• Nie Znaleziono Wyników

CH2 domain of mouse IgG3 governs antibody oligomerization, increases functional affinity to multivalent antigens and enhances hemagglutination

N/A
N/A
Protected

Academic year: 2022

Share "CH2 domain of mouse IgG3 governs antibody oligomerization, increases functional affinity to multivalent antigens and enhances hemagglutination"

Copied!
33
0
0

Pełen tekst

(1)

FrontiersinImmunology|www.frontiersin.org 1 May2018|Volume9|Article1096 Originalresearch published:23May2018do i:10.3389/fimmu.2018.01096

ch2D o m a i n o f M o u s e i g g 3 gover nsantibodyOligomerization,increa sesFunctionalaffinity

toMultivalentantigens

andenhanceshemagglutination

TomaszKlaus1,2and

JoannaBereta2*

1Laborato

ryofMonoclonalAntibodies,MałopolskaCentreofBiotechnology,JagiellonianUniversity,Kraków,Pol and,2Department

ofCellBiochemistry,FacultyofBiochemistry,BiophysicsandBiotechnology,JagiellonianUniver sity,Kraków,P o l an d

Editedb y : HarryW.Schroeder,Unive rsityofAlabamaatBirmingha m,Unit edS ta t es Reviewedb y : NeilS.Greenspan,Case WesternReserveUnivers ity,UnitedStates MasakiHikida, AkitaUniverity,Japan

*Correspondence:

JoannaBeretajoanna.b ereta@uj.edu.pl

Specialtysection:

Thisarticlewassubmittedto BCellBiology, asectionofthejournalFr ontiersinImmunology Received:21February2018 Accepted:02May2018 Published:23May2018 Citation:

KlausTandBeretaJ(2018)CH2Dom ainofMouseIgG3GovernsAntibody Oligomerization,IncreasesFuncti onalAffinitytoMultivalentAntigensan dEnhancesHemagglutination.

Front.Immunol.9:1096.doi:

10.3389/fimmu.2018.01096

MouseI g G 3 i s h i g h l y p rotectivea g a i n s t s e v e r a l l i f e -

t h reateningb a c t e r i a . T h i s i s o t y p e ist h e o n l y o n e a mo n g m o u s e I g G s t h a t f o r m s n o n -

c o v a l e n t o li g o m e rs , h a s in c reasedfunctionala ffinityt o poly valen t an t ig en s , ande fficientlyag glutinate s er y th rocytes.Ig G3 alsot r i g g e r s t h e c o m p l e m e n t c a s c a d e . T h e h i g h e fficacyo f p rotectiona f t e r p a s s i v e immunizationwithIgG3iscorrel atedwiththeuniquepropertiesofthisisotype.AlthoughthefeaturesofIgG3arewelldocume nted,theirmolecularbasisremainselusive.BasedonfunctionalanalysesofIgG1/IgG3 hybridmoleculeswithswappedconstantdomains, wei d e n t i f i e d I g G 3 -

d e r i v e d C H 2 d o m a i n a s a m a j o r d e t e r m i n a n t o f a n t i b o d y o l i g o m e r-

izationandinc reasedfunctionalaffinitytoamultivalent antigen. TheCH2domain w as alsoc ruc ialfor e fficienthe ma g g lu ti na ti on trigge redby Ig G 3 an dwas i nd is pe n s ab le for complementc a s c a d e a c t i v a t i o n . T h i s d o m a i n i s g l y c o s y l a t e d a n d a t y p i c a l l y c h a r g e d . Am u t a t i o n a l a n a l y s i s b a s e d o n m o l e c u l a r m o d e l s o f C H 2 d o m a i n c h a r g e d i s t r i b u t i o n indicatedt h a t t h e f u n c t i o n a l a ffinityw a s i n f l u e n c e d b y t h e s p e c i f i c c h a r g e l o c a t i o n . N-

glycansw e ree s s e n t i a l f o r C H 2 -

d e p e n d e n t e n h a n c e m e n t o f h e m a g g l u t i n a t i o n a n d complementactivat ion.OligomerizationwasindependentofCH2chargeandglycosyla-

tion.Wealsoverified thatknown C1q-

bindingmotifs a refunc tion alin mouseIg G3 butnotinIgG1framework.Wegenerat edforthefirsttimeagain-of-

functionantibodywithpropertiestransferredfromIgG3intoIgG1byreplacingtheCH2domai n.FindingthattheCH2domainofIgG3governsuniquepropertiesofthisisotypeislikelytoopenana venuetowardthegenerationofIgG3-

inspiredantibodiesthatwillbeprotectiveagainstexistingoremerginglethalpathogens.

Keywords:igg3,oligomerization,multivalentantigen,polyvalentantigen,hemagglutination,igconstantregion

inTrODUcTiOn

TherearefoursubclassesofmouseIgGs:IgG1,IgG2a,IgG2b,andIgG3.Althoughstructurallyverysimila r,theysig nificantlydifferint heirfunctions(1).MouseIgG3sareparticularlyinteresting,becausethey

(2)

FrontiersinImmunology|www.frontiersin.org 2 May2018|Volume9|Article1096

areabletoformoligomers,w hichstronglyinfluencesthei rbiologicalactivities(2).

MouseIgG3wasdescrib edforthefirsttimealmost5 0yearsago(3)anddifferent aspectsofitsbiologyhavebe eninvestigatedbyseveralgr oups.ThepropensityofIgG 3oligomerizationwasnotic edalreadybyitsdiscoverers(

3).Then,otherresearchersre portedcooperativebinding ofIgG3toa multivalentanti gen(4,5).A lthought hei n i tialreportonIgG3oligomeri zationc oncernedmolecule sinsolution(3),laterstudiesr evealedthatbindingtomulti valentantigenspromotedIg G3

(3)

KlausandBereta CH2GovernsMouseIgG3Properties

intermolecularinteractions,whichinturnresultedinitsincreasedfun ctionalaffinitytotheantigen(4).ThisphenomenondependedonFc,b ecauseIgG3F(ab’)2fragmentsdidnotbindtotheantigencooperativel y(4).However,theexactmolecularmechanismofIgG3oligomeriz ationremainsunknown.

IgG3isamajorcomponentofcryoglobulinsinmice(2).Cryo- globulinsareplasmaproteinst hatreversiblyprecipitateatl owtempe raturesorathighconcentrations(6).CryogenicactivityofIgG3wass howntocorrelatewithitsabilitytooligomerize,withthepresenceofc hargedresiduesinthevariableregionandthelevelofsialylation(7).

Also,IgG3wasreportedasexceptionallyeffectiveinpreventingo rfightingseverallife-

threateningmicrobialinfections,e.g.,withNeisseriameningitidis(8 )orBacillusanthracis(9).AcomparisonbetweenthefourmouseIgG subclasseswiththesamevariableregionspecifictoB.anthraciscapsu leprovedthatonlyIgG3isprotectiveagainstpulmonaryanthraxinam ousemodel(9).Importantly,mouse–

humanchimericantibodiescontainingacon-

stantregionofanyhumanIgGsubclasswerenoteffective,althoughth eyhadthesamevariableregionastheprotectivemouseIgG3(10).The sereportsindicatedthatmouseIgG3constantregionhasuniqueprope rties,buttheauthorsonlyspeculatedaboutpossiblemolecularmecha nismsbehindtheobservedphenomenon.

Thee xceptionalcharacteristicofIgG3w asa lsoc onfirmedbyou rpreviousreportt hatamongmouseIgGsrecognizinga surfaceantig enoferythrocytesonlyIgG3sareabletoagglutinatethec ells(11).W erejectedt hehypothesist hatIgG3-

mediatedhemagglutinationresultsfromoligomerizationoftheantib odies,becauseIgG3F(ab’)2wassufficienttotriggerhemagglutinatio n.MolecularmodelingindicatedthatIgG3hasalargerspanofFabarm sthanotherIgGsubclasses.IgG3hasalong-

upperhingethatmayextendtheFabrange,butwhetherthismayaccou ntfortheabilitytohemagglutinatewasnotverifiedexperimentally.

Here,wepresenttheresultsofourattemptstofindmoleculardeter minantsofthepropertiesofmouseIgG3.Ourexperimentalmodelco mprisedtwoantibodies(M18andO10)specifictoantigenBoftheAB Obloodgroupsystem(11).AntigenBisapentasaccharideO- glycanattachedtonumerousproteinsandlipidsontheerythrocytesur face.Thelargequantityandhighdensityoftheantigen,aswellasastro ngnegativechargeoftheerythrocytesurface,couldbeconsideredasa safeandeasyto-

handlemodelofapathogensurface.WegeneratedmanymuteinsofIg G3moleculesandanalyzedtheirfunctionalaffinitytotheantigenasw ellastheirabilitytohemagglutinateandoligomerize.T heresultssho wedthatIgG3derivedCH2domaindeterminesantibodyoligomeri- zationandincreasesitsaffinitytotheantigen.Thisdomainalsostrong lyenhancesagglutinationoferythrocytesbearingBantigen.Moreov er,weinvestigatedcomplementactivationbythemuteins,andwecon firmedthatknownC1q-

bindingmotifsarefunctionalinmouseIgG3butnotinthemouseIgG1 framework.

