• Nie Znaleziono Wyników

Transplantable melanomas in hamsters and gerbils as models for human melanoma : sensitization in melanoma radiotherapy : from animal models to clinical trials

N/A
N/A
Protected

Academic year: 2022

Share "Transplantable melanomas in hamsters and gerbils as models for human melanoma : sensitization in melanoma radiotherapy : from animal models to clinical trials"

Copied!
32
0
0

Pełen tekst

(1)

InternationalJournalof MolecularSciences

Review

TransplantableMelanomasinHamstersandGerbilsa sModelsforHuman Melanoma.S e n s i t i z a t i o n in MelanomaR a d i o t h e r a p y —

F r o m A n i m a l M o d e l s t o ClinicalTrials

MartynaS

´niegocka1,*I D,EwaPodgórska1,*,PrzemysławM.Płonka1ID,MartynaElas1ID,Boz˙enaRomanowska- Dixon2,MałgorzataSzczygieł1,MichałA.Z˙mijewski3,

MirosławaCichorek4,AnnaMarkiewicz2,AnnaA.Broz˙yna5,6,AndrzejT.Słominski6,7,*I D andKrystynaUrban´ska1,*

1 DepartmentofBiophysics,FacultyofBiochemistry,BiophysicsandBiotechnology, JagiellonianUniversityinKraków,31-

007Kraków,Poland;przemyslaw.plonka@uj.edu.pl(P.M.P.);m a r t y n a . e l a s @ u j . e d u . p l ( M . E . ) ; g o s i a . s z c z y g i e l @ u j . e d u . p l ( M . S . )

2 DepartmentofOphthalmologyandOcularOncology,MedicalCollegeofJagiellonianUniversityinKraków, 31-007Kraków,Poland;bozena.romanowska-dixon@uj.edu.pl(B.R.-D.);annamarkiewicz@interia.pl(A.M.)

3 DepartmentofHistology,MedicalUniversityofGdansk,80-210Gdan

´sk,Poland;mzmijewski@gumed.edu.pl

4 Departmento f Em bryology,M e d i c a l U n i ve r s i t y o f G d a n s k , 8 0 - 2 1 0 G d a n

´sk,Po l a n d ; c i c h o rek@gumed.edu.pl

5 DepartmentofTumorPathologyandPathomorphology,FacultyofHealthSciences,NicolausCopernicusUniversit yCollegiumMedicuminBydgoszcz,OncologyCentre-

Prof.Franciszek ŁukaszczykMemorialHospital,85-796Bydgoszcz,Poland;anna.brozyna@cm.umk.pl 6 DepartmentofDermatology,ComprehensiveCancerCenterCancerChemopreventionProgram,

UniversityofAlabamaatBirmingham,Birmingham,AL35294,USA 7 VAMedicalCenter,Birmingham,AL35294,USA

* Correspondence:martyna.sniegocka@doctoral.uj.edu.pl(M.S

´.);Ewa.podgorska@doctoral.uj.edu.pl(E.P.);aslominski@uabmc.edu(A.T.S.);krystyna.urbanska@uj.edu.pl(K.

U.);Tel.:+001-205-934-5188(A.T.S.);

+48-12-664-6153(K.U.)

Received:29December2017;Accepted:28March2018;Published:1April2018 checkforupdate s

Abstract:Thefocusofthepresentreviewistoinvestigatetheroleofmelaninintheradioprotectionofm e l a n o m a a n d a t t e m p t s t o s e n s i t i z e t u m o r s t o r a d i a t i o n b y i n h i b i t i n g m e l a n o g e n e s i s . E a r l y studiesshowedradicalscavenging,oxygenconsumptionandadsorptionasmechanismsofmelaninradioprotecti on.Experimentalmodelsofmelanomainhamstersandingerbilsaredescribedaswellastheiruseinbioche micalandradiobiologicalstudies,in clu d ing aspontaneouslymetastasizingocularmodel.S o me resultsfrominvitrostudiesontheinhibitionofmelanogenesisarepresentedaswellasradio- chelationtherapyinexperimentalandclinicalsettings.Incontrasttocutaneousmelanoma,u v e a l m e l a n o m a i s v e r y s u c c e s s f u l l y t reatedw i t h r a d i a t i o n , b o t h u s i n g p h o t o n a n d pr otonbeams.Wepointoutthatthepresenceorlackofmelaninpigmentationshouldbeconsidered,whenchoosingt herapeuticoptions,andthatboththeexperimentalandclinicaldatasuggestthatmelanincouldb eatargetforradiosensitizingmelanomacellstoincreaseefficacyofradiotherapyagainstmelanoma.

Keywords:m e l a n o m a ; m e l a n i n s ; B o m i r s k i hamstermelanoma;o c u l a r melanoma;h u m a n melanoma;X-rays;neutrons;protonbeamirradiation;radio-chelationtherapy;radio-photo- therapy;chemo-radiotherapy;tumorvessels

(2)

Int.J.Mol.Sci.2018,19,1048;doi:10.3390/ijms19041048 www.mdpi.com/journal/ijms

(3)

2of29

Int.J.Mol.Sci.2018,19,1048

1. Introduction

Malignantmelanomaisoneofthemostnotoriousanddeadlyhumantumors.Ithasbeenknownsinceatleastthefifthcen turyB.C.,whenitwasmentionedbyHippocratesofCos[1].I t s mostcharacteristicbiologicalfeatureist heabilitytoproduceandstoremelanin[1],whichinturnisalsoresponsibleforimportantfeaturesofthetumor,makingitr esistanttomanymodesoftherapy[2].

Therearenumerouspapersexploringthemodelsofmurinemelanomas. T h e presentreview intendstosummarizetheworkonlesspopularanimalmodelsinmelanomaresearch,i.e., Syria ngoldenhamsters(MesocricetusauratusWaterhouse1839)andMongoliangerbils(MerionesunguiculatusMilne- Edwards1867).T h e s e laboratoryanimalsandtheirmelanomasrevealquiteuniquefeatureswhichin someaspectsmakethemakintohumanmelanomas.Theresearchhasbeencarriedoutforover50yearsinseveralr esearchcenters,mainlyinPolandandUSA,largelyusingmodelsdevelopedlocallyinGdanskandKrakow(Bomirskiha mstermelanomaBHM[3–

6]),andgerbilmelanomaZemanUJ90[7,8],whichmakesthiscompilationofresearchquiteunique.Aparticula remphasishasbeenplacedonradiotherapyandmelaninasfactorsdeterminingtheeffectivenessofmelanomat herapy.

2. MelaninFunctionsandTheirRadioprotectiveRoleinMelanoma

Melanomaoriginatesfrommelanocytes,whichareresponsibleforgeneratingmelanin[9].

Thispolymerisproducedinmelanosomes,organellescomingfromlysosomallineage,andtransferredtoothercellsinth emammalianskin,mainlytokeratinocytes[10].T hi s transfercanbedisturbedinmelanomas,whichmay eitherstorelargeamountsofmelanininthecytoplasmorsecreteittotheenvironment[8,11,12].C o n s e q u e n t l y,i t leadstointra-

orextracellular accumulationofmelaninoritsprecursors,whichcanbetoxic[13,14].Duringthepro cessofmelanogenesis,suchintermediatesaregenerated,whichmayacceleratetheinductionofsecondarymutationsin melanomacells[15].Thiscanbeoneofthereasonsforwhichamelanoticphenotypeinlate-

stagemelanomaisconnectedwithpoorprognosis[16].Moreover,thesignalingpathwaysresponsibleformel aninsynthesisarepartiallycommonwiththoseinvolvedinneoplastictransformation[17–

20].Asaresult,inamelanogenicallyactivecell,everymutationingenescodingregulatoryfactors,sucha sthecAMPresponseelement-bindingprotein(CREB)[21],PI3K/p70[22],c-KIT[23],

(neuroblastomaRASviraloncogenehomolog)(NRAS)[24,25],or(serine/threonine-proteinkinaseB-raf) (BRAF),becomesautomaticallyexpressed[26–

28],manifestingitselfinthepigmentphenotype,andingainingneoplasticfeaturesatthesametime[29].

