• Nie Znaleziono Wyników

Calculations of motions and hydrodynamic pressures for a ship in waves

N/A
N/A
Protected

Academic year: 2021

Share "Calculations of motions and hydrodynamic pressures for a ship in waves"

Copied!
23
0
0

Pełen tekst

(1)

I (ni. 972

RCHEF

bliotheek van d Onderafdetin bouwkunde nische Hogeschoo ibiotheek van de 'Sc e Hogeschoo, DOCUMENATE DATUM:

3,-sbouwkunde Committee 2, ISSC 4 April 1972, Lyngby) Lab.

v. Scheepsbouwkunde

Technische Hogeschool

Deift

i

Calculations of Motions and Hydrodynamic Pressures for a Ship in Waves

by 3. Fukuda and H. Fujii

This note summarizes briefly the results of theoretical calculations on the motions and hydrodynamic pressures induced on a ship in regular waves, which have been carried out as a part of the research works of the research committee "SR 131" by the cooperation with Kyushu University and Mitsubishi Nagasaki Technical Institute.

The calculation method is based upon the strip theory described in Refs. [1] and [2] . In the first place, the ship motions in regular waves from different directions are solved by assuming the coupled equations of heaving and pitching motions and those of swaying, yawing and rolling motions. The non-linear roll damping is introduced into the latter coup1ed equations of motion. Secondly the hydrodynamic pressures induce.d on the hull

surface are evaluated by using the solutions of heave, pitch, sway, yaw and roll.

A series of calculations has been made for the ore carrier "KASAGISAN-MARU" in full loaded condition. Particulars of the ship are given in Tables 1 - 3, and the main results of calcu-lations are shown in Figs. 2 - 20. Large pressures are found on the hull surface at the weather side in beam waves and in bow waves. Next to those cases, considerable pressures are found in head waves. Pressures obtained in following waves and in quarter-ing waves are not large.

Comparisons between the calculations and model experiments have been performed by Nakarnura at Osaka University for the case in head waves, where the practically good agreemerLts are fouid for both motions and pressures. Model experiments in oblique waves have been continued at the seakeeping model basis o: Tokyo University and of Ship Research Institute, but co'risons between the calculations and experiments are not yet ccotnplished.

(2)

[1] J. Fukuda: "Theoretical Evaluations of Transverse Wave Loads" Discussion to the Report of Committee 2, Proceeding of 4th ISSC, Tokyo, 1970.

(2] J. Fukuda, R. Nagarnoto, M. Konuma and M. Takahashi: "Theoreti-cal Calculations on the Motions, Hull Surface Pressures and Transverse Strength of a Ship in Waves" Journal of the Society of Naval Architects of Japan, Vol. 129, June 1971.

Nomenclature

h0: wave amplitude H(=2h0): wave height

X : wave length

k (=2ir/A): wave number heading angle

L : ship length Fn.: Froude number

: heaving amplitude

pitching amplitude e0: rolling amplitude

Zro: amplitude of ralative motion to the undisturbed wave surfase

P0: amplitude of hydrodynamic pressure

pg : specific weight of sea water

t:time

(3)

Table 1 Main Particulars

Length between Perpendiculars (L) Breadth Moulded (B0)

247.000 in 40.600 in

* In this report the density of ore is assumed to be 2.2 Table 2 Estimation of Roiling Period

Density of Ore 1.77 2.20* 2.70

Occupied Ratio of Hold 100 % 80.5% 65.6

KG 14.28 in 12.23 in 10.99 in

GM 2.18 in 4.18 in 5.42 in

GG0 (Free Surface Effect) 0.05 in 0.05 in 0.05 in

G0M 2.13 in 4.13 in 5.42 in Kt/BO 0.2369 0.2200 0.2102 KL/BO 0.1659 0.1659 0.1659 TR 16.16 s 11.04 s 9.41 s Depth Moulded (D) 23.000 in Draught Moulded (d0) 16.000 in Displacement (W) 135,666 t Block Coefficient (Cb) 0.8249 Midship Coefficient (Cm) 0.9975

Water Plane Area Coefficient (Cv) 0.8817 Centre of Gravity from Midship (xG) 7.301 in Center of Gravity below Water Line (ZG) 3.720 in Metacentric Radius (G0M)

-.4.130 in Longitudinal Gyradius (K1) 0.2362L Transverse Gyradius (Kt) 0. 2200B0

(4)

S.S. B/BQ d/d0 S/S0 A.P.