MaTerialsanDMeThODsgener ationofVectorscodingfor

antibodyMuteins

Expressionvectorscodingforheavychainmuteinswithswappeddo mainsormutatedCH2weregeneratedusingsyntheticnucleic

acids(GeneArt,Germany)clonedi ntopFU SEssCHIg- mG1_M18(Addgene#82357)orpFUSEssCHIg- mG3_M18(Addgene

#82356)plasmids(11).Onlyendogenousrestrictionsitespresentint heORFswereusedforcloning.Vectorsc odingforothermuteinswer epreparedwithQ5-

basedsitedirectedmutagenesiskit(NEB).Allplasmidscodingforhe avychainvariantsofM18antibodyareavailableviaAddgenereposit oryalongwiththeirfullsequencesandmaps,accessionnumbers:1 05849–

105863. PlasmidsencodingO10antibodyvariantswereobtainedb yreplacingthesequencecodingforM18variablefragmentwithacorr espondingO10derivedcDNAusingEcoRIandAfeIrestric-

tionsitesinthevectorscodingforM18heavychainvariants.Theseque nceofO10antibodyisproprietaryandcannotbedisclosed.Allplasmi dswereverifiedusingSangersequencing(Genomed,Poland)orNG S(Addgene).

Productionofantibodies

TherecombinantantibodiesweretransientlyexpressedinHEK293 Tcellsculturedi nDMEMwith4.5g/lglucose(Lonza)supplemente dwith10%FBS(Biowest).Thecellswereco-

transfectedwithp lasmidscodingfora h eavyc hainanda cognatelig htchainusingLipofectamine2000(Thermo)orPEIMAX(Polyscie nces,MW40,000).InthecaseofM18variants,theplasmidpFUSE2s sCLIgmK_M18(Addgene,#82358)

(11)codingforM18lightchainwasused.Asimilarplasmidcodingfo rO10lightc hainwasu sedforexpressionofO10variants.Hybridom aderivedM18IgG3wasproducedasdescribedpre-

viously(11).TheantibodieswerepurifiedusingCaptureSelectLC- kappa(mur)affinitymatrix(Thermo)accordingtoinstruc- tionsofthesupplier.Glycine–

HCl(100mM,pH2.0)wasusedforelution.

Productionofigg3F(ab’)

2

Asequencee n codingIgG2bc oreh i nge,HAt aganda stopcodonw asclonedintopFUSEssCHIg-

mG3_M18downstreamofthesequencecodingfortheupperhingeo fM18.Sequencesoftheupperandcorehingesoftheantibodiesarede scribedbyDangletal(12).MouseIgG2bcorehingecontainsfourcyst eineresiduesthatallowanefficientassociationofFab’fragmentsinto F(ab’)2(13).RecombinantF(ab’)2wasexpressedasdescribedforother antibodies.Alternatively,F(ab’)2wasproducedbyenzy -

maticdigestionwithIdeZ(NEB)accordingtothemanufacturer’sprot ocol.

MeasurementsofantibodyconcentrationA

n tibodyc oncentrationsi n c ellculturemediaweremeasuredusingast andardsandwichELISAonplatescoatedwithsheepanti-

mouseFabp olyclonalantibody(JacksonLaboratory,c at.

#515005072,lot#105461).Goatanti-

mousekappapolyclonalantibody(1:3,000,BioRad,cat.#105008,ba tch#160617),HRP-

labeledstreptavidin(1:40,000, Sigma),andtheTMBsubstratefor H R P ( BDBioscience)wereusedford e tection.T heH R P- dependentc olorogenicreactionw asstoppedw ith1 M HCl,andt h eabsorbanceat4 5 0 n m w asreadusingt hem i c roplatespectrophot ometerSynergyH1operatedbyGen52.00Software(BioTek).Purifi

(4)

KlausandBereta CH2GovernsMouseIgG3Properties

edM18(IgG3)andMCP21(IgG1,Sigma)wereusedasstandards.C oncentrationsofmuteinswerec alculated

(5)

basedontheirFabtype(IgG1orIgG3-

typeFab).BCAassay(Sigma)wasusedformeasurementsofpurified antibodyconcentrationswithbovineγ-

globulin(Thermo)asareference.

antibodyBindingtoimmobilizede rythrocytes

Polystyreneplateswerecoatedwith50µg/mlpolylLys(Sigma) for1hatroomtemperature(RT).Then,100µlof0.1%

(hematocrit)suspensionofredbloodcellsinPBSwereaddedtothewe llsandthecellswereallowedtosettlefor1hatRT.Aftergentleaspirati onofthesolution,thecellswerefixedusing0.025%glutaraldehydefo r40min.Endogenousperoxidaseactivitywasblockedwith3%H2O2fo r1h.Theplateswereblockedovernightwith0.2%gelatininPBScontai ning0.05%Tween-

20at4°C.Then,thecellswereincubatedwithserialdilutionsofcellc ulturemediacontaininganalyzedantibodiesfollowedbydetectionw ithanti-

mousekappapolyclonalantibodyc onjugatedw ithbiotin( 1 : 3 , 0 0 0 , BioRad)andH R P-

labeledstreptavidin( 1 : 4 0 , 0 0 0 , Sigma).A llreagentswered i lut edi n t heblockingbuffer.T hec olorogenicreactionwasperformed, andtheabsorbanceat450nmwasmeasuredasdescribedabove.

c1qBindin g

Duplicatesofpolystyreneplateswerecoatedwith6µg/mlofBSAco njugatedwiththediscriminatingtrisaccharideoftheBantigen(Dext raLaboratories,cat#NGP6323,batch

#ATDX232-

039)overnightat4°C,blockedwith1%BSAinPBS(1h)andincubate dwithserialdilutionsofcellculturemediacontainingO10muteins(

2h).Then,onesetofplateswasusedforevaluationofC1qbindingby analyzedantibodies;andtheplateswereincubatedwith2µg/mlofC1 qpurifiedfromhumanserum(Biorad,cat.#22215504,batch#13 0815;2h)andnextwithHRPlabeledanti-

humanC1qpolyclonalantibody(1:400,Abcam,cat.#ab46191,lot

#GR205436-

5;1h).Thesecondsetofplateswasusedtoanalyzequantitiesofthem uteinsboundtotheimmobilizedantigen;andtheplateswereincubat edwithanti-

mousek appapolyclonalantibodyc onjugatedwithbiotin(1:3,000, BioRad,2h)andHRPlabeledstreptavidin(1:40,000,

Sigma;1h).

AbsorbanceofHRPproductwasmeasuredasdescribedabove.E achincubationstepwasprecededbyextensivewashingwith0.05%T ween-

20inPBS.Theantibodies,streptavidin,andC1qweredilutedin0.1

%BSAinPBS.Allincubations,exceptplatecoating,wereatRT.

ThenormalizedC1qbinding(a)wascalculatedbydividingthesi gnalcorrespondingtoC1qbinding(b)bythesignalcor-

respondingtoboundantibody(c).

C1qbindingsignal

(

b

)

n

ormalizedC1qbinding

(

a

)

=

boundantibodysignal

(

c

)

Uncertaintyofa ( Δa)w asc alculatedbye x a ctd i f ferential.Unce rtaintiesofbandc(ΔbandΔc)equaledtostandarddevia-

tionsoftheabsorbancemeasurements.

(6)

complementcascadeactivatio n

Washedhumanredbloodcellssuspendedtoahematocritof2%were coatedwith3µg/mlor1.5µg/mloftheanalyzedantibodiesfor1.5hat RT,washedtwicewithPBSandresuspendedinPBSwithCa2+andM g2+.Then,thesamevolumeofhumancomple-

mentserum(Sigma,cat.#S1764,lot#SLBS5471V,#SLBQ0752V or#SLBP0461V)dilutedto7CH50U/mlinPBSwithCa2+andMg2+was addedtothecoatedredbloodcells.Thesampleswerecentrifugedaft er2hofincubationat37°C,andtheabsorbanceofreleasedhemoglob inwasmeasuredinthesupernatantsat540nm.

redBloodcellsandagglutination

StandardhumanredbloodcellswerepurchasedfromRegionalCen treofBloodDonationandBloodTreatmenti n Katowice,Poland.A gglutinationtestswerep erformedi n 9 6 -

flatbottomplates.Seriallydilutedsolutionsofanalyzedantibodies (100µl)weregentlym i xedw ith0 . 4 5 %

( hematocrit)suspensionofredbloodcells.Thelevelofagglutinatio nwasanalyzedusingaphase-

contrastmicroscopeafter20minofmoderateshaking.Asix- pointscalewasusedforevaluationofagglutinationintensity:from4 +(completecellaggregation),to3+,2+,1+,

±toanegativescore.Theagglutinationscorereflectsboththesizeof aggregatesandquantityofnonagglutinatedcells.

igg3self-

associationassay

OligomerizationofIgG3wasanalyzedsimilarlytothemethoddes cribedbyAbdelmoulaetal(2).Threedifferentconcentrationsofthe

purifieddomainmuteinswithM18variableregion(150,100,and2 0 µ g / m l)werei ncubatedw ithnonmutated,bioti-

nylatedIgG3M18(100ng/ml)for72–

96hat4°Cinthepresenceof4%BSA(Sigma,cat.#A9576).Then,thean tibodycomplexeswereprecipitatedbyadding50%PEG-

6000(Sigma)tothefinalconcentrationof7.5%.After1hofincubation onice,thesampleswerecentrifuged(30min,3,000×g,4°C).Thesupern atantswerepreservedforfurtheranalysis,andtheprecipitateswerew ashedwithi c e cold7 . 5 % PEG-

6000i n PBSandc e ntrifugedagain(30min,3,000×g,4°C).Then, theprecipitatesweredissolvedinPBSwith0.1%BSAbypipettingat3 7°C.BiotinylatedIgG3intheprecipitatesandsupernatantswasquanti fiedusingELISAonpolystyreneplatescoatedwithstreptavidin(8µg/

ml,Thermo,cat.