Ont h e o t h e r h a n d , t h e g e n e r a t i o n o f m e l a n i n i t s e l f i s p rotectivef o r t h e b o d y a n d t h e c e l l . Theproductionofmelaninisofaclearlyadaptivevalue.Thus,itprovidesanimalcamouflage,anditp rotectsthebodyagainstdifferenttypeofradiationincludingUVprotectionspectrum[30,31].Beingamacro moleculeofamorphousstructure,itoftenrevealspropertiesofinorganicratherthanorganicsubstances[32].I tsspectrumofabsorptionresemblesinorganicmaterial[33],asdevoidofcharacteristicmaximaofabsorption,andmonotonously decreasesfromUVtowardslongerwaves,andforinfra-

redirradiationmelaninbecomesalmosttransparent[33,34].Thisbroadeningofspectrumisresponsibleforit sbrowntoblackcoloration,andalsomakesitagoodphotoprotectorbecauseofahighefficiencyofconversionoft heabsorbedirradiationintoheat[32,34].M e l a n i n containsnumerouscarboxylicgroupsofvari ousdegreesofprotonation,andquinone/hydroquinonegroupsofvariousdegreesofoxidation,containin galsosemiquinonesresponsibleforitsparamagneticproperties[32,35,36].Allthatmakesmelaninapowerfulbuffer abletoreversiblyprotonate,andaredox-

bufferabletoreversiblyoxidateandrecombinewithexternalfreeradicals(e.g.,producedbyradio-

orphotolysisofwaterinthecytoplasm[37,38]).Thecomplicated,irregularinnerstructuremakesmelaninanefficiention- exchangeresinabletoreversiblyadsorbmetalcations(zinc,calcium,iron,copper,manganese,etc.),organ iccompounds,gases,andwater[32,36,39,40].

Despitei t s resistancet o a c i d h y d rolysis,m e l a n i n u n d e rgoesd e g r a d a t i o n i n t h e b o d y,pr obablywiththeengagementofthereducednicotinamideadeninedinucleotidephosphate(NAD PH)-dependentoxidoreductases(NOX),and/orthevisiblelightandUV[41,42].Thesubstances

(4)

adsorbedinthepastmaybereleasedbackintheprocessofmelanindegradation,and madeacti vewithadelay,someofthem(e.g.,ironorcopper)beingphotochemicallyorredox-

activethemselves.T h i s isresponsibleformelanintoxicityandphototoxicity,strongerforpheomelanin thanforeumelanin[19,38,43–45].

Thehighaccumulationofparamagneticcentersinthemoleculesofmelaninwassuggestedtoenablethispolymertointe ractwithradiation-

inducedfreeradicalspeciesasaradicalscavenger.Thecomparativestudiesonthesensitivityofanimalcellstolow-

linearenergytransfer(LET)radiationsupporttheviewthatmelanincontentofthecellcanaffectitsradiationresponse[46].

Polymethylmethacrylate(PMM)mixedwithmelaninindifferentconcentrationswasirradiatedwith75Gy tostudytheX-ray-generatedfreeradicalsignal.Itwasdemonstratedthatoxygen-

centeredpolymersignalwasdecreasingfasterinthepresenceofincreasingconcentrationsofsyntheticmelanin[47],dire ctlyshowingtheprotectiveroleofmelaninaddition(seeFigure1).Similarreactionscanbefoundifdrycollagenisusedasamatrixi nsteadofPMM[47].

Figure1.Thepresenceofmelanininpolymethylmethacrylate(PMM)inhibitsthedecayoffreeradicalsignal,inducedbyX- rays.A —450mgofpurePMM,B—450mgofPMMwith2mgofmelanin,C—

450mgofPMMwith4mgofmelanin,D—

450mgofPMMwith6mgofmelanin.Figurebasedon[47].Copyright1975IAEA.

Inadditiontotheinteractionofmelaninwithradiolyticproducts,anotherpurelychemicalprocesswhichma y c o n t ri b u t e to t h e ove ra ll l e ve l o f ce l lu la r rad io resistancew a s reported[48].Ith as t h e natureofnon enzymaticbindingofmolecularoxygenbyalltypesofnaturalandsyntheticmelanins,andnotofphysicals orptionbythesepolymers,ascanbededucedfromthetemperaturedependenceoftheprocess.Inmelanomacells,mela ninisenclosedinmelanosomes,andseparatedfromtherestofthecell.Oxygenisawell-

knownradiosensitizer.Thus,anyprocesswhichsequestratesitinthecell,anddecreasesitsconcentrationinthedir ectneighborhoodoforganellessensitivetoradiationdamage(mitochondria,thenucleus),shouldbeassociatedwithane nhancementofradioresistance.

Therearethreemainmechanismsofradioprotectionofcellsbymelanin:

1. Melaninisabletoabsorbtheradiationitself(e.g.,theUVirradiation[49,50],ionizingradiation[51,52])du etothebroadenedspectrumofabsorptionandefficientinternalconversionoftheabsorbedenergy[32, 34];

2. Melaninrecombineswithproductsofradio-

andphotolysisofwater[37],andothercompoundsofmelanoticcells[32,53];

(5)

3. Melaninc o n s u m e s a n d a d s o r b s o x y g e n , a n d t h e p rocesso f m e l a n i n s y n t h e s i s c o n s u m e s significanta m o u n t o f t h e c o - s u b s t r a t e —

o x y g e n ( e . g . , f o r t y rosinase[54],o r p h e n y l a l a n i n e hydroxylase[55],etc.).

Asthesynthesisofnewmelanosomesiscontinuousinpigmentedcells[8,19]thismakesthes tationaryintracellularoxygenlevelslow,thusrenderingthewholecelllessvulnerabletoirradiation(asoxyg enisanefficientradio-andphotosensitizer[56]).

Despitethemanymechanismsofprotection,thepotentialtoxicityofmelaninmayinsomecasesoutweightheb enefitsofitspresenceinthecellasaradioprotector[57].Forexample,melanintoxicityissynergicwithmanganese(II)io nsandfacilitatesDNAdamageinneurons[58].Recently,ithasbeenshownthatthehigh-

symmetrymanganouscomplexesareresponsibleforradioresistanceinmanyorganisms,whilecompl exesoflowsymmetrymayradiosensitizethecells[59].Asthelatterarecreatedinactivecentersofenzymes(suchassuper oxidedismutases),radiationresistancemaynotdependonthegeneticallyencodedabilitytominimizeoxida tivestress,butontheactualnutritionalstatusofthecell[59].Thismay,tosomeextent,explainthesynergisticeffe ctofmelaninandmanganese(II)incellradiosensitization,becausemelaninhasbeenconvincinglyproventosequestrateM n2+cationsbymeansofcreatinglow-symmetrycomplexes[40].

3. HamsterasaModelofSpontaneouslyOccurringMelanoma

Thefullhistoryofthediscovery,description,anddomesticationoftheSyriangoldenhamst er(MesocricetusauratusWaterhouse1839)forlaboratorypurposes,andaspets,isexcitingandworthas e p a r a t e p a p e r ( s u p p l e m e n t e d w i t h t h e n e w e s t d i s c o v e r i e s ,

[60]).C a u g h t n e a r A l e p p o , S y r i a , in1930[60],thegoldenhamstersturnedouttobeperfectlabor atoryrodentsfortwomainreasons:easyandinstanttamingofthewildanimals,andtheirextremeresi stancetoinbreddespiteahighgeneticdriftandfoundereffect[60].Asaresult,thelaboratorypopulationrev ealslowpolymorphismint h e h i s t o c o m p a tibilityl o c i [9,61,62].C o n s e q u e n t l y,t h e a n i m a l s a r ea b l e t o m a i n t a i n a l l o g e n i c transplants,a n d inparticulartheones oftumortissues,i n ahigh erpercentageofcasesthanthewildpopulation.Anotherconsequenceisaparticularsusceptibilityofl aboratoryhamsterstohumanviralinfections[61].T h e spectrumofapplicationofthoseanimalsasl aboratorymodelsofhumandiseasesisthusunexpectedlywide.HelenValentineetal.

