• Nie Znaleziono Wyników

A class of continua that are not attractors of any IFS

N/A
N/A
Protected

Academic year: 2022

Share "A class of continua that are not attractors of any IFS"

Copied!
6
0
0

Pełen tekst

(1)

Brought to you by | Uniwersytet Jagiellonski Authenticated Download Date | 10/16/18 10:01 AM

=1

that for everyx;y∈Xwe haved(f(x);f(y))≤λd(x;y). A mapf:X→Xis calledcontractiveif for everyx;y∈X,

x6 ,

ehavd( y) d ,se milyF :f t :

❆❜ai:_❛❝i:✿ This paper presents a sufficient condition for a continuum in R to be embeddable in R in such a way that its of any weak iterated function system is also given.

image is not an attractor of any iterated function system. An example of a continuum in R that is not an attractor

n n

2

▼❙❈✿ 28A80, 54F15, 37B25, 54H20

❑❡②✇♦_❞a✿ Fractal • Continuum • Iterated function system • Attractor

© Versita Sp. z o.o.

Cent. Eur. J. Math. • 10(6) • 2012 • 2073-2076 DOI: 10.2478/s11533-012- 0108-5

❈❡♥�L❛❧❊✉L♦♣❡❛♥❏♦✉L♥❛❧♦❢▼❛,1:❤❡♠❛,1:✐❝2

A class of continua that are not attractors ofanyIFS

MarcinKulczycki1∗,MagdalenaNowak1,2†

❘❡ ❡❛ ❝❤❆ ✐❝❧❡

1 InstituteofMathematics,FacultyofMathematicsandComputerScience,JagiellonianUniversity,Łojasiewicza6,30-348 Kraków,Poland

2 InstituteofMathematics,JanKochanowskiUniversity,Świętokrzyska15,25-406Kielce,Poland

❘❡❝❡✐✈❡❞ ✶✺ ❋❡❜ ✉❛ ② ✷✵✶✷❀ ❛❝❝❡♣ ❡❞ ✷✷ ▼❛② ✷✵✶✷

1. Introduction

Tfehretilneofitieolndooffarenseitaerrcahteadsfwuneclltiaosnasyvsetresmati(laebabnredv.usIFefSu)l,tionotrloidnulcoesdsybydaJtoahncoH muptrcehsisniosonn(eisnp1e9c8ia1ll[y4]w,hhaesrepirmovaegnetdoatbaeias

caonnacettrrnaecdto).rTofhiasnpIaFpSe.rWiseanostwudryecianllosnoemsepebcaisfiiccatesrpmeicntoolofgthye.theorythepossibilityofen codingaparticularsetas

Let (X ; d) be a complete metric space. A mapf:X→Xis called acontractionif there exists a constantλ∈[0;1) such

ca

=

lle

y

da

w

(weak

e

)ite

f

r

(

a

x

t

)

e

;

d

f(

fun

)c<

tion

(x

s

;

y

y

s

)

tem,

e

se

[2

e

].

[

1

A

].

fa

Givena

=

com

{f

p

1

a

;c:

t

:

B

;⊂n}

X

o

,

fd(c

e

o

fi

n

ne

ractivemaps)contractionsfiX→Xis

F ( B ) = [

in

fi(B):

E

E

-

-

m

m

a

a

i

i

l

l

:

:

Mmaagrcdianl.eKnualc.nzoywck aik@80im5@.ujg.emdaui.lp.clom

✷✵✼✸

(2)

Barnsley–Hutchinsonoperator.AfixedpointofFiscalledtheattractorof(weak)IFS.

It eryIFh uq

t to s ctma b kF l

complex.OurresultsprovideasufficientconditiSonfordacontinuumtobeembeddableinRnsothatitsimageisnotan ItiselementaRrytocheckthateverycontinuumdiinRisanattractorofsomeIFS.Moreover,anyembeddingofsuch

compactness ofXis assumed). M. Hata proved in [3] that if the attractor of some IFS is connected, then it is

alsolocallycot M. s owed n[] a y fn len i anattr

ε&0

IFS .

neighbourhoodofps

\

uchthatde(x;y;C\Uxy)<+∞.Thenthereexistsanembeddingh:C→Rnsuch

tha

x

t

y

h(C)isnot

length.Figure1illustratestheprocessforn=2.

Thendefinethe embedding h:C→ asthecompositionh2◦h1.