0.1732

0.2324

0.0210

1/2

0.4823

1.0000

0.2190

1

0.7077

1.0000

0.4699

1-1/2

0.8671

1.0000

0.6774

2

0.9627

1.0000

0.8319

2-1/2

0.9991

1.0000

0.9322

3

1.0000

1.0000

0.9833

3-1/2

1.0000

1.0000

0.9985

4

1.0000

1.0000

1.0000

4-1/2

1.0000

1.0000

1.0000

5

1.0000

1.0000

1.0000

5-1/2

1.0000

1.0000

1.0000

6

1.0000

1.0000

1.0000

6-1/2

1.0000

1.0000

1.0000

7

1.0000

1.0000

1.0000

7-1/2

1.0000

1.0000

1.0000

8

1.0000

1.0000

0.9971

8-1/2

0.9721

1.0000

0.9511

9

0.8487

1.0000

0.8097

9-1/2

0.5818

1.0000

0.5422

F.P.

0.079k

1.0000

0.1320

(0.1317)

(5)

1.5

1.0

0.5

HEAVE

Xz90°

0.5

1.0

1.5

(L:SHIP LENGTH, A:WAVE LENGTH)

(6)

1.0

0.5

1.0

1.5

Fig. 3 pitching Amplitudes in Regular Beam Waves

-0-I

0.5

PITCH

X9O°

Fn:Q

0.05

0.10

0.15

(7)

-0.5

1

1.0

0

0

0.5

1.0

Fig.

4

Heaving Amplitudes in Regular Bow Waves

(8)

1.0

0.5

RI TCH

Y135O

/\-I

rno

cinc

LJ.t.JJ

0.10

-

0.15

Fig. 5

Pitching Amplitudes in

Regular Bow Waves

0.5

1.0

(9)

1.5

10

0

HEAVE

X =MO°

I.-'

-,,/

\\

Fig. 6 Heaving 1\mplitucles in Regular Head Waves

Fti O

0.05

OJO.

a15

(10)

I

0.5

1,0

0

PITCH

X

O0

0

0.5

'LU

1.5

Fig. 7

Pitching Amplitudes in Regular Head Waves

Fn0

Q05

0.10

(11)

c.

T

3

0

ROLL

X9O°

FnO.1O

+1w =5

icI

15m

(H= 2)

0

0.5

1.0:

1.5

-JLI?

Fig. 8 Rolling Amp].itudes in

(12)

I-0 0

T

1

0.5

1.0

1.5

-JL/A

(13)

3.0

4.0

I 0

Fig. 10 Amplitudes of Relative Motion

in Regular Beam Waves

SECTION WEATHER SIDE LEEWARD SIDE S.S.2-MIDSHIP S.S.8 HEADING 9Q0 WAVE HEIGHT lOm FROUDE NO. 0.10

0

1.0

I

2.0

S 0

(14)

S

j

.0 S.S. 8 SECTION

7

- -

S.-

-,

.5,-

-.-

-S.----N

SS HEADING 900 WAVE HEIGHT lOm F ROtJDE NO. 0.10 I. POSITION KEEL CENTRE LINE

BILGE WEATHER SIDE

LEEWARD SIDE WATER LINE WEATHER SIDE LEEARD SIEE

-0.5

1.0

1.5

L/1s.

Flcj.

ii Amplitudes of Hydrodynamic

(15)

4.0

0

N

2.0

i .0

1.5

>- Jri1

Fig. 12 Amplitudes of Relative Motion in Regular Bow Waves

SECTION WEATHER -SIDE LEEWARD SIDE S.S.2 MIDSHIp

S.S.4

HEADING. 135° WAVE 'HEIGHT lOm FROUDE NO. 0.10

0.5

1..o

(16)

4.0 0 2.0 1.0 / I'-. / / / /

/1/

.,

,,-1.0.

-/i7i.

