ( A t s e c t i o n x - 1 3 8 m ) 1 6 T i m e ( h ) 1 0 1 2

(28)

in o 6 CD b 01 - p id u 4-1 c d) e •H T3 (1) W 1 0 - 1 0 - 2 0 - P O ft in C Id - 3 0 S-l 4-> - 4 0 - 5 0 ( A t s e c t i o n x - 1 4 5 m ) 1 0 1 2 T i m e ( h )

Figure 25 Transport rate of test 2B at section x = 145 m

in CO e CD b 0) 4-> (I) rH 4-) U 0 ft w c id U 4J 4-> e OJ e •o 2 0 1 0 • 1 0 - 2 0 - 3 0 ( A t s e c t i o n x = 1 5 2 m ) 1 0 1 2 T i m e ( h )

(29)

-p c O) a • H T3 CD CO 1 0 cn "s" s CD b 3 i o -cd 14 - P M O ft - 2 0 cn G cd U - P - 3 0 - 4 0 ( A t s e c t i o n x - 1 6 0 m ) I 6 T i m e ( h ) 1 0 1 2

Figure 27 Transport rate of test 2B at section x = 160 m

cn e CD b CD -p cd U - P H O ft cn c cd J4 - P +J c CD B • H TJ CD CO 1 0 - 1 0 - 2 0 - 3 0 - 4 0 ( A t s e c t i o n x - 1 7 0 m ) 1 0 1 2 T i m e ( h )

(30)

e co e b 01 fd n 2 0 1 0 ( T E S T 2 A ) - 1 0 4 J U O ft cn c fd - 2 0 n 4-> 4-1 C m e •H T ) 01 CO - 3 0 - 4 0 m e a s u r e d computed 1 0 3 0 5 0 I I I I I I I 1 1 1 1 1 7 0 9 0 1 1 0 1 3 0 1 5 0 1 7 0 1 9 0 D i s t a n c e from wave b o a r d (m)

Figure 29 Comparison between measured and computed transport rates of test 2A ( Remark: the computed transport rates refer to different time intervals)

in e CO e CD b CD 4-1 rd U 4-) U O ft cn c cd u 4-1 c CD s •r4 T> CD W 2 0 1 0 ( T E S T 2 B ) - 1 0 - 2 0 - 3 0 - 4 0 - 5 0 - 6 0 O n s h o r e s e d i m e n t t r a n s p o r t computed O f f s h o r e s e d i m e n t t r a n s p o r t 1 0 3 0 5 0 7 0 9 0 1 1 0 1 3 0 1 5 0 1 7 0 1 9 0 2 1 0 D i s t a n c e from wave b o a r d (m)

Figure 30 Comparison between measured and computed transport rates of test 2B ( Remark: the computed transport rates refer to different time intervals)

(31)

O H 0) 4-> rd U •P M O ft ui C id M +J •a ai •p 3 ft e o o 2 0 1 0 - 1 0 - 2 0 - 3 0 H - 4 0 - 5 0 - 6 0 o n s h o r e s e d i m e n t t r a n s p o r t • • • o f f s h o r e s e d i m e n t t r a n s p o r t • • • • • • - 6 0 - 4 0 - 2 0 0 M e a s u r e d t r a n s p o r t r a t e Sm e d l 2 (10-6m3/m/s) 2 0

Figure 31 Comparison between computed and measured transport rates (2A & 2B)

(32)

Figure 33 Comparison between computed and measured transport rates (2A & 2B)

(33)

Figure 35 Comparison between two measured transport rates (2A & 2B) ( T E S T 2 A ) to S

Ï

CO b 01 4-> ft! U + J U O ft w c rd U - P T3 (U +J 3 ft S O U 4 0 3 5 3 0 2 5 2 0 1 5 1 0 H e i g h t from bed (cm) x=160 m x=130 m x=152 m

Figure 36 Transport as function of 'determining' height of velocity measurements (Remark: two measurements were carried out at section x = 130 m)

(34)

( T E S T 2B ) 80 -in - - . 70 -e CO s o 60 -O H Q) 50 --P rd M x=138 m x — _ _ _ _ _ _ _ _ _ Compute d transpor t III ! x=145 m v x=130 m * „— x= 65 m o ^ ____ x - 1 1 5 m o. — -:====== = = & x=100 m + h 0 -c T7C- _ ^ *w m 1 1 i 1 20 4o H e i g h t f r o m b e d (cm)

Figure 37 Transport as function of 'determining' height of velocity measurements

20 10 -10 w S to -20 O o -30 CN c/T -40 -50 -60 -60 -40 ( T e s t s 2A & 2B) • • ^6 • / n / • 20 "6 m3 , Sc a l l 0 ( 1 0-bm 7 m / s ) 20

Cytaty

Powiązane dokumenty

Gwałt jako instytucję analizuje się znacznie rzadziej, co związane jest z tym, że występuje nie tak często, jak indywidualne przestępstwa, a także niejedno- krotnie jest

However, the background function can sometimes not be fitted with sufficient accuracy through the spectrum points in the background channels (see sect. 9) only concerns the

dziejów parafii rzymskokatolickiej w Rozborzu Okrągłym, Rzeszów 2015, Wydawnictwo.. i Drukarnia Diecezji Rzeszowskiej „Bonus Liber”,

Voor de dijken rond het havengebied Vlissingen-Oost zijn de benodigde kruinhoogten berekend, rekening houdend met opwaaiing, seiches en zeespiegelstijging. Deze kruinhoogten

[r]

Rusycystyczne Studia Literaturoznawcze 12, 30-37 1988.. Слуцкиса восьмидесятых годов Христина Баше В настоящей статье мы попытаемся представить

Even if the current balancing system of the balance cranes is adjusted to counteract the weight of the average mass of the load, the displacement of the centre of gravity of the

Jest to ważne dla nas ujęcie, gdyż w Polsce jeszcze, a wskazuje n a to treść charakterystycznych dla polityki polskiej pojęć, wym agana jest od polityki m oralność, uw