A class of continua that are not attractors of any IFS

This transformation, acting on the space of nonempty compact subsets ofXwith the Hausdorff metric, is called the

is shown in [4]t h a t v e S as a ni ue at rac r (ananalogou f a y not e true for a wea I

S,unesspronvneenctehda.tifaJ.Sisanadneerndsphointofisom7etharctAev⊂erRnarwchoichfihiatesthegpthropserties:ac torforsomeIFS.Additionally,hehas

(1) forallx;y∈A\{a}thelengthofthesubarcofAwithendpointsxandyisfinite, (2) foreveryx∈A\{a}thelengthofthesubarcofAwithendpointsxandaisinfinite,

othfeMn.AKwisiencoitńsakniafrtotmrac[5to]rmoafyaanlysoIFbSeaecatsinilgyomnoRnfi.edOntoeseaxtaimsfpylethoefsesua cshsuamnpatriocniss.theharmonicspiral[6].Theexample

continuum in still is an attractor of some IF . In imension two and higher, however, the situationbecomesmoreattractor of anyIFS.

2. Mainresults

Definition 2.1.

x

Let

=

(X

y

;

,

d

x

)b

ea

A

m

,

e

d

t

(

r

x

ic

;x

spac

)

e

<

,A

ε

.D

X

e

,nx

o

;ty

e

by

A,

d

ea

(x

n

;

d

y

ε

;A

>

0

)

.tC

h

o

e

n

i

s

n

id

fi

e

m

r

u

a

m

llot

f

he

th

s

e

eq

s

u

u

e

m

n

s

cePskx

1;

1

:

d

:

(

:

x

;;x

x

ksu

)

ch

fo

t

r

h

t

a

h

t

e

k

se

∈N,x1=x, D

k

efinede(x

i

;y;A)=l

i

imide

+

(

1

x;y;A;ε).Thislimitmaybeinfinit

e.

ItiselementarythatifA⊂Bthende(x;y;A)≥de(x;y;B).

Theorem2.2.

i=1 i i+1 sequences.

L

B

e

tn

C

=

2

{

.pL

}

et

an

C

d

C

Rn

{p

b

}

ea

is

c

c

o

o

n

n

t

n

in

e

u

c

u

te

m

d

.

.

A

A

s

s

s

s

u

u

m

m

e

e

t

a

h

d

a

d

t

it

t

i

h

o

e

n

r

a

e

ll

e

y

xi

t

s

h

t

a

s

t

a

f

n

or

(n

ev

er

1

y

)-

x

d

;

im

y

e

ns

C

ion

\

a

{

l

p

h

}

yp

th

e

e

rp

re

la

e

n

x

e

is

B

ts

U

Rn

w

s

h

u

i

c

c

h

h

t

i

h

s

a

a

tan attractor ofany Proof. Byapplyinganaffinetrann−s1formationwemayassunmewnithoutlossofgeneralitythatB={0}×Rn−1,

p=(0;:::;0),andC⊂[0;1]×[−1;1] . Next defineh1; h2: R→Ra s

h1(x1;:::;xn)=Ix1;1x 0

1

0x2;:::;1x 0

1

0xn

\

; h2(x1;:::;xn)=x

1;√

x1sinx1−1+

x2;x3;:::;xn

1:

Rn Rthoeugfuhnlcytisopnea

kxinsgi,nhx1−1t.raAnssfoarmressuCltionftothaessheacropndneterdanles,fowrhmialetiohn2tbheen dnseethdaletbneeceodmleesto,sfipteianktiongaitmhipcrkeecniseedl-yu,pofgrinafipnhitoef

(3)

neighbourhoodofh(p)suchthatde(x;y;h(C)\Ux2 y)<+∞.

Themaph1doesnotincreasedistance,andthereforeforeveryx;y∈h1(C\{p})thereexistsUx1

ywhichisaneighbour-

✷✵✼✹

h

co

o

n

o

s

d

ta

o

n

fth

o

1

f

(p

h

)

2

su

h1

c

(

h

C)\

t

U

ha

i

t

s

de

b

(

o

x

u

;

n

y

d

;

e

h

d

1(

f

C

ro

)

m

\U

a

x1

b

y

o

)

v

<

e.