#434301,lot#RB233354).BoundbiotinylatedIgG3wasdetectedusin grabbitmonoclonalantibodyM1112(1:1,000,Abcam,cat.

#ab125904,lot#C050311,#GR1570921)andHRPlabeledgoatanti- rabbitpolyclonalantibody(1:3,000,Sigma,cat#A6667).Theabsorbance ofHRPproductwasmeasuredasdescribedabove.

sDs-PageandWesternBlotting

Sampleswereresolvedin8or12%polyacrylamidegelsundernon- reducingorreducingc onditionsa c c ordingtot heprotocolofLaem mli(14).AfterwetelectrotransferontoP V DFmem-

braneandblockingwith4%skimmilkinPBS,thesampleswereprobe dw ithanti-

mousek appap olyclonalantibodyc onjugatedwithbiotin(1:3,000, BioRad)andHRP-

labeledstreptavidin(1:40,000,Sigma).Alternatively,rabbitanti- HAtagpolyclonal

uncertaintyofa

(

∆a

)

=∂a∆b+∂a∆c=∆b+ b∆c antibody(1:10,000,Abcam,cat.#ab9110)andHRPlabeledgoat

∂b ∂c c c2 antirabbitF ( ab’)2polyclonalantibody( 1 : 1 0 , 0 0 0 , Sigma,c at.

(7)

#A6667,lot#SLBG3029)wereused.MouseIgG3heavychainwasd etectedusinggoatantiserumtomouseIgG3(1:500,Sigma,cat.

#ISO2)andrabbitanti-

goatpolyclonalantibody(1:5,000,Sigma,cat.#A4174).Bandswere visualizedusingImmobilonWesternChemiluminescentSubstratef orH R P ( Millipore).T hei mageswerecapturedandanalyzedusing FusionFxapparatuswiththeFusionCaptAdvanceFx5program(Vil bertLourmat,France).

resUlTs

comparisonofhemagglutinationinducedb yigg3andigg3F(ab’)

2

Inourpreviouswork,wereportedt hatF ( ab’)2obtainedfromIgG3i n ducesagglutinationofe rythrocytesbearinga c o g nate

antigen(11).However,asshownbelow,completeIgG3aggluti- nateserythrocytesmoreefficientlythanitsF(ab’)2,i.e.,amuchhigh erconcentrationofF(ab’)2thanthatoftheintactmoleculeisrequired foragglutination.Wec omparedhemagglutinationtriggeredby:

(i)native,purified,fulllengthIgG3,anditsF(ab’)2

obtainedbyIdeZproteasedigestionand(ii)culturemediaofcellsprod ucingrecombinantIgG3orrecombinantF(ab’)2(Table1).Concentr ationsofIgG3andF(ab’)2i nthemediaweremeasuredusingELISAan dequalizedforthecomparativetests.Weverifiedthequalityofanalyz edproteinsandconfirmedthatrecombinantIdeZprotease,whichcle avesIgG3atas i nglesitei n itsh ingeregion,generateshomogeneou sF(ab’)2(Figures1A,B).Basedonthisanalysis,weestimatedthatIgG 3wasabout32to64-

timesmorepotentthanitsF(ab’)2i nhemagglutination(Table1;Fig ure1 B ).T heresultsi ndicatet hatt heFcofIgG3stronglyenhancesh emagglutinationinducedbythisisotype.

Thech2DomainDerivedFromigg3e nhancedh emagglutinatione fficacyof anantibody

OurpreviousattemptstoexplainthemechanismofIgG3dependent hemagglutinationbroughtustothehypothesisthattheelongatedhing eofIgG3determinesitshemagglutinationability(11).Inlightofthen ewresults,thehypothesisrequiredrevision.Toelucidate

TaBle1|M18full-lengthIgG3 andM18IgG3F (ab’)2inducedhemagglutinationwit hdifferentefficacy.

concentration(nM) scoreofhemagglutinationa concentration(nM) scoreofhemagglutination

nativeigg3 F(ab’)2obtainedusingideZ recombinantigg3 recombinantF ( a b ’

)2

82.5 ++++ + 93 ++++ ±

41.3 ++++ ± 46.5 ++++

20.6 ++++ 23.3 ++++

10.3 ++++ 11.6 +++

5.2 +++ 5.8 +++

2.6 +++ 2.9 +

1.3 ++ 1.5 ±

0.6 ± 0.7

0.3 0.4

aRepresentativeresultsofthreeindependentexperiments.

FigUre1|HemagglutinationinducedbyM18IgG3anditsF(ab’)2.(a)IntegrityofgeneratedF(ab’)2wasverifiedusingSDS-

PAGE.InthecaseofthepurifiedantibodydigestedwithIdeZ,thegelswerestainedwithCoomassieBrilliantBlue(CBB).RecombinantF(ab’)2wasequippedwithH AtaganditsintegritywasconfirmedusingWesternblottingwithanti-HAtagantibody.Themolecularmassofnon-

reducedF(ab’)2isabout120kDa.HC,heavychain;HC’,heavychainfragmentsgeneratedafterIdeZcleavage;LC,lightchain;

(8)

(B)MicroscopicimagesoferythrocytesagglutinatedbyequalmolarconcentrationsofIgG3antibodyanditsF(ab’)2.Theantibodyfragmentwasobtainedfromna tiveIgG3usingIdeZdigestion.

(9)

whichdomainsofIgG3arecrucialforitshemagglutinationabil- ity,wegeneratedapanelofdomainmuteinsofagglutinatingIgG3and non-

agglutinatingIgG1isotypes(Figure2A).WegeneratedpairsofIgG1 andIgG3moleculeswiththesamevariableregionsandwithswapped:

(i)hingeregions;(ii)hingeregions+ CH1domains;

(iii)CH2domains,and(iv)CH3domainsandsearchedformuteinsoft wotypes:lossoffunctioninthecaseofIgG3andgainof-

functioninthecaseofIgG1.

PreliminaryexperimentsshowedthathingeswappingbetweenIg G1andIgG3hindersdisulfideb ondsformationb etweenchainsoft h emuteins( F i g u reS 1 i n SupplementaryMaterial).However,theI gG1_h3andIgG3_h-

1variantswerefunctionalandtheiraffinitytotheantigenwassimilart othatoftheparentalmolecules(showninFigure3).Asdemonstrated byDall’Acqua

eta l.,i m munoglobulinsw ithmodifiedh i ngesfrequentlyformfunc tionalheterotetramers( HC)2(LC)2d espitet hel ackofdisulfidebond sbetweenthechains(15).GelfiltrationconfirmedthatIgG1_h- 3andIgG3_h-

1havemolecularmassgreaterthan150kDaandformstable(HC)2(L C)2heterotetramers(datanotshown).Tomakesurethattheresultsofth efollowingexperimentsarenott heconsequenceofincorrectassemb liesoft hehinge-

swappedmuteins,wealsogeneratedmuteinswithswappedfrag- mentscomprisinghingeregionsandCH1domains.Allmuteinswere successfullyexpressedandtheirintegritywasverifiedusingSDS- PAGEandWesternblotting(FigureS1inSupplementaryMaterial).

Then,wecomparedhemagglutinationinducedbythemuteins(Ta bles2and3;Figures2B,C).Theresultsshowedthatneither

(10)

FigUre2|Hemagglut inationinducedbyIgG1andIgG3mut eins. (a)Generated domainmuteinsandtheirnom encl atu re.

(B) Microscopicimages ofhemagglutinationinducedbythedomainmuteins.Allantibodieswe reusedataconcentrationof1.5µg/ml,exceptofO10I gG1_CH2-3thatwasusedat3µg/ml.Scalebar—100µm;(c)HemagglutinationinducedbyselectedO10muteinsusedat10µg/ml.