[63]describedatleast17typesofhumanpathologies,i n c l u d i n g c h ronico b s t ructivep u l m o n a r y d i s e a s e ( C O P D ) , a t h e rosclerosis,d i a b e t e s mellitus,oramyloidosis,whichhavebeenstudi edusingtheSyrianhamstermodel.H a m s t e r s arealsousedtostudytheEbolavirus[64].I t iswort hremindingthattheprimaryreasonforacceptingtheg o l d e n h a m s t e r a s a l a b o r a torya n i m a l w a s i t s p a r t i c u l a r l y h i g h s e n s i t i v i t y t o i n f e c t i o n s w i t h Salmonellatyphimurium,whichraisedres earchershopeofdevelopingavaccine[65].O f note,eventhoughtheworksareonholdnow,asthemicrobeisn owexploredaspartofanalternativestrategyinc a n c e r t reatment[66].Anotheri m p o r t a n t f e a t u re o f t h e S y r i a n h a m s t e r s i s t h e v a r i a b i l i t y i n hair-

coatcolorationphenotypes,withnumerouscolormutants[67],whichmakesthemparticularlyinte restingobjectsofgeneticstudiesandstudiesontheinfluenceofhaircolorphenotypesonmelanomadevelopment[68].

Asmodelsforhumanmelanoma,theSyrianhamstersturnedouttodevelopspontaneousand chemically-

inducedmelanomaseasily,andwithparticularmetastaticpotential,especiallyinthefirstgroup[69].Thea nimalstreatedwithcarcinogenswerefoundtodevelopbothnestsofextrafollicularmelanocytesarou ndselectedpilo-

sebaceousunits[70]andbenignpigmentedneviadjacenttothebasementmembraneoftheepithelium[69].Theyalsoreveal edamelanoticmelanocytesatthedermo-

epidermal junctionoftheskin[71].A l l oftheseatypicalgroupsofmelanocytes,aswellasdermal melanocytesmightbeabletotransformintomelanomas[69,70,72,73].Therefore,theactualoriginofvarioustypesoftumorsisnotyetfully understood.Interestingly,thehamstersareresistanttoUV-

inducedmelanomagenesis[69,74].Severalinvivoandinvitromodelsofmelanomaingoldenhamsterhavebeendeveloped.Th emostimportantspontaneousmelanomasareGreenemelanomamodels[75]

(usede.g.asxenotransplantstotheanteriorchamberoftherabbiteyeto

(6)

studytheeffectivenessofhyperthermia[76]andphotodynamictherapy[77]),Fortner’shamstermelano ma[71,78]

(knowntopresentasascitesintheperitonealcavity[79,80]),andBomirskimelanoma[3],describedi ndetailsinthenextchapters.

3.1. BomirskiH a ms ter M el an o ma

TheBomirskihamstermelanoma(BHM)modelconsistsoftwobasicmelanomalines:melanoticMa(black)anda melanoticAb(white),withthelatterbeinganexampleoftumorprogression[5,6,81,82].TheoriginalmelanoticMalinewasderive dfromaspontaneousmelanomaoftheskin(locatednearthenose)thathadappearedinamaleSyrian(golden)hamsterin1959, andwhichhasbeenmaintainedbyserialtransplantationamongrandom-

bredanimals.Theamelanoticmelanomaline(Ab)originatedin1963fromtheMaformbyspontaneousalteration,whichi ncludedlossoftheabilitytoproducemelaninpigment,markedincreaseingrowthrate,lossoftheabilitytometastasizeand decreaseofthesurvivaltime[4,5].Onceestablished,thesemelanomaspossessedaconsiderabledegreeofphenotypicstabilityoverd ecadesofpassaging[4,5].T h e twolineshavebeensuccessfullytransferredallogenicallyinhamste rsforoverfiftyyears.AsaresultofthefastergrowthoftheAbline,itstransplantationintervalisshorterthanthatofthe nativeMaline,althoughwithyearsofpassagingithasbeendecreasingforbothlines[5],asfurtherdocumentedbya shortertransplantationandlatencyperiodanddecreaseofminimaltumorcellsrequiredfortransplantabilit y[6,83,84].T h e subcutaneousgrowthoftumorsiscomparedinFigure2a.

Figure2.

(a)ThekineticsofBomirskihamstermelanoma (BHM)AbandMatumorsg rowthaftersubcutan eousimplantationinSyrianHamsters.Whitedotsindicateamelanotictumorsgrowthintime,whereasblackdotsindic atemelanotictumorsgrowthintime.Amelanotictumorsbegintogrow3daysafterimplantation,whereasmelanotict umorsstartgrowing12daysafterimplantation.(b)ThegrowthkineticsofBHMAb[O](n=9)andBHMMa[]

(n=14)inthehamstereye.Eachpointrepresentsthemean±SEM[84].

Metastasesof t h e Ma li n e t o lun g s a n d regionallymp h n o d e sh a ve be en o b s e r ve d f romt he beginning,whiletheAblineformedmetastasesinkidneysandliveronlytwelveyearsafterthefirsttranspl antation[5].

TheA b a me la n o t i c me la no ma l o st t h e a b ilit y t o s yn t h e si ze me la n in a sa resulto f a b lo ck i n melanosomesb i o g e n e s i s , b u t h a s retainedt h e t y rosinasea c t i v i t y,a l t h o u g h a t a m a r k e d l y l o w e r levelt h a n t h a t i n t h e M a l i n e [4–

6].T h e d e t e c t a b l e t y rosinasea c t i v i t y i s u n i q u e a m o n g a n i m a l amelanoticmelanomasmaki ngtheAblinesimilartohumanamelanoticformsexpressingtyrosinase

(7)

activity.Thelossofmelaninsynthesiswasaccompaniedbychangesinmanybiologicalfeatu re s,includingafastertumorg rowthrate, shorte ranimalsurviva l, and changesintheultrast ructur eofcells.Thelossofabilitytoproducemelaninpigmentwasreversible,sincethecellsstartedtoproducemelanind enovowhenincubatedinmediahighintyrosineorothermelaninprecursors[85–

90],withcomplexphenotypicchangesdependentonthetypeandconcentrationofthemelanin precursorsused[81,82,87,91–102].

ThehistologicalandultrastructureanalysisshowedthatAbmelanomacells,besidestheabsenceofp remelanosome s,h a v e a n e x t e n s i v e G o l g i a p p a r a t u s , a b u n d a n t r i b o s o m e s , a n d t h e i r p l a s m a membr anestructureandcontentofDNAischangedincomparisontoMamelanoma(seedetailsinTable1).Inadd ition,MaandAbdifferentiallyinfluencetheimmunologicalsystemthroughmodifiedantigenicity,immuno genicity,andcytokinesecretion(detailsinTable1).

Apartf romt h e h i g h e r p roportiono f c e l l s i n S / G 2 / M p h a s e s ( Table1),t h e A b l i n e a l s o h a s adecreasedabilitytoundergospontaneousapoptosisincomparisontotheMaline[103,104].However,theAblineisverysens itivetocamptothecin-

induceddeath[103,104]andshowedsignificantlyhigherradiosensitivityincomparisontomelanoticMamelano ma[105].

Basicm e t a b o l i c p a r a m e t e r s i n d i c a t e t h a t t h e A b l i n e i s d i fferenti n t e r m s o f t h e t y p e o f energy-

yieldingmetabolism,includingglycolysisandmitochondrialoxidation,andothermetabolicparameters,i n c l u d i n g t h e p e n t o s e p h o s p h a t e p a t h w a y,f romt h e n a t i v e m e l a n o t i c m e l a n o m a line[84,92,105–

108].ThenativemelanoticMamelanomacellshavehigheroxygenconsumptionthantheamelanoticAbline[106 ],whileamelanoticmelanomahasahigherrateofaerobicandanaerobicglycolysis[84],andhigherbasalmit ochondrialtransmembranepotential∆ΨincomparisontoMalinecells[109]

(detailsinTable1[6,84,106,107]).Thesemetabolicdifferences,definedbythepresenceorabsenceofmelaninpigmenta tion,werefurthermechanisticallysubstantiatedbyanalyzingthemduringinductionorstimulationofmelanogenesisincellcultureorinisolat edcells[84,92,108].

SincetheestablishmentoftheBHMlines,eachBHMmelanomalinehasmaintainedphenotypicalstability(melaninpro duction,growthrate,morphology) foroverfiftyyearsoftransplantation.Thecomparativebiologicalchar acteristicsofmelanoticMaandamelanoticAbBHMarepresentedinTable1.

Table1 . P a t h o b i o l o g i c a l p a r a m e t e r s t r a n s p l a n t a b l e m e l a n o t i c ( M a ) a n d a m e l a notic( A b ) l i n e s o f Bomirskihamstermelanomamodel.

MelanoticMelanomaMa AmelanoticMelanomaAb Reference

Origin

Developedasaspontaneousmalign antmelanomao fthes kin .