+

T

his

.N

im

o

p

te

lie

t

s

ha

t

t

h

,

a

o

t

u

f

t

o

s

r

id

e

e

ve

o

r

f

y

a

x

n

;

y

y

n

eig

h

h

(

b

C

ou

\

r

{

h

p

o

}

o

)

d

t

U

her

o

e

fh

ex

1(

is

p

t

)

s

,t

U

h

x

e

2y

e

w

x p

h

a

ic

n

h

si

i

v

s

ity

a

(4)

thatf(y)=6 h(p).Thende(x;y;h(C))wouldbefiniteandde(f(x);f(y);h(C))wouldbeinfinite,whichcontradictsthe If,ontheotherhand,f(h(p))=h(p)thenthereexistx∈h (C)suchthatf(x)=h(p)andy∈h (C)\{h(p)}such

λde(x;f(x);h(C)).Butthiswouldimplythatden(x−;1h1(p);h(C))isalsofinite,whileitisnot,sinceitcanbeseenfromthe

forthecontinuathatsatisfythemdirectly,butalsoforthecontinuathatarehomeomorphictosubsetsofnsatisfying

t e

m os ia t d a f eho r su . e p

toourbestknowledge,open.WeshallnowgiveanexampleofasubcontinuumofR2thatisnotanakattractorofany

interse0ctions,cons−instingn−onffinit−enl−y2ma−nnyin−tenr−v2als,thatstartsatp0,eSndsatpn

r , o

hasthetotallengthnof2n,andi s

Brought to you by | Uniwersytet Jagiellonski Authenticated Download Date | 10/16/18 10:01 AM M. Kulczycki, M. Nowak

Figure 1.The maphforn=2

Cthoennsifd(ehr(Cno))w=a{chon(ptr)a}c.tTioontfhi:she(Cnd),→conhj(eCct)uwreiththaatLifpsischniotztccoonnssttaannttλan<d1h.

(Wp)e∈wfo(uhl(dCl)ik).etoprovethatifh(p)∈f(h(C)) c

A

o

is

n

s

v

u

e

m

rg

e

e

fi

n

r

t

s

t

t

o

th

h

a

(p

t

)

f

.

(

h

A

(

l

p

so

))

n

=

ote

h(

t

p

h

)

a

.

t,

F

b

ix

yath

n

e

y

a

x

ss

um

h

p

(

t

C

io

)

n

s

s

u

,cde

h

(x

th

;f

a

(

t

x)

f

;

(

h

x)

(C

6=

))

h

is

(p

fi

).

ni

N

te

o

a

te

nd

th

a

a

d

t

d

t

i

h

ti

e

on

s

a

e

l

q

ly

ue

de

n

(

c

f

e

i(x

x

)

;

;

f

f

(

i

x

+

)

1

;

(

f

x

2

)

(

;

x

h

)

(

;

C

::

)

:

)≤

is

definitionofh2thatdex;h(p);h([0;1]×[−1;1] )isinfinite.

Ccoonntsreaqctuievenntleys,sifoFffi,scothmeplBeatirnngsltehye–

Hpruotocfhtinhsaotnifofpetaraketosrvfaolruesohm(ep)IFoSnaatndleaFs(tho(Cne))a⊂rghu(mCe)n,tththeennFi(thh(aCs))tombaeyccoonm

sptarinste.

ohf(C{h)(ips)n}oatnadnpaotstrsaibcltyoraolsfoFfi.nitelymanyotherclosedsetsnotcontainingh(p).ButthenF(h(C)) h(C),provingthat

Theassumptionso fTheorem2. 2 aret echnicalandmayseemv eryrestrictive.Itsassertion,h owever,ist

Rruen oto nly inhe

ts hea

cs os

nu tinp

ut ui

mn A.⊂Th

Ris

ns

ci ag

nnbfi eccn

only new

cti ee

dn is

nt Ahe

bycl as

ps na+o

t1hs oe

fts fint

ih tet

lene gte

hm ,this

enui tef

cal nfo

br eF

e a

o s

r ily

xa s

meepnle t

, h

i a

fta a

n n

y y

tw on

o e-p

o o

in in

ts t

unionofAand[0;1]ishomeomorphictoasubsetofR for which the assumptions of Theorem2.2aresatisfied.

oAfftseormtheeIFreSs.uTlthoefeHxaatmap[l3e]iotfhKawsibeeceińnskain[5o]pepnropvirdoebdleamnwehgeatthiveereavnesr

wyelro,cbaulltythcoensnaemcteedquceosnttiionnuufomriwneRnIiFsSa’nsarettmraacitnosr,weak IFS.

I Pn

utth pisd

=efi (n

0i

;ti 0o

)n aw

ndes pwit

=ch (t

2o−nt

;h 2e−ns

)ta fn

od ra

nrd

pol 1a

.rc Fo

oo rrd

ai nn

yate ns≥yst

1em ch(

or o

se)o an

bR2 k,

et nha

lt ini

e s

s( ex

g;y m)

en= tl(rc

wo is

thθ o;

ur tsi

sn eθ

lf) -. contained in

[0;

2 )×(2

−2

;2 +2 )∪ {pn}. DefineP= i=1li. Remark2.3.