(11)

FigUre3|Antigenbindingbythedomainmuteins.M18andO10antibodiesarespecifictoB-antigenpresentonhumanerythrocytes.B- anti genisapentasaccharideO-glycan.O10antibody,butnotM18,bindsterminalfragmentoftheantigen,calledB-trisaccharide.Antigen–

antibodyinteractionwasanalyzedusingELISAonimmobilizederythrocytes.InthecaseofO10,platescoatedwithBSAconjugatedwiththesyntheticB- trisaccharidewerealsoused.Theplotspresentmeanvaluesfromtwoindependentexperimentsperformedinduplicates.ResultsobtainedforIgG1andIgG3,the parentalmolecules,arepresentedoneachplottoallowconvenientcomparisons.

TaBle2 | S c o reso f h e m a g g l ut i n a t i o n i n d u c e d b y M 1 8 v a r i a n t s .

conc.(μg/ml) Parentaliggs swapofhingeregions swapofch1+hingedo mains

swapofch2 domains

swapofch3 domains

igg1 igg3 igg1_ igg3_ igg1_ igg3_ igg1_ igg3_ igg1_ igg3_

h-3 h-1 ch1h-3 ch1h-1 ch2-3 ch2-1 ch3-3 ch3-1

ia ii i ii i ii i ii i ii i ii i ii i ii i ii i ii

1.500 +++ ++ +++ +++ +++ +++ + + + ± ++ +++

0.750 +++ +++ + +++ ++ +++ ± + ++

0.375 ++ +++ ± + + ++ ± ++

0.188 + ++ ± +

0.094 ± ±

0.047

aResultsoftwoindependentexperimentsdesignatedasIandII.

(12)

TaBle3| S c o resof h e m a g g l u t i n at i o n i n duc e db y O 10 v ar i a nt s .

conc.(μg/ml) Parentaliggs swapofhingeregions swapofhinge+ch1do mains

swapofch2 domains

swapofch3 domains

igg1 igg3 igg1_h-3 igg3_h-1 igg1_ igg3_ igg1_ igg3_ igg1_ igg3_

ch1h-3 ch1h-1 ch2-3 ch2-1 ch3-3 ch3-1

ia ii i ii i ii i ii i ii i ii i ii i ii i ii i ii

3.000 ++ ++ +++ ++ +++ ++ + + ± + +++ +++

1.500 +++ +++ +++ ++ +++ ++ ± + ++

0.750 ++ ++ ++ ++ + ++ ± ±

0.375 + + + + ± ±

0.188 ± ± ± ± +

0.094

aResultsoftwoindependentexperimentsdesignatedasIandII.

theC H 1 d omainnort heh i nged e terminedt heagglutinationabil ityofIgG3.TheintroductionoftheCH3domainfromIgG1intoIgG3r esultedinamoleculewithslightlyreducedhemag-

glutinationscorebutCH3fromIgG3didnottranslateintoIgG1abilit yofhemagglutination.Incontrast,CH2swappingledtothegeneratio nofIgG1mutein(IgG1_CH2-

3)thatgainedtheabilityofhemagglutination(Tables2and3).Moreo ver,thepairedIgG3mutein(IgG3_CH21)hadabout16-

timesreducedhemaggluti-

nationscoreincomparisontotheparentalIgG3.

IgG1_CH23asa gainof-

functionmuteinwasparticularlyinteresting,becauseitindicatedthat theCH2domainofIgG3istheonecriticalforhemagglutination.How ever,IgG1_CH23aggluti-

natederythrocyteswithconsiderablylowerscorethannativeIgG3.

WealsocomparedhemagglutinationefficacyofnativeM18Ig G3anditsdeglycosylatedform.DeglycosylatedIgG3agglu- tinatederythrocytesabout16-

timesweakerthanthenativemolecule(TableS1inSupplementaryM aterial).

Tosumup,theabilityofIgG3toagglutinateerythrocytesresultsfro mitsuniquestructure,inwhichtheCH2domainisespeciallyimporta ntandstronglye n hancest hee f f i c acyoft heprocess.Althoughth eIgG3F(ab’)2issufficienttotriggerhemagglutina-

tion,itsefficacyismuchlowerincomparisontofull-

lengthIgG3,probablyjustduetothelackoftheCH2domain.Thehinge regionseemstohavel ittlei n f luenceonagglutinationability,becaus eIgG3withtheIgG1-

derivedhingeagglutinatederythrocytesonlyslightlylesseffectively thantheparentalmolecule.

igg3constantDomainsModifyFunctional affinitytoanantigen

Thereisageneralagreementthattheincreasedfunctionalaffinity ofIgG3resultsfromanavidityeffectcausedbytheinteractionsbetwe entheFcfragmentsofthemolecules(16).Inlinewiththat,weobserve dt hatIgG3bindstoe rythrocytesmuchmoree f f i -

cientlythanIgG1withthesamevariableregionandmuchmoreefficie ntlythanIgG3-

derivedF(ab’)2(FigureS2inSupplementaryMaterial).Someauthorsd i scusseda lsot hep otentialroleofN-

glycansi n IgG3u n i queproperties(17,1 8),butwed i d notobserve

anydifferencesinantigenbindingbetweencontrolanddeglycosylate dantibody(FigureS2inSupplementaryMaterial).

Aimingt ounderstandwhyIgG3h asincreasedfunctionalaffinity, w ea nalyzeda ntigenb indingbythedomainmuteins

(13)

(Figure3).TheresultsshowedthatthehingeregionofIgG3doesn otinfluencethefunctionalaffinityoftheantibody,butmuteinswit htheswappedCH1+ hinge,CH2,o rCH3domainshadchangedfu nctionalaffinity.TheintroductionofIgG3-

derivedCH1+ hingeo rCH2domainintotheIgG1frameworkenh ancedantigenbindingincomparisontotheparentalIgG1.Conver sely,thepairedIgG3muteinswithIgG1-

derivedCH1+hingeorCH2hadreducedfunctionalaffinity.Thes wappingoftheCH3domainsresultedintheIgG3muteinwithdecr easedaffinity,butinthepairedIgG1mutein,theeffectwasnotsubs tantial.ThecalculatedEC50valuesofantigenbind-

ingforIgG3muteinsindicatedthattheCH2domainhadthestrong estinfluenceonIgG3-

antigeninteraction(Table4).CH2swappingresultedinIgG3mut einswith3–12timesdecreasedfunctionalaffinity.

Overall,theresultsindicatethatthehigher(incomparisontoIg G1)functionalaffinityofIgG3toitsantigendoesnotdependona se paratec onstantd omainoft hisisotype,butr atherisanadditiveresu ltofd iscretepropertiesoft hea llt hreec onstantdomainsCH1,C H2,andCH3,butnotthehingeregion.Ofallthec onstantd omain s,C H 2 c ontributest hemosttot heh i ghfunctionalaffinityofIg G3.

Fc-

DependentOligomerizationoftheDo mainMuteins

ThehallmarkofmouseIgG3isitsabilitytooligomerize.The processdependsonFcfragment,butitsexactmolecularmecha- nismisu n known.Weanalyzedwhethert hed omainmuteinsform non-

covalentcomplexesusingpolyethyleneglycol(PEG)precipitatio nwithalabeledIgG3probe(2).Incomparisontotheoriginalmethod ,weusedbiotinylatedIgG3insteadofradiolabeledIgG3.TheIgG3- biotininteractedwitholigomerizingmuteinsandthecomplexesc omprisedt hemuteinandt heprobe.Thecom-

plexeswereprecipitatedusingPEG,andthen,IgG3-

biotinwasquantifiedinprecipitatesandsupernatantsusingELISA .Ahighprecipitate/supernatantr atioofIgG3-

biotinquantitiesi ndicatesthatthemuteinformsoligomers.

Theexperimentshowedthat5outof10analyzedmoleculesfor mPEGprecipitableoligomers—

IgG3(control)andallIgG3muteinsbuttheonecontainingIgG1- derivedCH2domainandnoneofIgG1muteinsbuttheonewithIgG 3derivedCH2domain

(14)

TaBle4|EC50ofmuteinbindingtotheantigencalculatedusingdatafromFigure3.

Variableregionofthemuteinandtypeoftheantigen ec50o f muteinbinding(nM)

igg3 igg3_h-1 igg3_ch1h-1 igg3_ch2-1 igg3_ch3-1

M18(erythrocytes) 0.24±0.02 0.38±0.01 0.61±0.03 0.86±0.04 0.87±0.07

O10(erythrocytes) 0.81±0.01 0.88±0.02 2.05±0.06 9.75±2.04 3.60±0.29

O10(B-trisaccharideconjugatedtoBSA) 0.50±0.04 0.38±0.02 1.15±0.06 1.40±0.03 0.79±0.06

FigUre4 |

Oli gomeriz atio nof the dom ai n m ut ei ns . T he ant i b odi es (M 18 variants, 150µg/ml)wereincubatedat4°CandoligomerswereprecipitatedusingPEG.