Fig. 13 Amplitudes of Hyciroclynamic Pressure in Regular Bow Waves

HEADING 1350 WAVE HEIGHT lOm FROU-DE NO. 0.10 POSITION KEEL CENTRE LINE

BILGE WEATHER SIDE LEEWARD SIDE WATER LINE WEATHER SIDE LEEWARD SIDE QC :5.0

(17)

Fig.. 14

Amplitudes of Relative Motion in Regular Head Waves

SECTION WEATHERSIDE LEEWARDSIDE

S.S.2

-

-MIDSHIP HEADING 1800 WAVE Tf71-TrT lOm FROUDE

o.io

1.0

1.5

IL/X

(18)

i

2.0.

i.0

Fig. 15 Amplitudes. of Hydodynamic Pressure in Pegular Head Waves

HEADING 1800 WAVE r HEIGHT lOm FROUDE NO. 0.10 POSITION KEEL CENTRE LINE

BILGE WEATHER SIDE LEEWARD SIDE

-WATER LINE WEATHER SIDE LEEWARD SIDE

1.0

1.5

(19)

1.0 s.s.

4

SECTION C) r-4

P0/pp40

1 ".1 i. .i_,

'V

/

Fig. 16 Amplitudes of Hydrodynamic Pressure on the Hull Section in Regular Beam Waves of Different Lengths

0.90 1.00 1.20 1.40 SHIP LENGTH 247m WAVE HEIGHT 1Cm FROUDE NO.

(20)

2.0 1.0 S.S. 8 SECTION

0

r1 .0 2.0 1.0 2.0 5.0

Fig. 17 Amplitudes of Ilydrodynamic Pressure on the Hull Section

in Regular Bow Waves of Different Lengths

0.90 1.00 1.20 1.40 WAVE I-I El G I-IT lOin FROUDE NO. 0 10

(21)

S.S. 8. SECTION

Fig. 18 Amp].itudes of Hydrodynarnic. Pressure on the Hull Section

in Regular Head Waves of Different Lengths

ai1i0

SHIP LENGTH WAVE HEIGHT F ROUDE NO. 247rn 1 Om 0.10 0.90 1.00 1.20 1.40

(22)

2,0

1.0

\\\

4_ S

Fig. 19 AmplitUdes of ilydrodynamic Pressure on the 1-lull Section

in Regular Bow Waves of Different Heights

S.S. 8 SECTION

2 0

E

0

Po/pgAo

1,0

2O

3.0 - I

if

/I

-I-/

WAVE HEIGHT 5m lOin 15m SHIP 247m LENGTH 1.00 FROUDE 0.10 NO.

(23)

I

p .1 WAVE SURFACE S. W. t-.

-.

YE---ui-

-t

3Te/4

7Te/8

Fig. 20 Pressure Distributions on the Hull Section during

an Encountered Period in Regular Eow Waves

SHIP SECTION 190 1.35° .1' I.L. 10 MOTION WAVE HEAVE AMP . 5rn P1-LAS E SCALE

----3389

51.49°

17523°

4.895'

4.

168°

7.732°

0 10 20m

' PITCH

ROLL

t = T/8

t= 0

t = Te/4

t

3T/8

Cytaty

Powiązane dokumenty

Z niepełnych sprawozdań szkoleniowych znaj- dujących się w Centralnym Archiwum Wojskowym oraz w Archiwum Wojsk Lot- niczych i Obrony Powietrznej wynika, że w latach 1945-1949 w

De als gevolg lage geaggregeerde vraag verergert de productiviteitscrisis, want (zoals Adam Smith, Joseph Schumpeter en Nicholas Kaldor al wisten) als de economie slecht draait,

A diffraction potential q is proportional to the amplitude of the diffracted wave and it is conceived5 that the diffraction amplitude of a progressing two dimensional wave

[r]

Przedstawienie funkcji kulturowej muzyki sakralnej w perspektywie integralnego rozwoju osoby implikuje przyjęcie faktu iż można ja uznać za „transmitera” wartości

LA_SurveyPurposeType: the LA_ SurveyPurposeType code list includes all the various survey purpose types, such as: land consolidation, control measurements or division of a

Thoolen Methodieken voor de berekening van staalconstructies van transportwerktuigen Literatuuropdracht/scriptie, Rapport TT.0392, Sectie Transporttechniek. In dit verslag is

This study aims to: (1) identify the different phases surgical equipment goes through during its lifespan (i.e., the surgical equipment journey) in Kenya, and to (2) identify