Definition2.4.

(5)

Suppose thatf:P→Pis contractive. We shall examine how many of the pointspican belong tof(P). If

notincreaseone-dimensionalmeasure).Consequently,onlyfinitelymanyofthepointspibelongtof(P).

pointspiand almost all of the setsf(li).Note that only finitely many of the setsf(li)may reach the outside ofU.

Brought to you by | Uniwersytet Jagiellonski Authenticated Download Date | 10/16/18 10:01 AM

Theorem 2.5.

The space P as a subset ofR2with the Euclidean metric is not an attractor of any weak IFS.

f(p0)6=p0thenthereisaneighbourhoodUoff(p0)suchthatthedistanced(p0;U)>0andUcontainsfinitelymanyeAllesmoeonbtsaerryv eprtohpaetretyacohffc(olni)trcaocvteiorsnsatcamnosbtefipnriotevleynmeaitnhyerpobiyntussipnigbδec-

achuaseintsh,eorl,eansgtihns[o5f],lbiyaruesinnogttinhcerefaacstedthbaytffd(toheiss Proof

.

(6)

ofF.

[5]1K2w7i–

e1c3iń2skiM.,AlocallyconnectedcontinuumwhichisnotanIFSattractor,Bull.Pol.Acad.Sci.Math.,1999,47(2), [3]HataM.,Onthestructureofself-similarsets,JapanJ.Appl.Math.,1985,2(2),381–414

of these sets are too small to traverse the wholeln. But no other point inPcan be mapped ontopnbyf,becausef

A class of continua that are not attractors of any IFS

Figure 2.The space P

If,ontheotherhand,f(p0)=p0,then,givenn≥1,notethatpnmaynotbelongtof(li)fori<n,becausethelengthsidfeFcreiassaeswtheae kdiIsFtSan,ctehebnetowneleynfipn0itaenlydmanaynyotohferthpeoipnoti.nTtshepriefcoarne,btheeloonnglytopoFin(Pt)p,iap nrdestehnetreinfofr(ePP)isispn0.otInacnonacttlurasciotonr,

Acknowledgements

TThheesaeuctohnodrsawutohuolrdwliaksestuoppthoarntekdtbhyetrheefeEreSeFsfHorumthaenirCtahpoirtoaulgOhpwero artkioannadlPsurogggreasmtimngegseravnerta6l/1im/8p.o2r.1ta/PntOcKlaLr/i2fi0c0a9t.ions.

References

[[12]]BEdaernlsstleeiynMM.,.,FOrancfitaxlesdEavnedrypwehrieordei,cApcoaidnetmsiucnPdererscso,nBtroascttoinve,1m9 a8p8pings,J.Lond.Math.Soc.,1962,37,74–79

[4] Hutchinson J.E., Fractals and self similarity, Indiana Univ. Math. J., 1981, 30(5), 713–747

[[67]]SSaannddeerrssMM..JJ..,,NAnonn-a-

ctterlalcitnorsRno+f1ittehraatteidsfnuocttiothnesyastttreamcsto,rTeoxfaasnPyroIFjeSctoNneRxTn+J1o,uMrniasls,o2u0r0 i3J,.1M,a1t–h9.S ci . , 2009,21(1),

13–20

Cytaty

Powiązane dokumenty

The first step of our proof is a general “scattered” reduction of the theorem to the same statement but now only for metric spaces M which are both nowhere locally compact

Let us now recall the notion of α-proper forcing for a countable ordinal α saying that, given an ∈-chain of length α of countable elementary sum- bodels of some large enough structure

For general k the proof is very long and involved (it is worth mentioning that the proof offered by Marcinkiewicz and Zygmund has a lacuna filled by Fejzic and Weil [3]).. The

We treat the contribution of these divisors in this section, leaving the treatment for the remaining divisors, which are of the form m ∗ t with ω(t) &gt; K, for the final section..

Abstract. The aim of this paper is to give a necessary and sufficient condition for a set-valued function to be a polynomial s.v.. 379), we can formulate the following

W i l k i e, Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, 1991. [10] —, Model completeness results for

Colojoar˘ a and Foia¸s looked into this: their monograph contains the beginning of a study of decomposability properties of multipliers on regular algebras. They showed that if

We now follow Green’s walk of projective resolutions until we reach a vertex v 1 , where (note that the graph is locally embedded into the plane) the final edge on the walk is