BiotinylatedIgG3wasusedasaprobethatoligomerizedwiththemuteinsandb ecameapartofthecomplexes.Thechartspresentresultsfromtwoindepende ntexperiments.Theresultsobtainedfor100and20µg/mlofthemuteinsares howninFigureS3inSupplementaryMaterial.ApercentageofthetotalIgG3- biotindetectedintheprecipitatesandthesupernatantsispresentedinFigureS4 inSupplementaryMaterial.

(Figure4).OligomerizationdidnotdependonCH2glycosyla- tion(FigureS5inSupplementaryMaterial).Theresultsindicatethatt heCH2domainiscrucialforoligomerizationofIgG3.

complementactivationbytheig g1andigg3Muteins

Similartohumanantibodies,t herearepronouncedd i f ferences betweenmouseIgGsubclassesintheirabilitytotriggercomple- mentc ascade.MouseIgG3a ctivatesc omplemente f f i c i e ntly, whereasmouseIgG1doesnot.Althoughtherearemanyexcel- lentreportsconcerningcorrelationbetweenhumanantibodystructu reanditsabilityofcomplementactivation,thestructural

determinantsofmouseantibodiesthatallowtotriggerthecas- cadearenotpreciselyknown.

ThebestcharacterizedIgwithrespecttocomplementactiva- tionishumanIgG1,inwhichseveralaminoacidresidueswereidentif iedascrucialfortheinitiationofthecomplementcascade(FigureS6i nSupplementaryMaterial)(19–

21).ThesequencealignmentofhumanIgG1,mouseIgG1,andmous eIgG3indicatedthatthemajorityofhumanIgG1aminoacid residue sinvolvedincomplementactivationareconservedinbothmouseiso types(FigureS6inSupplementaryMaterial).However,itrevealedt wodifferencesbetweenmouseIgG1andIgG3withintheregionscor- respondingtothoseinvolvedinC1qbindingbyhumanIgG1—

intheNterminalfragmentoftheCH2domain(Val231- Ser238inIgG1andIle234-

Pro238inIgG3,EUnumbering(22))andintheresidue322(FigureS6in SupplementaryMaterial).

Toverifyw hethert hesemotifsareinvolvedincomplementactiva tionbymouseIgG3,wegeneratedadditionalmuteinsinwhichweswa ppedthembetweenIgG1andIgG3—

IgG1_ILGGP(Val231IlePro232LeuGlu236GlyVal237GlySer23 8Pro);IgG3_VPEVS(Ile234ValLeu235ProGly236GluGly237Va lPro238Ser);IgG1_Arg322Lys;IgG3_Lys322Arg,andadoublemu teinIgG1_ILGGP_Arg322Lys.TheIgG3heavychaincontainingV PEVSdidnotassociatewithalightchainandwasnotsecreted(Figure 5A).Lys322Argreplacementcompletelyabolishedcomplementact i-

vationbyIgG3indicatingthatLys322iscrucialforthisprocess(Figu res5B,C).ThethreemuteinsofIgG1didnotbindC1qnoractivatedco mplementcascadeindicatingthattheIgG1frameworkpreventsactiv ationofcomplement(Figures5B,C).Theresultsshowedthatthekno wnC1q-

bindingmotifsarefunctionalinthemouseIgG3butnotinthemouseIg G1framework.

Someauthorsobservedacorrelationbetweenhingedepend- entsegmentalflexibilityofanantibodyanditsabilitytoactivatecomp lement(12).Thus,thedifferencesbetweenactivityofmouseIgG1and IgG3arefrequentlyexplainedonthebasisofthelengthoftheirhinges.

Wedecidedtoempiricallyverifythishypothesisusingthedomainm uteins.

First,weanalyzedthebindingofthecomplementcascadeini- tiator(C1q)tothemuteins(Figure6A).Theresultsshowedthatthehi ngemodificationdoesnotaffectC1qbinding.TheswappingoftheCH 2domainfromIgG1intoIgG3abolishedC1qbindingbythelatter.Int erestingly,thepairedmutein(IgG1_CH2-

3)didnotgaintheabilitytostronglyinteractwithC1q;itsbindingof C1qreached~12%ofthatcharacteristicfornativeIgG3.Swappingoft heCH1+hingedomainsortheCH3domainsbetweenIgG1andIgG3 moderatelydiminishedC1qbindingbyIgG3anddidnotincreaseits bindingbyIgG1.

(15)

Wealsoanalyzedcomplementactivationinserumtriggeredby e rythrocytesc o atedw itht hed omainmuteins( Figure6 B ).

(16)

FigUre5|FunctionalityofknownC1q-biningmotifsinmouseIgG1andmouseIgG3frameworks.

(a)IgG3_VPEVSdidnotassociatewithalightchainandwasnotsecretedbytheproducingcells.

(B)C1qbindingbythemuteins.PlatescoatedwithBSAconjugatedwiththeantigen,B-

trisaccharide,wereincubatedwiththemuteinsat3µg/ml(O10variants).ThenpurifiedC1qwasadded.Themuteinsbindtheantigenwithdifferentfunctionalaffinity.Th us,theC1qsignalwasnormalizedtothequantityoftheboundantibody.DatausedforcalculationofthenormalizedbindingareshowninFigureS7inSupplementaryMa terial.ErrorbarscorrespondtouncertaintycalculatedaspresentedinSection“MaterialsandMethods.”(c)Complementcascadeactivationbythemuteins(3µ g/ml).Erythrocytescoatedwiththeantibodies wereincubatedwithcomplementserum.Completelysis(100%)correspondstowater-inducedlysis.In(a–

c)representativeresultsoftwoindependentexperimentsareshown.

Thelevelsoferythrocytelysisindicatedthatallmuteinscontain- ingt heC H 2 d omaind e rivedfromIgG3a ctivatec omplementcasc ade.T heobservedd i f ferencesi n C 1 q bindingwerenotreflected bythedifferentefficacyofthecascadetriggering.Themuteinsw ithl ow( IgG1_CH23)ormoderate( IgG3_CH1h1,IgG3_CH3- 1)abilityofC 1 q -

bindinga ctivatedc omplementcascadew ithe f f i c acys i m i lartot hatoft hep arentalIgG3.Itseemsthatinthecaseoftheantibodiescom prisingIgG3-

derivedCH2domain,evenweakinteractionwithC1qwassufficient toeffectivelyactivatethewholecomplementcascade.

TheresultsshowedthatbothIgG1andIgG3-

derivedCH1,hinge,andC H 3 d omainsarep ermissiveforC 1 q bin dingandcomplementa ctivation.T heC H 2 d omainofIgG1isa no npermissiveframeworkfortheknownC1qbindingmotifs.

Overall,theresultspointedtotheCH2domainasthemajordeter minantofmouseIgG3functionsanduniquepropertiesofthisisotype .Inthelastpartofourwork,wesoughtforfeaturesoft heIgG3- derivedC H 2 d omaint hatmaya c c ountforIgG3distinctivecharac teristic.

PropertiesofMuteinsWithreversed chargeof t h e c h2D o m a i n s

ThemoststrikingdifferencebetweenmouseIgG3derivedCH2 andCH2domainsofotherIgGsubclassesistheircharges;onlythefor merhasastrongpositivecharge.Forexample,atpH7.0,thenetcharge oftheCH2domainofIgG1is−2.6andofIgG3is+2.6(cal-

culatedusinghttp://protcalc.sourceforge.net/).Hovendenetal.

(9)foundacorrelationbetweenthechargeofCH2domainsofmouseI gGsubclassesandtheiraffinitytoanegativelychargedpolyvalentant igen(polyglutamicacid,poly-

GA);andthehighaffinityofIgG3topoly- GAwasattributedtothechargeofitsCH2domain.

WeanalyzedspatialdistributionofchargedresiduesontheCH2sur faceofIgG1andIgG3usingpreviouslyobtainedmolecularmodels(1 1)anddatadepositedinPDBrecord1IGY(Figure7A).Weidentified 29residuesthatdifferb etweenCH2domainsofmouseIgG1andIgG3 ,9ofwhichhavedifferentcharge(FigureS9inSupplementaryMateri al).Basedonthemodels,weselectedfourbasicresidues(His274,Lys 282,Arg315,andLys326)thatareregularlyspacedontheoutersurfac eoftheCH2domainofIgG3

(17)

FigUre6|Complement activationinducedbythedomainmuteins.

(a)C1qbindingtothedomainmuteins(O10variants).Thedataused forcalculationsarepresentedinFigureS7inSupplementaryMaterial.Errorbarsc orrespondtouncertaintycalculatedasdescribedinSection“MaterialsandMethods.”

(B)Complementcascadeactivationbythedomainmuteins.Erythrocytescoatedwith3µg/mlofthemuteinswereincubatedwithcomplementseru m.100%lysiscorrespondstowater-

inducedlysis.Thebarspresentmeanvaluesandstandarddeviationofduplicatesfromoneexperiment.Resultsobtainedwith1.5µg/mlofthemuteinsarepr esentedinFigureS8inSupplementaryMaterial.(a,B)Representativeresultsoftwoindependentexperiments.