Developedasaspontaneousalteration

ofMamelanoticmelanoma. [4,5]

Yearoforigin 1959 1963

[4]Amountoftissueneededfor

100%transplantability(mg) 200 50 [4,5]

Transplantationinterval(days) 21±3

12±2Survivaltimeofimplanted

hamster(days) 81±5.8 27±1.5 [5]

Mostfrequentlocations

ofmetastases Lungs,lymphnodes Kidneys,liver,lymphnodes [4]

Histologicaland

ultrastructuralfeatures [4,110]

Epitheloidalcells Polygonalc ells

Melanosomesandpremelanosomes Lackofmelaninandmelanosomes GolgiareaismoreextensivethaninMa;

Golgiareaismoderatelydeveloped Productso f t y rosinasea c t i v i t y accumulateinthevesiclesofthetra ns-GA

Moderateamountofribosomes Abundantribosomes

(8)

Table1.Cont.

Plasmamembranestructure:

1. Carbohydratesc o n t e n t

MelanoticMelanomaMa AmelanoticMelanomaAb Reference Mitosisisrare

Mitosisi s f requentRERandSERaremoderately

developed RERandSERareverywelldeveloped

Somemitochondria Somemitochondria

(nmol/mgofprotein) 1702 631 [111]

2.Heterogeneity 3proteinfractions 6glycoproteinfractions 3. Membranefluidityand

1proteinfraction

8glycoproteinfractions [112]

Lowerdegreeoforderinthe molecularmobilityinthep

lasmaticm e m b r a n e 4. ExpressionofPglycoprotein

phospholipidbilayer;increaseinme mbranef lu i d i t y

[113]

(Pgp) 70%ofcellsPgppositive 10%ofcellsPgppositive [114]

5. Gangliosidecontent HighlevelofGM3

LowlevelofGD3and9-O-acetyl-GD3 LowlevelofGM3

HighlevelofGD3and9-O-acetyl-GD3 [115,116]

6. Neutralglycolipidcontent HighlevelofGL1 HighlevelofGb3,Gb4,Gb5

[117]Antigenicity Low IncreasedincomparisontoMa [118]

Immunogenicity Low IncreasedincomparisontoMa [119,120]

Cytokinesecretion AlteredsecretionofIL-6,IL-10,TNF-α [121]

DNAploidy 4n 3n [5,122]

Radiosensitivity Low High

[105]Lowendogenousapoptosisbuthighly Abilityforapoptosis Highpropensityforspontaneous

apoptosis sensitivetocamptothecin-

inducedapoptosis

[103,104]

Cellcycleanalysis 30%inS+G2/Mphase 40%inS+G2/Mphase

[104]Mainbi o c h e mi c al fe a tu res

1. Tyrosinaseactivity Hightyrosinaseactivity Lowtyrosinaseactivity [123,124]

2. Glycolysis Highaerobicandanaerobicglycolysis [84]

3. Antioxidantenzymes

Higha ct iv it y o f dismu tase/pe

roxidase

Relativelylowactivityofdismutases/peroxidas

e [125]

4. Mitochondrial

transmembranepotential∆Ψ Relativelylow Relativelyhigh [109]

5. Oxygenconsumption Relativelyhigh Relativelylow [106]

6. Enzymeactivities

Relativelyh i g h a c t i v i t i e s o f c i t r a t e synthase,succinatedehydrogenase, malatedehydrogenasehigherthani nA b

Relativelyhighactivitiesof NAD-dependentglycerol-3-

phosphatedehydrogenasehigherthanMa [106]

3.2. MIMelanomaandAb-455

AthirdvariantoftransplantableBomirskimelanomawasestablishedin1976fromapartiallydepigmentedpas sage104ofMamelanoma,andthentransplantedsubcutaneouslyinhamsters[6,126].ItdifferedfromtheparentalMamelanomai nitshighertyrosinaseactivity,lowerpigmentationlevel,abilitytoproducepheomelanin,andslightlyslowergrowthrate,with otherparameterssimilartotheMamelanoma[126].SelectionformorepigmentedtissueduringtransplantationofMI melanomageneratedanothervariantthatdifferedfromtheMImelanomaonlyintermsofitshigherpigmentationlevel[127].Additio nallineAb-

455,transplantableinhamsters,wasderivedfromtheinvitrocelllineoriginatingfromtheprimarycultureofAbmelanom a[88].Thatamelanotictumorwastyrosinasenegative,grewsignificantlyslowerthantheparentalAbmelanoma, andhadadifferentmetastasispatternthatwassimilartotheMamelanoma.I n t e restingly,duringserialtrans plantation,arapidaccelerationofAb-455growthoccurred,renderingitsimilartotheoriginalAbmelanoma[88].

(9)

3.3. RadiosensitivityofBHMGrowingintheSkin 3.3.1.EffectsofLow-LETRadiation

Astrikingdifferencebetweentheradiosensitivityofthepigmented(BHMMa)andnonpigmentedBomirskihams termelanoma(BHMAb)wasobservedintheearly70’s(unpublished).Subcutaneouslygrowingtumorswereirradiatedwit h48GyoffractionatedX-

rays(twotimes7Gyandtwotimes5Gyevery24h,thenrepeatedafter6days,50kV,25mA,Al1mm,4.98Gy/min).Th egrowthofbothBHMMaandBHMAbtumorswasinhibited,butamelanotictumorsdisappearedmarkedlyf aster[128].

Thehigherradioresistanceofpigmentedcellswasverifiedlaterinamoreelaborateexperimentinvolvingi rradiatingmelanomacellsinvitro,anddeterminingthesurvivalfractioninvivo.That stepwasdesignedin ordertocheckifthehigherradioresistanceofpigmentedlinesoriginatedatthetissueoratthecellularlevel.

Cellswereirrad iat edin vitro,andimmed iate lyafte rim plantedsub cutan eouslyin tohams te rs,alwaysusingthesamenumber,106cells.Theaveragerateoftumorgrowthwasdeterminedforeachdose.Th esurvivalfractionofirradiatedcellswascalculatedfromasetoftumorgrowthcurves,wherethetumorwasinitiatedwith variouscellnumbers.Figure3showsthatpigmentedcellswere2.4timesmoreradioresistantthanunpigmentedB HMAb.Themeanlethaldosewas4.8GyforBHMMaand

2.0forBHMAb[129].

Figure3.Pigmented cellsweremoreresistanttoX-

raysthanunpigmentedAbcells.Thecellswereirradiatedinvitro,andimmediatelyafterimplantedsubcut aneouslyintohamsters,alwaysusingthesamenumberofcells(106).Theaveragerateoftumorgrowthwasdet erminedforeachdose,andthesurvivalfractionofirradiatedcellswascalculatedfromasetoftumorgrowthcurves, wherethetumorwasinitiatedwithvariouscellnumbers[129].Copyright1984Gurbiel,R.

3.3.2.Radio-ChelationTherapy Radio-

chelationt h e r a p y i s b a s e d o n t h e c o m b i n a t i o n o f r a d i o t h e r a p y w i t h a p a r a l l e l u s e o f c helatingdrugsasradiosensitizers.Thelattermayexertnooncostaticeffectbythemselves.ThechelatorEdathamilcalcium- disodium(ECD) wascombinedwith20 GyofX-

rays,d e li ve redas4Gyevery5days.Thehighestconcentrationofthechelatorinthetumortissuecouldbe achievedupontopicalapplicationofa10%ointmentofECDoversubcutaneously(s.c.)implantedhamstermelanoma.Tum orgrowthwasinhibitedfor33daysandtumorvolumeatday33wasthreetimessmallerthanthecontrol,i.e.,vehicleplu sradiation(Lukiewiczetal.,datanotpublished).

3.3.3.EffectsofNeutrons

Thenextstepwastochecktheradiosensitivityinthesameinvitro-invivomodelagainsthigh-

LETradiation,i . e . , n e u t rons.A s t h e rei s n o o x y g e n e ffecti n h i g h - L E T r a d i a t i o n , b o t h s u b - l i n e s w e reexpectedtoexhibitthesameradiosensitivity.Indeed,experimentsdemonstratedthatthethenstriking

(10)

differenceinradiosensitivitybetweenMaandAblines,clearlyvisibleforlow-LETradiation(X- rays),disappearedfortheirradiationofthetwotestedsub-lineswith5.5MeWneutrons(Figure4).

Figure4.N o differenceinradiosensitivitybetweenAbandMacellstreatedwithneutrons[130].Copyright200 0Urbanska,K.

3.4. RadiosensitivityofBHMTumorsTransplantedintheEye

Severala n i m a l m o d e l s o f o c u l a r m e l a n o m a w e rep roposed,i n c l u d i n g i m p l a n t a t i o n o f s k i n melanomaintotheeye,suchastheGreenemelanoma,B16[131],orhumanuvealmelanomai nthenudemouseeye[117,132–

135].H u successfullyestablishedmousexenograftsinthechoroidofanimmunosuppressedrabbitusingB 16F10cellline[134].O u r oculartumormodelofmelanomawasobtainedbyimplantingsmallpiecesofBHM,fr eshlyexcisedfromthecutaneoustissue,intotheeyeoftheSyrianhamster(Mesocricetusauratus)

[135].Tumorfragmentssized0.4–

1.0mmwereimplantedintotheanteriorchamber(AC)oftheeye.Duringthefirst2to3days,disappearanceoftheimplant swasobserved,followedbytheappearanceofiristumorsafter4–6daysinthecaseofBHMAb,andafter8–

10daysinthecaseofBHMMa.WhentheACwascompletelyfilledwiththetumormass,theeyewasenucleated, andtheanimalswereobservedformetastases,developingwithin20–

30daysinthelung.M e l a n o m a ce llsg rowingin th e i ri s in th e fo rmo f n o d u le s inf ilt ra t ed a llsu r r oundingt issue s, andtheciliarybodyinparticular,andalwaysremainedpigmented.Thedistantmetastases,asse ssedmacroscopically,wereencounteredinthelungs(after48daysin100%ofanimals),andsometimesinthekidney s(after48daysonlysporadically)aswellasintheregionallymphnodeswhichwerealsoclearlyenlarged[5,13 6].

Thev a s c u l a t u reo f B H M t u m o r s g rowingi n t h e e y e w a s m a i n l y i n d u c e d f romt h e a n t e r i o r capillaryandantero-

venularlayersoftheiris.Asitwasrevealedbyscanningelectronmicroscopyofvascularcorrosioncasts(Figure 5),thetumorvasculaturewascharacterizedbypronouncedtortuouscoursesofthebloodvesselswithunevenc ontoursandvariablediameters.A l l vesselswerehighlyirregularandheterogeneous,withmanyemb olizations,fenestrations,andsprouting.Venulesandsinusoidalcapillaries,exhibitingheterogeneou sintra-

tumordensity,wereintensivelyinterconnected.Avascularareaswerealsoseen.Thepresenceofnumerousno dularoutgrowths,varyinginsize,onhesurfaceofdilatedvenulesandvenousvesselsrepresentsmorphologicalevid enceforthecontinuousremodelingoftumorvasculatu re.Theobservedfeatu resofthevascularsys temseemtop rovideapathwayforfurthertumorexpansion[137].

AlthoughBHMisacutaneousmelanoma,thedevelopmentofspontaneousmetastasesisan advantageofthemodel[136].Also,unliketherabbitmodel,BHMmelanomaisallotransplantedwithhamstersbeingbothth edonorandtherecipientofthegraft.T hi s eliminatesimmunologicalcomplicationssuchasgraftrejection,whi chcanoccurafterthetransplantationofhamstermelanoma(Greenemelanoma)intotherabbiteye.

(11)

Figure5.

(A)Tumorvasculaturecastrevealingamissingvesselhierarchyandheterogenousvasculardensity.St ronglydila tedvenousvessels(fullwhitecircles)andcapillaries(c)predominateoverfewarterialfeeders(a)Nodul ar,nest-

like,avascularareas,surroundedbytuftsofcapillarieswithshortterminalbranches,aremarkedwit hadashedline.T h e externalperimeteroftumorvasculatureisindicatedwitharrowheads.E x t r a v a s a t i o n ofresinisalsovisible(e)Bar=500µm.

( B)Fragmentofintratumorv a s c u l a t u res h o w i n g stronglyd i l a t e d v e n o u s v e s s e l s ( f u l l w h i t e c i r cles)i n t e rconnectedwithloopsformedbywidesinusoidalcapillaries(c)Tuftsofcapillarieswithshortt erminalbranchesareindicated(asterisks)andshowninhighermagnification(inset).Note alsothepos teriorvascularlayeroftheiris(arrow).Bar=100gmand50gm,respectively.

(C)Vascularsprouts(arrowheads)andglobularoutgrowths(whitecircles)ontheproliferating,dilatedtu morcapillaries.N o t e alsothetinyholes(arrows)typicaloftheintussusceptiveangiogenesis.Bar=500µm.Re producedwithpermissionfromAnnalsofAnatomy[137].Copyright2001Elas,M.

3.4.1.EffectsofLow-LETRadiation

Since2000,thehamstermodelofmelanomalocatedintheeyehasbeenappliedtostudydistantmetastasesstudie s[130].Twosub-

linesdifferingintheirmelanincontentwerecomparedwithregardtotheirradiosensitivitytoruthenium- 106(106Ru)radiation.Tumorsgrowingintheirisweretreatedwith3 , 6 , o r 1 0 G y o f1 0 6Rua d m i n i s t e r eda s a s i n g l e d o s e o r i n f o u r f r a c t i o n s a t 2 4 h i n t e r v a l s .

(12)

Dose-

dependentdelayoftumorgrowthwasobservedinbothmelanomas.Fo llo win g thetreatmentwitha d o s e o f 6 G y,t h e a m e l a n o t i c ( B H M A b ) t u m o r s g rew2 . 6 t i m e s s l o w e r,a n d t h e m e l a n o t i c (BHM Ma)tumors1.4timesslowerthantheuntreatedones.Exposuretoβ-

radiationfrom106Rudidnotsignificantlyaffecteitherthenumberorthesizeofmetastases,exceptatadoseof10 Gy,whereastatisticallysignificantdecreaseinthenumberofmetastaseswasfoundinthemelanoticsub -line(BHMMa)

[138].Histologicalanalysisshowedsignsoftumorbloodvesseldamagesuchasendothelialcellswelling,erythrocyteextr avasation,andtumornecrosis.T h e s e signsincreasedwiththerisingdoseofβ-

radiation.Changeoffractionationfromfourequaldosestoaboostdoseof4Gy,followedby3×2Gy,causedacompletei nhibitionofmetastasesfor70days(unpublisheddata).

3.4.2.RadiotherapyUsingProtonBeamIrradiation

Asingledoseof10GyofprotonbeamirradiationdelayedthegrowthofBHMMamelanomaint h e h a m s t e r e y e b y 1 0 d a y s [138].Albeitt h e i n h i b i t i o n o f t h e i m p l a n t e d t u m o r g rowth w a s moderate,protontherapynoticeablyreducedthemassofthemetastasesinthelungincomparisonwit hu n t reatedt u m o r s ( F i g u re6).O n a v e r a g e , 1 0 G y o f p rotoni r r a d i a t i o n d i m i n i s h e d t h e m a s s ofmetastases4.35times,e ve n thoughtherewasasignificantspreadbetweenindividualan imals(Figure6).Theseresultsareinagreementwithdatapresentedforosteosarcoma[139].Likewise,protonbeami rradiationdecreasedcellmigrationandinvasioninadose-

dependentmannerandstronglyinhibitedmatrixmetalloproteinase2(MM-

2)activityinhighlyaggressiveHT1080humanfibrosarcomacellsinvitro[139].Similarly,i t wassho wn thatinvit romodels,t h e adhesion,mi g r a t io n , i n va s i o n , andthelevelofexpressionoractivityofmoleculesrelate dtometastases,suchasαVβ3,β1i n t e g r i n , andMMP-

2,werealldecreased,evenaftertreatmentwithsmalldosesofprotonbeam[140].

Figure6.

(A)InhibitionofBHMmelanomatumorgrowinginthehamstereye,irradiatedwithaprotonbeamatasingledoseof 10Gy(n=7,blacksquare),ascomparedwiththeuntreatedcontrol(n=6,blackdiamond).

(B)Themassoflungmetastasesdecreased4.35timesasaresultoftheprotonbeamirradiation(10Gy)ofBHMmelan omatumorgrowinginthehamstereye(p=0.0052).AveragemasswithSEMisshown.Thenumberofcontrolanim alswassix,andthenumberofirradiatedanimalswasseven.Representativeisolatedlungswithmetastasesfromu ntreated(C)andirradiated(D)animals.Reproducedwithpermissionfrom[138].