(Figure7A;FigureS9inSupplementaryMaterial).Thesameresi- duesinIgG1arenotcharged.ToverifywhetherCH2chargeinflu- encesIgG3properties,wegeneratedtwomuteinsinwhichthefourresi dueswereswapped—

IgG3_CH2charge(His274GlnLys282ValArg315AsnLys326Ala) andIgG1_CH2charge(Gln274HisVal282LysAsn315ArgAla326 Lys).Thesemuteinswereexpressed,correctlyassembled,ands olub le(FigureS1inSupplementaryMaterial).T heintroducedmutationsr eversedthechargeoftheCH2domains.Itwas0.6and−0.7atpH7.0for theCH2domainofIgG1_CH2chargeandIgG3_CH3charge,respect ively.

Wec omparedpropertiesoft hep arentalmoleculesandt hemutei nswithmodifiedCH2charge.Weobservedthatthechargeinfluenced bindingtoerythrocytes(Figure7B).However,hemag-

glutination,oligomerization,C 1 q binding,andc omplementactiva tionwerenotaffectedbythischargemodification(Table5;Figures7 C–E).Theresultsindicatethatthefouranalyzedresi-

dueshaveonlylimitedimpactontheIgG3properties.Wecannotexcl udethatotherchargedresidueswithintheCH2domainofIgG3mayi nfluenceordeterminepropertiesofthisisotype.

DiscUssiOn

Wesummarizedtheresultsoftheex perimentsinTable6.Weobser vedthatmoleculardeterminantsoftheuniquefeaturesofIgG3arepr esentintheCH2domain.However,themodificationsofC H 2 d i f fe

rentlyaffectedt hefeaturessuggestingt hatt heirmolecularbasesaredi fferent.

(18)

TheprominentroleoftheCH2domaininIgG3biologywasorigi nallyreportedbyHovendene t a l.(9).T heauthorsi nves-

tigatedh i ghlyprotectiveIgG3antibodiesagainstt hec apsularanti genofB.anthracis.T heygeneratedanIgG3muteinw ithCH2swap pedfromnonprotectiveIgG2b.Themuteinlostpro-

tectiveactivityoftheparentalmoleculeandhadreducedaffinitytot heantigen.Inc ontrasttot heworkofHovendene t a l.,wegenerated, forthefirsttime,anantibodymuteinthatgainedtheuniqueproperti esofIgG3.WeswappedIgG3-

derivedCH2intoIgG1,andtheobtainedmolecule(IgG1_CH2- 3)hadpropertiestypicalforIgG3—

itagglutinatederythrocytes,oligomerized,hadi ncreasedfunction alaffinitytoa p olyvalentantigen,andactivatedthecomplementca scade.Thus,weprovedthatt heseuniquefeaturesofmouseIgG3co uldbetransferredintoanewantibodyframework.

ThemechanismofIgG3-

dependenthemagglutinationisstillnotcompletelyunderstood.We previouslyreportedthatF(ab’)2ofIgG3issufficienttoagglutinateer ythrocytes(11).Here,weshowthatthepresenceoftheCH2domain intheIgG3moleculepro-

foundlydiminishestheantibodyconcentrationrequiredfortheF(

ab’)2mediatedprocess.Moreover,t hei ntroductionofIgG3- derivedCH2intoIgG1frameworkresultedintheIgG1_CH2- 3muteint hatagglutinatese rythrocytes.T heresultsi ndicatet hatef ficienthemagglutinationist riggeredonlybyt heantibodiesequipp edwiththeIgG3derivedCH2domain.

TheCH2domainofIgG3ispositivelychargedatneutralpH.Inco ntrast,theCH2domainsofotherIgGsubclassesarenegatively

(19)

FigUre7|PropertiesofthemuteinswithmodifiedchargeoftheCH2domain.

(a)ChargelocationontheCH2domainofIgG1andIgG3.Basicresidues(Arg,His,andLys)arefaintred,acidicresidues(Asp,Glu)areblue,andasiteofCH2N- glycosylation(Asn297)isgreen.His274,Lys282,Arg315,andLys326ofIgG3CH2aredarkred.ThesefourresidueswereswappedbetweenIgG1andIgG3togenerateIgG 1_CH2chargeandIgG3_CH2chargemuteins.Theimagespresentviewsobtainedby90°rotationofthedomainmodels.

(B)Antigenbindingbythemuteins.Thechartspresentrepresentativeresultsoftwoindependentexperimentsperformedinduplicatesortriplicates.Errorbarsequal toSD.

(c)Oligomerizationofthemuteins.Resultsfromtwoindependentexperimentswith100µg/mloftheantibodies(M18variants)areshown.ApercentageofthetotalIg G3-

biotindetectedinprecipitatesandsupernatantsarepresentedinFigureS4inSupplementaryMaterial.ResultsforIgG1andIgG3arethesameasinFigure4becausethed atawerecollectedinthesameexperiments.

(D)C1qbindingbythemuteins(O10variants,3µg/ml).DatausedforcalculationofthenormalizedbindingareshowninFigureS7inSupplementaryMaterial.Thechartpres entsrepresentativeresultsoftwoindependentexperiments.Er rorbarscorrespondtouncertaintycalculatedasp resentedi nSection“MaterialsandMethods.” (e

(20)

)Complemen tcascadeactivationbythemuteins(3µg/ml).Erythrocytescoatedwiththeantibodieswereincubatedwithcomplementserum.Completelysis(10 0%)correspondsto

water-inducedlysis.Representativeresultsoftwoindependentexperimentsareshown.

(21)

TaBle5|Hemagglut inationi nduc ed byth emut eins w ith modifi edcharge of t heCH2domai n.

M18variants O10variants

conc.(μg/ml) igg1 igg3 igg1_ch2charge igg3_ch2charge conc.(μg/ml) igg1 igg3 igg1_ch2charge igg3_ch2charge

5.00 ±a ++++ +++ 2.00 ++++ ± ++++

2.50 ++++ +++ 1.00 +++ +++

1.25 +++ ++ 0.50 ++ ++

0.63 ++ ++ 0.25 ± ±

0.31 + ± 0.13

0.16 ± 0.06

0.00 0.00

aRepresentativeresultsoftwoindependentexperiments.

TaBle6 |

S u m m a r y o f e x p e r i m e n t a l results.

igg3feature/functioni nfluencebythech2domain

Presence netchargea glycosylation Hemagglutination

Functionalaffinitytop olyvalentantigens Oligomerizationinsolution Activationo f c om p l e m e n t cascade

Strongenhancem ent

Strongenhancem ent

Dependence Dependence

Noeffect Enhancement

Weaktomodera tee ffect

Noeffect

Noeffect Noeffect

Noeffect Dependenceb

aAssociatedwiththepresenceofHis274, Lys282,Arg315, Lys326.

bDatanotshown.

chargedunderthesamecondition.Consideringthaterythrocytesurf acehasa strongnegativechargeandhighzetap otential,itwaslikelyth atapositivechargeoftheIgG3-

derivedCH2domainreducesthezetapotentialandasaconsequencee nhanceshema-

gglutination.Unexpectedly,netchargemodificationoftheCH2dom ainsinIgG1andIgG3didnotchangehemagglutinationpotentialofth eseisotypes,andwehadtorejectthehypothesislinkingtheCH2netch argewiththeefficiencyofhemagglutination.

Alternatively,antibodyoligomerizationmayexplainhemag- glutinationenhancementbytheCH2domainofIgG3.Weshowedtha tthisdomainsolelydeterminedantibodyoligomerizationinsolutio nandthusmostprobablyalsoonamulti-

epitopesurface.Itispossiblethatoligomerizationbetweenantibodie sboundtoseparateerythrocytesoccursparalleltoasensitizationpha seofhemagglutination.T hus,antibodyoligomerizationmayl eadto theformationofzipperlikestructuresthatstabilizecellaggre- gatesandincreaseahemagglutinationscore.Moreover,theCH2dom ainofIgG3increasedfunctionalaffinityofanantibodytoerythrocyte surface.Thus,hemagglutinationenhancementmayatleastpartially dependontheincreasedaffinity.

However,theobservedenhancementofhemagglutinationbythe CH2domainofIgG3wasaffectedbyenzymaticdeglyco-

sylation.Incontrast,oligomerizationin solutionandi ncreasedfunc tionalaffinitytop olyvalentantigenwerei ndependentofC H 2 glyc osylation.T h isd i f ferencei ndicatest hatantibodyoligomerizatio nd oesnotfullya c c ountfort heC H 2 d omain-

mediatedenhancementofhemagglutination.

MouseIgG3hasaputativesiteofN-

glycosylationinitsCH3domainonAsn471.Pankareportedthatthemut ationofthis

(22)

Asnresiduei ntoSerd i m i n i shedtheself-

associationofIgG3(17).ThisfindingwaslatercontradictedbyK urokietal.,whoprovidedevidencethatthisputativeN-

glycosylationsiteintheCH3domainisnotoccupiedandthemutati onAsn471ThrdoesnotinfluenceIgG3self-

associationorcryoglobulinactivity(18).Ourobservationsareinl inewiththefindingsofKurokietal.Wedidnotobserveanydiffere ncesbetweenoligomerizationofIgG3anditsenzymaticallydegly cosylatedvariant.Itisimpor-

tantton otethatweandKurokie t al.u sedP EG-

precipitationforoligomerizationanalyses.Pankauseddifferentm ethods,ELISAandnativeelectrophoresis,whichmayaccountfo rthediscrepancies.

Greenspane t a l.showedt hatFc-

dependentoligomerizationincreasesfunctionalaffinityofIgG3to polyvalentantigens(5).Ourresultsc onfirmt hatf i nding,butwesh owedt hatt herela-

tionbetweenoligomerizationandincreasedfunctionalaffinityism orecomplexthanpreviouslythought.First,functionalaffinityofIg G3wasinfluencednotonlybyFcregion(CH2andCH3 domains )butalsobytheCH1domain.Second,functionalaffinitytothepoly valentantigen(Bantigen)wasmodulatedbytheCH2charge.Incont rast,oligomerizationinsolutionrequiredonlythepresenceoft heC H 2 d omainofIgG3andw asi nsensitivetotheintroducedc harge m odifications.T heresultsshowedthatthemechanismbehindhig hfunctionalaffinitymaydependonmorefactorsthanoligomerizat ioninsolutiondoes.

Theobservedi n f luenceoft heC H 1 d omainonfunctionalaff inityisdifficulttoexplain.TheCH1domainofIgG3hasamorepositiv enetchargethantheCH1domainofIgG1(9).Itislikelythatthenetc hargeoftheCH1domaininfluencesthebindingofthedomainmute instoerythrocytes,whichhaveastrongnegativecharge.However,t heIgG3-

derivedCH1domainalsoenhancedthebindingofIgG1_CH1- 3toasurfacewiththeimmobilizedtrisaccharideB-

BSAconjugate.Thus,theresultssupportpreviousobservations(2 3)thattheCH1domainmayinfluenceavariabledomainandaparat opeofanantibody.

Accordingtothegeneralview,theFabandFcfragmentsareinde pendentpartsofanantibody(24).However,ourresultsdem- onstratethattheFc,particularlyitsCH2domain,mayinfluenceFa b-

mediatedantigenbinding.Therearetwopossiblemechanismsofth isphenomenon—intramolecularsignaling(25)

[calledbysomeauthorsasanintramolecularallostery(16)]orinter molecularcooperativity.

Thereareseveralexamplesofintramolecularsignalingobser vedbydifferentauthorsinvestigatinghowtheisotype

(23)

switchingchangesanantibodyaffinitytoitsantigen[reviewedinRef.

(16,26)].TheeffectsoftheCH1domainsorFcfragmentsonvariabler egionsarewelldocumented,butconsideredaratheruniquep henom enon(16).Itism orelikelythattheincreasedaffinityofIgG3toitsanti genresultsfromcooperativityofitsCH2domains.Withinthisdomai n,aspecificsiteofself-

associationmaybepresent,whichgovernsoligomerizationofananti bodyandpre-

determinestheincreasedaffinitytomultivalentantigens.However,w ecannotexcludeotherscenarios—

theinvolvementofboththeCH2andCH3domainsinIgG3intermole cularinteractionsorevensoleCH3-

CH3interactions,assumingthattheCH2domainsinfluencethew hol emoleculestructureandpromotereciprocalinteractionsoftheCH3d omainsofneighboringmolecules.

Otherfactors,e.g.,influenceoftheCH1domainonaparatope,prop ertiesofanantigen(charge),spatialdistributionofepitopes,intermol ecularforcesbetweenepitopeandparatope,oravariabledomainfram eworkmayfurthermodulatefunctionalaffinityofIgG3uponmultiva lentantigenbinding.

Diebolderatal.describedrecentlyaninterestingexampleofFc- dependentantibodyoligomerization.Analysesofantibodybindingt oDNP-

labeledliposomes(amultivalentantigen)revealedthathumanIgGm ayformhexamerst hroughnon-

covalentinteractionsbetweent heirconstantregions(27).Severalm uta-

tionsthatenhancetheseinteractionsandsubsequentcomplementacti vationwerereported(27).TheFc-

interactionspromotingantibodyhexamerizationdidnotchangeaffin itytot hecognateantigen.Thus,thisphenomenonseemstobedifferen tfromIgG3oligomerization,anditisstillanopenquestionwhetherm ouseantibodiesareabletoformsuchhexamers.

Currently,nostructureisavailablefora full-

lengthmouseIgG3oritsFcfragment.Weperformedsomeanalysesu singamolecularmodelofIgG3obtainedbycomparativemodeling,b utitsresolutionisnotsufficientforindepthstudies.IgG3crystal- lizationmightprovideadirectinsightintothemechanismofitsoligo merization,aswasinthecaseofhumanIgG1hexameriza-

tiondescribedinthecitedwork(27).

Complementc ascadeactivation,asaneffectorf unctionofantibo dies,constitutesa first-

lineofdefenseagainstmicrobialinfections.Asthecascadeprogresse s,componentsofthecomple-

mentaredepositedona p athogensurfaceandactasopsoninsforphag ocyticcells.Moreover,thecomplementlysesinvadingpathogensby formingmembraneattackingcomplex.WeconfirmedthatC1q- bindingmotifs,knownfromhumanIgG1,arefunctionalinthemouse IgG3framework.Ontheotherhand,wedidnotobservecomplementa ctivationbymouseIgG1equippedwiththemotifs.Theresultsindicat ethatthepresenceoftheknownC1q-

bindingmotifsisnotsufficientforcomplementactivation

byanantibody.Themotifsmustbesurroundedbyapermissiveframe work,providede.g.,byhumanIgG1ormouseIgG3.

Ourworksuggeststhatanoveltypeofmonoclonalantibod- iesmaybegeneratedbyreplacingtheCH2domainofahumanantibo dywiththehomologsfragmentofmouseIgG3.HumanIgG1subclas sisthemostfeasibletargetframeworkforgenerationofsuchIgG3- inspiredhybridmouse/humanmolecule(28).Ourobservationindic atesthatthegeneratedhybridanti-

bodyshouldp reservetheabilityt oactivatecomplementandmayha veincreasedaffinitytopolyvalentantigens.SincethemouseIgG3s ubclassishighlyprotectiveagainstseverallife-

threateningmicrobialinfections,thehybridmoleculemaybeveryu sefulinpreventingorfightinglethalpathogens.However,thehybrid antibodywiththemouseCH2maybeimmuno-

genic.Todecreasetheriskofanunwantedimmuneresponse,themo usecomponentshouldbereducedtoaminimum.Thus,thep ropertie so ftheCH2domainderivedfrommouseIgG3shouldbefurtherinve stigatedandeffortsshouldbemadeespe-

ciallytoidentifyfragmentsofthisdomainthatdeterminesitspropert ies.

aUThOrcOnTriBUTiOns

TKconceivedanddidallexperiments.TKandJBanalyzedanddiscus sedtheresults.ThemanuscriptwaswrittenbyTKandJB.Theauthors acceptedthefinalversionofthemanuscript.

acKnOWleDgMenTs

WethankDr.PawełM akforanalyticalgelf iltrationo fIgGmuteins.

FUnDing

ThisworkwassupportedbythePreludiumGrantno2015/17/N/NZ1/

00039toTKfundedbytheNationalScienceCentre,Poland.Facultyo fBiochemistry,BiophysicsandBiotechnologyoft heJagiellonianU niversityi n Krakówisa p artneroft heLeadingNationalResearchCe nter(KNOW)supportedbythePolishMinistryofScienceandHigher Education.

sUPPleMenTarYMaTerial

TheSupplementaryMaterialforthisarticlecanbefoundonlineathttp s://www.frontiersin.org/articles/10.3389/fimmu.2018.01096/full#s upplementarymaterial.

reFerences

1. CollinsAM.IgGsubclassco-

expressionbringsharmonytothequartetmodelofmurineIgGfunction.ImmunolC ellBiol(2016)94:949–54.doi:10.1038/icb.2016.65

2. AbdelmoulaM , SpertiniF,ShibataT,GyotokuY,LuzuyS , LambertPH,etal.IgG 3isthemajorsourceofcryoglobulinsinmice.JImmunol(1989)143:526–32.

3. GreyHM,HirstJW,CohnM.Anewmouseimmunoglobulin:IgG3.JExpMed (1971)133:289–304.d oi:10.1084/jem.133.2.289

(24)

4. GreenspanNS,MonafoWJ,DavieJM.InteractionofIgG3anti-

streptococcalgroupAcarbohydrate(GAC)antibodywithstreptococcalgroupA vaccine:enhancingandinhibitingeffectsofantiGAC,antiisotypic,andanti- idiotypicantibodies.JImmunol(1987)138:285–92.