(13)

3.4.3.Radio-Phototherapy

Studiesontheeffectsofphotodynamictherapy(PDT)combinedwithγ-

radiationontheBHMtransplantedintotheeye wereespeciallyimportantasbothof themethods arenon-

invasiveandthuspreventsurgicalintervention.Themainadvantageofionizingradiationisthedeeppen etrationofr a d i a t i o n i n t o t h e t is s ue,w h e rei t i n h i b i t s ce l ld iv is io n . PDT,o n t h e o t h erh a n d , t a rg etsma in ly tumorcells,butvisibleirradiation,usingthepreferredexcitationwavelengthfortheMC540sensitizer,p enetratesonlypartlyintothetumortissue.CombiningPDTwithaverylow-doserateofγ-

irradiationwasfoundtoleadtotumorinhibition[141].A l t h o u g h thehistologicaldamagewasseve reforbothlines,thenon-

pigmentedBHMAblinewasmoresensitiveandrespondedbetterthanthepigmentedmelanoma.T h e most significantinhibitionwasobtainedwhenboththeγ-

radiationandPDTweredeliveredindosesspreadovertime.S u c h treatmentresultedin6weeksofinhibi tion,afargreaterlengthoftimethantheinhibitionperiodobservedafterasingletreatment(2daysfornon- pigmentedcellsand4daysforthepigmentedones).

Thesignificantincreaseineffectivenesswiththefourdividedcombinedtreatmentdosesmaybed u e t o r a d i a t i o n -

i n d u c e d d e p l e t i o n o f t h e v i a b l e s t e m c e l l s . Thatf i n d i n g a g reesw i t h t h e resultsobtainedi ntherabbiteyeforGreenemelanoma[94].ThecumulativeresultsindicatethatMC540-

mediatedPDTincombinationwithionizingradiationhassignificanteffectsontherapidlygrowingmelanomaintheey e[142].

4. GerbilsasAnimalModelsforChemically-InducedMelanomas

TheMongoliangerbilbelongstothefamilyMuridae,subfamilyGerbillinae,orderRodentia[143].Gerbilsaresmallroden tsthatoccurnaturallyinthedesertregionsofNortheastChina,EasternMongoliaandthesteppesofRussia[

144],livinginsmallcoloniesinextendedburrowsystems[145].Theyhaveseveralphasesoftwenty-four-

houractivity;thetwomostactiveperiodsarejustafterdawn,andarounddusk,butmanygerbilsremainactivethroughouttheday[1 46].

Gerbilshavebeenusedforscientificpurposessincethe1880s,beginningwiththeresearchontuberculo sis;theyalsoplayedasignificantroleinbilharziaresearchduringthe1950s–

1960s[147].Duetoitscharacteristicbehavioralandphysiologicalfeatures,gerbilswereusedinawidespectrumofresear ch,coveringavarietyofresearchfields,includingbehavioralinvestigations[148],biologicalandbehavioralprocessesofag ing[149],epilepsy[150],infectiousdiseases[151–

153],dermatitis,neurologyresearch,audiometryandsoundeffect,coatcolorgenes[154],melaninandtyrosinasea ctivity[155],andothers.Thegerbilisanimportantlaboratoryanimalinoncologyresearch[8,156–158].

4.1. ZemanUJ90Melanoma

GerbilshavealsoplayedaspecialpartinthehistoryofresearchcarriedoutattheDepartmentofB i o p h y s i c s o f t h e J a g i e l l o n i a n U n i v e r s i t y i n K r a k o w.I n t h e 1 9 9 0 s , i n t h e a n i m a l f a c i l i t y o f t h e D epartmentofBiophysicsoftheJagiellonianUniversityinKrakow,amelanotictumorwasfoundontheearofo neanimalfromagroupofMongoliangerbils,previouslytreatedwithN-ethyl-N-

nitrosourea.Thiscompoundhasbeendescribedintheliteratureasacarcinogenwithaparticularaffinitytocel lsofneuralorigin[159],showingapreferenceforplacesrichinpigment,hairyareas,andthoseoftenexpos edtothesun(paws,ears,andtail).Itcaninducetumorsin40%ofgerbilsexposedtothatcarcinog en[160].Thetumorwastransplantedintootherrelatedanimalsofthebreedingstock,whichhadbeenmaintained byinbredcrossing.Thus,anewtransplantableZemanUJ90melanomalineingerbilswasstabilized[7].This t ransplantablemelanomalinewasusedtocarryoutinvivoElectronParamagneticResonance(EPR)experi ments.IncontrasttothegoldenSyrianhamsters,gerbilshavealongtailthatcanbeplacedinsidearesonantcavity,similarto mousetailsinoculatedwithmelanoma.Thatobservationwasagoodstartingpointforfurtherextensiveresea rch,mostofwhichhasbeenpublished,andisbrieflyreportedbelow.

(14)

Asadesertanimal,theMongoliangerbilcomesfromamicrobiologicallypureenvironmentandrev ealsanimpairedimmunologicalreactivitytosomeimmunologicalstimuli.Itismanifestedbyaweakresponseoft heanimal’smacrophagestolatexparticlechallenge[161],andalsobyweakgraft-versus-

host[162]andmixedlymphocyteresponsesfromallogenicmixedcultures[163].Thosefeaturesmayadditionallysuggesta weakreactivityoftheNKcells,andalsoalowhistocompatibilityvariability,resultingfromahighinbreedinglevelintheirbree dingstocks.ItturnedoutthattheanimalsrevealedaweakresponseofiNOS(induciblenitricoxidesynthase),manifestedinE PRstudiesbyshowingalowlevelsofnitricoxideandtheirhemoglobincomplexes(nitroso-

hemoglobin,HbNO)intumorsgrowinginsitu.Thatwasentirelydifferentfromotheranimaltumorsstudiedbyus,butsimil artohumantumors[164,165].AssolidtumorsofBHMrevealedtheHbNOsignal,itslackofexpressioningerbiltumorsmust havebeenaresultoflowiNOSactivityratherthanthelowpolymorphismofhistocompatibilitygenes.TheEPRsig nalofHbNOinZemanUJ90tumorscouldbeinducedonlybyastrongimmunologicalstimulus—lipopolysaccharide(LPS)

[166,167].Theexistenceofamelanoticsub-line(seefurther)madeitpossibletodemonstratethetime- anddosedependenceoftheHbNOEPRsignalintensityonLPS,anditsinhibitionbyanalogsofL-

Arginine,thesubstrateforNOsynthesisbyiNOS[168].Thatextraordinarypropertyofthoselaboratoryanimalscouldalso bedemonstratedbyaslowerandlowerresponseofgerbilstoxenotransplantsofrathearttissues,andaweakerdependenceonpre- sensitizationwithdonorsplenocytes[169].TheabilitytoinduceNOsynthesisbyLPSservedtodemonstrateaninvivoprodu ctionofNObyspin-trappingatS-

band,whichwasfollowedbyinvivoobservationsofNOproductioninmelanomainsitu.Thesefindingswereobserv edinanimal(gerbilandmouse)tailsplacedinsidetheresonantcavity[170].

Initially,theZemanUJ90linewasheavilypigmentedandgrewslowly.Afterthefourthpassage,arapidaccelerationofgrowt hwasobservedandtheFGM(FastGrowingMelanoma)sub-

lineemerged.Duringtheseventhpassage,apartofthegrowingtumorwascompletelydevoidofpigment.Asecondamelanotics ub-line(A-FGM)wasderivedfromthatfragment(Figure7).InthecaseoftheZemanUJ90melanoma,thenon-

pigmentedsub-

linehasagreatercapacitytocreatemetastases(in80%oftheimplantedanimals)incomparisontothepigmentedsub- line(33%animals)

[7].TheobservedphenomenonstandsincontrastwiththecaseofBomirskihamstermelanoma,whereahighermetastaticcapacit ywasreportedfortheheavilypigmentedBHMMaline[5].C o mpa r i s o n oftheregressionlineslopesreve aledthattherateofgrowthoftheA-FGMsub-

linewasaboutthreetimeslowerthanthatofthemelanoticM-FGMsub-

line,whichwasconsistentwiththeobserveddifferenceintumorsizemeasuredaftertheexperime nt.Thischangetowardsaslowergrowthrateofthenon-

pigmentedamelanoticlinewasalsounexpected,asexperimentalamelanotictumorstendtogrowfaster(lessdiffer entiated),beingbetteroxygenatedandnourished(betterblood-

supply)thanmelanoticones[6,127,171,172].However,thisisnotalwaysthecase,asshownforthehypomelanoticBM HMI,whichgrowsslowerthanthemorepigmentedMamelanoma[126].SelectionofBHMMIforlessandmorepigmentedv ariantsgeneratedsub-

lineswithsignificantlydifferentlevelsofmelaninandtyrosinase,butwithoutanysignificanteffectongrowthrate[127].

(15)

Figure7.Electronparamagneticresonance(EPR)analysisofmelanotic(leftEPRspectrum)andamelanotic tumors(right)ofZemanUJ90melanomas,correspondingtotheblackandwhitetumors(photographsinthemiddlerow).T hewhitetumorwasobtainedfromthewhitepartsofthetwo-

colortumorwhichappearedinpassage7(upperphotograph).DPPH:thepositionofafreeradicalsignal(g=2.0037).Reprinted withpermissionfromCopyright2003JohnWiley&SonsLtd.[8].

4.2. IrradiationofZemanUJ90Melanoma

ThemelanoticandamelanoticversionsofZemanUJ90melanomaturnedouttobeinterestingmodelstodeterminetum orsensitivitytoXradiation,andtheywereexposedtolowradiationdoses.Theresponsetothedosesof5and10Gywasweak, whichwasnotsurprising.Radiationhasaninhibitoryeffectontumorgrowth:boththepigmentedandthenon- pigmentedformsgrewslowerafterirradiationthaninthecontrolarm.TheeffectivenessofXradiationincreasedlinearlyw iththedoseapplied,whichwasexpected.Unexpectedly,melanindidplayaradioprotectiveroleforthetumor,un likeinthecaseofhamstertumors.However,thatwasnotauniqueorisolatedphenomenon[57].

Ther a d i o l o g i c a l p h e n o m e n a a s s o c i a t e d w i t h Z e m a n U J 9 0 m e l a n o m a s a r ec o n g ruentw i t h earlierobse rva tions on age ne ra lra d io resistanceofMo ng o lia ng e rb ils [173 –

176].A l l th at ma ke s theM o n g o l i a n g e r b i l a reallyu n i q u e l a b o r a t o r y a n i m a l i n t h e c o n t e x t o f m e l a n o m a r a d i o t h e r a p y studies.Inthiscontext,onecanconcludethattheactualradioprotectionofm elaninstronglydependsonthemodelinvolved,andinclinicalpracticeontheparticularcaseinquestionandthestageoftum ordevelopment[57,177].

(16)

5. HumanMelanoma

5.1. RadiosensitivityofHumanSkinMelanoma/WhyIsRadiationNotUsedintheTreatmentofHumanSkinMelano ma

Prevention,earlydiagnosis,andsurgicalexcisionofthetumor,whenthediseaseislocalizedtotheskin,r epresentthegoldenstandardsofmelanomamanagement[178,179].R e c e n t advancesinmelanomather apyhaveledtoasuccessfuluseoftargetedtherapyortherapybasedonmodulationsofimmuneresponses,whilem anagingstageIII–IVdisease[180–

182].Althoughsuchstrategiesareassociatedwithadverseeffects,financialcosts,anddevelopmentoft umorresistancemechanismsresultinginrecurrentdiseaseandultimatedeath(discussedin[82,182–

186]),systemicstrategiesarepreferredinmostclinicalsettings.

Thepastreluctancetoapplyradiotherapyinmelanomatreatmentwassecondarytotheopinionthatm e l a n o m a s i n g e n e r a l w e reresistantt o r a d i a t i o n [187].However,s i g n i f i c a n t e v i d e n c e h a s be enaccumulated,indicatingthatmelanomashaveawiderangeofsensitivitytoradiation[187,188].Currently,radio therapyisusedinselectedpatientswithlentigomalignamelanoma,andasanadjuvantorpalliativeapproachinselected patientswithregionalorsystemicmetastaticdisease[189–

194].Itmustbenotedthatsomeauthorsrecommendedcautionintheuseofadjuvantradiotherapythat shouldbereservedforhigh-

riskpatients,becau seofitsnegativeimpactonoverallsurvival[192].Interestingly,b e n e f i c i a l e ffectso f a d ju va n t rad io th e ra p y h a ve b e e n do cu me n te d f o r d e s mo p la s t i c, lentigomaligna, a nd mucosalmelanomas[192–

201].Theuseofradiotherapyinthetreatmentoflentigomalignamayrequiresomeselectivity,becauseofthe superiorityofthesurgicalapproach[202]andanattractivealternative,i.e.,topicaltreatmentwithimiquimod[203].

Themostpromisingaretheeffectsofradiotherapyinadjuvanttreatmentofdesmoplasticmelanomas[193,19 5,196,204]thataredevoidofmelaninpigment[179,202].

Therefore,itcanbesafelyconcludedthatradiationshouldbeconsideredasanadjuvanttherapy,dependingonth econtext.Also,thepresenceorlackofmelaninpigmentationshouldbeconsidered,whenselectingdifferent therapeuticoptions,becausemelanogenesismayaffectthebehaviorandmetabolicstatusofmel anomacells[15,19,92,108,205,206].Th elatterconsiderationisinagreementwithrecentclinicalandpatholo gicalstudiesthathavedemonstratedthatthepresenceofmelanininmetastaticmelanomasattenuatedthepo sitiveoutcomeofradiotherapy[177].

5.2. RadiosensitizationofMelanoma CellsthroughInhibition ofMelanoma Pigmentation Experimental,cellculture-

basedstudiesshowedradioresistanceofmelanomacells,butthefirstresultsrelatedtothesensitivityofhuma nmelanomacelllineswithdifferentpigmentationlevelstoionizingradiationwerecontradictory.WhileKi nnaertetal.[207]foundthatnon-

pigmentedmelanomacellshadasignificantlylowerresistancetoXradiationthanthepigmentedones,Barrancoetal.

[208]observedahighradioresistanceofmelanomacells,independentoftheirpigmentationlevels,inthreediffere ntm e l a n o m a c e l l l i n e s . H o w e v e r,thosed i s c repanciesc o u l d h a v e a r i s e n f romd i ff erentgenotypesofthemelanomacelllinesunderinvestigation.O u r study,usingonelineofmela nomacellsS K M e l -

1 8 8 , w i t h d i fferentm e l a n o g e n e s i s d e p e n d e n t o n t h e m e l a n i n p recursorl e v e l s i n t h e medi um[209],e l i m i n a t e d t h e i m p a c t o f g e n o m i c d i fferenceso n t h e r a d i o s e n s i t i v i t y o f m e l a n o m a cells[210].Th ehumanmelanomacelllineSKMel-

188ischaracterizedbyinduciblemelanogenesis.Undertheconditionsoflowlevelsofmelaninprecursorsi nculturemediummelanomacellsremainamelanotic,whereaswhenculturedinthepresenceofhighle velsofmelaninprecursors,thecellsbecomemelanotic[92,108,206,209,211].PigmentedSKMel-

188melanomacellsshowedhigherviabilityaftergammairradiationandincreasedmelanogenicactivitywaspositivelycorrelat edwithmelanomacellviabilityafterirradiationwith15Gygammaradiation(r=0.8,p<0.0001).Tyro sinaseactivityinhibitionwithN-phenylthioureaorcopper-chelatingagent,D-

penicillamine,resultedinanincreasedsensitivitytogammaradiation,anddecreasedsurvivalafterirradiatio n[210].Interestingly,thesameapproachmightpotentiallysensitizemelanomacellstochemo-

orimmunotherapy[15,82,206,212].

(17)

Ourrecentc l i n i c a l -

b a s e d s t u d y s h o w e d t h a t m e l a n o g e n e s i s i n h u m a n c u t a n e o u s p r i m a r y metastasizingmelanomas(stagesIIIandIV),andinlymphnodemelanomametastases,wasrelatedtoashorteroverallanddiseas e-

freesurvival[16].Asubsequentanalysisrevealedthatmelanomapatientswithamelanoticmetastatictumorsshowedsignifi cantlylongersurvivalafterradiotherapy,andlongeroveralls u r v i v a l t i m e t h a n p a t i e n t s w i t h p i g m e n t e d t u m o r s , w h o receivede i t h e r r a d i o t h e r a p y o r chemotherapyandradiotherapy[177].Addit ionally,Shieldsandco-

authorsobservedthatthepresenceofmelaninwasfoundtobeanunfavorablemarkerofmetastasisanddeathinamultivari ableanalysisofciliarybodyandchoroidalmelanomas[213,214].