5. GreenspanNS,CooperLJ.CooperativebindingbymouseIgG3anti-

bodies:i mplicationsforf unctionalaffinity,ef fectorf unction,andisotyperestriction .SpringerS eminImmunopathol( 1 9 9 3 ) 1 5 : 2 7 5 – 9 1 . d oi:10.1007/BF00201107 6. ChemounyJM,Hurtado-

NedelecM,FlamentH,BenMkaddemS,DaugasE,VrtovsnikF,etal.Protectiverol eofmouseIgG1incryoglobulinaemia;insights

(25)

fromananimalmodelandrelevancetohumanp athology.NephrolD ialTransplan t( 2 0 1 6 ) 3 1 : 1 2 3 5 – 4 2 . d oi:10.1093/ndt/gfv335

7. KurodaY,KurokiA,KikuchiS,FunaseT,NakataM,IzuiS.Acriticalroleforsialylatio nincryoglobulinactivityofmurineIgG3monoclonalantibodies.JImmunol( 2 0 0 5 ) 1 7 5 : 1 0 5 6 – 6 1 . d oi:10.4049/jimmunol.175.2.1056

8. MichaelsenTE,KolbergJ,AaseA,HerstadTK,HoibyEA.ThefourmouseIgGisotypes differextensivelyinbactericidalandopsonophagocyticactivitywhenreactingwiththe P1.16epitopeontheoutermembranePorAproteinofNeisseriameningitidis.ScandJI mmunol(2004)59:34–9.doi:10.1111/j.03009475.2004.01362.x

9. HovendenM,HubbardMA,AucoinDP,ThorkildsonP,ReedDE,WelchWH,etal.

IgGsubclassandheavychaindomainscontributetobindingandprotec- tionbymAbstothepolygammaD-

glutamicacidcapsularantigenofBacillusanthracis.PLoSPathog(2013)9:e1003 306.doi:10.1371/journal.ppat.1003306

10. HubbardMA,ThorkildsonP,KozelTR,AucoinDP.Constantdomainsinflu- encebindingofmousehumanchimericantibodiestothecapsularpolypep- tideofBacillusanthracis.Virulence(2013)4:483–8.doi:10.4161/viru.25711 11. KlausT,BzowskaM,KuleszaM,KabatAM,Jemiola-

RzeminskaM,CzaplickiD,etal.AgglutinatingmouseIgG3comparesfavourably withIgMsintypingofthebloodgroupBantigen:functionalityandstabilitystudies.

SciRep(2016)6:30938.doi:10.1038/srep30938

12. DanglJL,WenselTG,MorrisonSL,StryerL,HerzenbergLA,OiVT.Segmentalflexibi lityandcomplementfixationofgeneticallyengineeredchimerichuman,rabbitandmou seantibodies.EMBOJ(1988)7:1989–94.

13. KhawliLA,BielaBH,HuP,EpsteinAL.Stable,geneticallyengineeredF(ab’) (2)fragmentsofchimericT N T-

3e x pressedi n mammalianc ells.HybridHybridomics( 20 02 ) 2 1 : 1 1 – 8. d oi:10.1089/15368590252917593

14. LaemmliUK.Cleavageofstructuralproteinsduringtheassemblyoftheheadofbac teriophageT4.Nature(1970)227:680–5.doi:10.1038/227680a0

15. Dall’acquaWF,CookKE,DamschroderMM,WoodsRM,WuH.Modulationoft heeffectorfunctionsofahumanIgG1throughengineeringofitshingeregion.JIm munol(2006)177:1129–38.doi:10.4049/jimmunol.177.2.1129

16. YangD,KroeBarrettR,SinghS , R obertsC J,LaueTM.IgGc ooperativity–

ist herea llostery?Implicationsforantibodyf unctionsandt herapeuticanti- bodydevelopment.MAbs(2017)9:1231–52.doi:10.1080/19420862.2017.

1367074

17. PankaDJ.GlycosylationisinfluentialinmurineIgG3self- association.MolImmunol( 1 9 9 7 ) 3 4 : 5 9 3 – 8 . d oi:10.1016/S0161- 5890(97)000801

18. KurokiA,KurodaY,KikuchiS,LajauniasF,FulpiusT,PastoreY,etal.Levelofgalactos ylationd e terminesc ryoglobulina ctivityofmurineIgG3monoclonalrheumatoidf a ctor.Blood( 2 0 0 2 ) 9 9 : 2 9 2 2 – 8 . d oi:10.1182/blood.V99.8.2922

19. DuncanAR,WinterG.ThebindingsiteforC1qonIgG.Nature(1988)332:738–

40.d oi:10.1038/332738a0

20. TaoM H , SmithR I , MorrisonSL.Structuralfeaturesofhumani m munoglob- ulinG t hatd e termineisotype-

specificd i f ferencesi n c omplementa ctivation.JExpMed(1993)178:661–

7.doi:10.1084/jem.178.2.661

21. IdusogieEE,PrestaLG,GazzanoSantoroH,TotpalK,WongPY,UltschM,etal.

MappingoftheC1qbindingsiteonrituxan,achimericantibodywithahumanIgG1 Fc.JImmunol(2000)164:4178–84.doi:10.4049/jimmunol.164.8.4178

22. KabatEA,WuTT,PerryHM,GottesmanKS,FoellerC.SequencesofProteinsofIm munologicalInterest.Bethesda,MD:U.S.Dept.ofHealthandHumanServices,P ublicHealthService,NationalInstitutesofHealth(1991).

23. TudorD,YuH,MaupetitJ,DrilletAS,BoucebaT,SchwartzCornilI,etal.

Isotypemodulatesepitopespecificity,affinity,andantiviralactivitiesofantiHIV- 1humanbroadlyneutralizing2F5antibody.ProcNatlAcadSciUSA(2012)1 0 9 : 1 2 6 8 0 – 5 . d oi:10.1073/pnas.1200024109

24. MurphyK,WeaverC.AntigenrecognitionbyBcellandT-

cellreceptors.9thed.In:MurphyK,WeaverC,editors.Janeway’sImmunobiology.

NewYorkandLondon:GarlandScience,Taylor&FrancisGroups(2017).p.139–

72.

25. BowenA,CasadevallA.Revisitingtheimmunoglobulinintramolecularsignal- inghypothesis.TrendsImmunol(2016)37:721–3.doi:10.1016/j.it.2016.08.014 26. JandaA , BowenA , GreenspanN S , C asadevallA . Igc onstantregione f fectsonv ar

iableregionstructureandf unction.FrontMicrobiol( 2 0 1 6 ) 7 : 2 2 . doi:10.3389/fm icb.2016.00022

27. DiebolderC A , BeurskensFJ,D eJongRN,KoningR I , StrumaneK , LindorferM A , e t a l.Complementisa ctivatedbyIgGhexamersassembledatthecellsurface.Sci ence(2014)343:1260–3.doi:10.1126/science.1248943

28. IraniV,GuyAJ,AndrewD,BeesonJG,RamslandPA,RichardsJS.Molecularprop ertiesofhumanIgGsubclassesandt heiri mplicationsford e s i g ningtherapeuti cmonoclonalantibodiesagainstinfectiousdiseases.MolImmunol(2015)6 7 : 1 7 1 – 8 2 . d oi:10.1016/j.molimm.2015.03.255

ConflictofInterestStatement:Theauthorsdeclarethattheresearchwascon- ductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstru edasapotentialconflictofinterest.

Copyright©2018KlausandBereta.Thisisanopen-

accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CC BY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginal author(s)andthecopyrightownerarecreditedandthattheoriginalpublicationinthisjourn aliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproduct ionispermittedwhichdoesnotcomplywiththeseterms.

Cytaty

Powiązane dokumenty

2XU UeVXOWV KaYe dRcXmeQWed KiJK YaOXe RI TXeUceWiQ aV a VXEVWaQce mRdiIyiQJ UeViVWaQce WR WUeaWmeQW ZiWK ciVSOaWiQ aQd SacOiWa[eO 6eQViWiYiWy RI RYaUiaQ caQceU ceOOV

For AP antigen, the frequency of elevated antibody concentration was 14% among intermittently infected patients (Group 2) and 62% among chronically infected

In order for organizations such as the NSF to successfully support basic research, a better understanding of the effect of resources on research outcomes is required, especially in

Given that an intact MBD is able to direct nuclear targeting of MeCP2 R255X, this weak binding of MeCP2 R270X to KPNA3/KPNA4 is unlikely to be necessary for the nuclear localization

Abbreviations: ACT, adoptive cell transfer; ADCC, antibody-de- pendent cell-mediated cytotoxicity; ANG-2, angiopoietin 2; CCL, chemokine (C-C motif) ligand; CCR, C-C

In three studies, we tested an alterna- tive prediction that the salient lack of personal control (vs. control) experi- enced in the context of unemployment can lead to

Overall, the results indicate that the higher (in comparison to IgG1) functional affinity of IgG3 to its antigen does not depend on a separate constant domain of this isotype,

We swapped IgG3­derived CH2 into IgG1, and the obtained molecule (IgG1_CH2­3) had properties typical for IgG3—it agglutinated erythrocytes, oligomerized, had increased