Thus,theexperimentalandclinicaldataindicatethatinhibitionofmelanogenesiscouldbeused f o r t h e r a d i o s e nsitizationo f m e l a n o m a c e l l s t o i o n i z i n g r a d i a t i o n t o i m p rovem e l a n o m a radiotherapyefficacy.

5.3. RadiosensitivityofUveal Mel anoma Tumors 5.3.1.BrachytherapyinClinicalPractice

Humanm e l a n o m a s a rel e s s r a d i osensitivea s c o m p a redw i t h s o m e o t h e r n e o p l a s m s d u e t o asl o we rc e l lt u r n o ve r,b u t m o s t o f t h e u ve a l m e l a n o m a s ( UM )s h o ws a t is f a c t o r y regress iona f t e r radiotherapy.R a d i o t h e r a p y ofintraocularmelanomaisatherapeuticmethodusedne xttosurgery.Bothe x t e r n a l b e a m a n d b r a c h y t h e r a p y ( p l a q u e s ) a reu s e d . P l a q u e b r a c h y t h e r a p y ( rutheniumo r iodine)i s t h e m o s t c o m m o n co n se r v a t i v e t reatmenti n t h e m a n a g e m e n t o f c h o roidalm e l a n o m a s , followedb y p rotonb e a m r a d i o t h e r a p y.Brachytherapyh a s b e e n u se d t o t reati n t r a o cu l a r t u m o r s since1930.C o n s e c u t i v e publicationsreport60Co,106Ru,125I,103Pd,90S r,and130Cssources[215].ThemostcommonlyusedareRu(betaemitter,recommendedforsmallandme dium-

sizedtumors)andIplaques(gammairradiationwithdeeperpenetration).T h e prescriptiondoserangeis 70–

100Gy[216].T h e COMS(CollaborativeOcularMelanomaStudy)studycomparedenucleationto1 2 5Ib r a c h y t h e r a p y i n m edium-sizet u m o r s . T h e rew a s n o d i fferencei n m e l a n o m a -

a s s o c i a t e d andoverall-

causemortalitybetweenthetwotreatmentmodalities.Th e COMSstudywasrestrictedtotheuseof125Ip laques[217].Thefive-yearlocalcontrolratesafterbrachytherapyaveragedat89.5%(range69.9–

97.9%).Therecurrenceratefollowing106Rubrachytherapywas3–

16%invariousstudies[217].However,brachytherapyalsoaffectstheintraocularstructures,sclera,ocularmusc les,conjunctiva,cornealsurfaceintegrity,tearproduction,eyelashes,andeyelids.Withintheeye,radiationcancausecatara ct,retinopathy,opticneuropathy,hemorrhage,retinaldetachment,neovascularization,andsecondaryglaucoma.Th esideeffectsinvolvedmayresultinseveredeteriorationorthelossofv i s i o n . R e s u l t s o f v a r i o u s s t u d i e s [218]u s i n g d i fferenta n a l y t i c a l t e c h n i q u e s a n d v i s u a l a c u i t y endpoints,h a v e i n d i c a t e d t h a t v i s u a l a c u i t y i s g e nerallyp reservedi n p a t i e n tsw i t h s m a l l e r u v e a l melanomasituate dfartherfromtheopticdiscandfovea. At10years’follow-

up,6 8 % ofpatientsdemonstratedpoorvisualacuity[218].

5.3.2.ProtonBeamRadiotherapy(PBRT)ofUvealMelanoma

Teleradiotherapyi s t h e s e c o n d m e t h o d o f r a d i o t h e r a p y,n e x t t o b r a c h y t h e r a p y,d e d i c a t e d t o uvealmelanomapatients. P B RThasbeenthemostcommonlyusedoption among s t alltypesof teleradiotherapy,sincethe1970s.Chargedparticletherapyofuvealmelanomaissuccessfullyappliedinm anyclinicalcentersa roundtheworld.PBRTischaracterized byaveryprecisedispersionof rad iationthatenablesdestructionofthetargetedneoplastictissueatvariousdepthsinthebody.

Protonbeamradiotherapyisparticularlydedicatedtolesionslocatedclosetotheopticdiscandmacula[21 6–

222].I n intraocularneoplasms,protonbeamradiotherapyhasthesameeffectonthesurvivalrateasbrachy therapy[216–222].

(18)

Vermaetal.s u m m a r i z e d fourteenoriginalinv es tig ations from10di fferentinstitutions ,c o n d uc te dfrom2000to2015.Inthatanalysis,five-

yearlocalcontrolratesexceeded90%,whichpersistedat10and15y e a r s . F i v e -

y e a r o v e r a l l s u r v i v a l r a t e s r a n g e d f rom7 0 % t o 8 5 % , f i v e - y e a r m e t a s t a s i s - f rees u r v i v a l

(19)

anddisease-

specificsurvivalrangedfrom75%to90%,withamorerecentseriesreportinghighervalues.Withtheremovalofs mallerstudies,five-yearenucleationrateswereconsistentlybetween7%and10%.Manypatients(60–70%)showedapost- PBRTvisualacuitydecrease,butstillretainedpurposefulvision(>20/200)[223].

Theaboveresultsarecomparablewithouroutcomes.Weobserveda93.3%localcontrolrate,anddete riorationofvisualacuityin60%ofpatients.Complicationswereobservedin31.5%ofcases(dryeyesyndrome,gla ucoma,cataract,retinopathy,maculopathy,andneuropathy).Enucleationwasperformedin2.8%ofthecases ,duetoamassivemelanomarelapseorneovascularglaucomawithamassivevitreoushemorrhage[221,224].

Protonbeamradiotherapyenablesaveryhighlocaltumorcontrol,andpreservationoftheeyeballinmanycases,wit hvisualacuitydependingonthetumorsizeandlocation.

5.3.3.ProteomicStudyofHumanSkinMelanomaCells(BLM)TreatedwithProtonBeamIrradiationProteomicanalysisof theBLMmelanomacelllineirradiatedwithalowdoseof3Gyofproton

beamshowsasignificant(morethan1.5×change)upregulationof13proteinsanddownregulationoffourprotein s[225].T h e s e proteinsmightberoughlygroupedintofourcategoriesbytheirfunction:

(i)DNArepairandRNAregulation(VCP,MVP,STRAP,FAB-2,LamineA/CGAPDH);

(ii)cellsurvivalandstressresponse(STRAP,MCM7,A nn e xin 7,MV P,Caprin- 1,P DCD6 , V CP,HSP70);

( i i i ) cellmetabolism( T I M , G A P D H , V C P ) ; a n d ( i v ) c y t o s k e l e t o n a n d m o t i l i t y ( M o e s i n , A c t i n i n 4 , FAB-

2,Vimentin,Annexin7,LamineA/C,LamineB).Ofparticularinterestisthesubstantialdecrease(2.3×)inviment in,amarkerofEMTandofthemetastaticpropertiesofmelanoma[226].Futureworkswillincludeothercance rlines,suchasuvealmelanomaorprostatecancer,bothofwhichrespondwelltoprotonbeamtherapy.

5.3.4.Radio-PhototherapyofUvealMelanoma

Indocyaninegreen(ICG)photodynamictherapyadministeredwithbrachytherapywastestedinaclinicalsetting,involving3 8patients[227].ThebaselineICGstudyshowedpathologicalintrinsicvasculatureinallexaminedcases.S i x month saftertheindocyanine-

PDTtreatment,changesinmicrocirculationweredetectedinallcasesaswellasasignificantdecreas eintumorthicknessinultrasonography(mean38%).Acompleteregressionofintrinsicvesselswasdemonstra tedbyindocyaninegreenangiographyin26cases,andpartialregressionofpathologicalvascularizationwasfoundin 12patients.IntheCampagnolistudy,involvingfivepatientswithamelanoticchoroidalmelanomatreatedwithPDT,fourpa tientsdidnotrespondtotreatment[228].Theyconcludedthatradiotherapywasthemaindamagingagent,withphot otherapyeffectsconsiderednegligible.Contrarytotheabove,verteporfin-

PDTasprimarytreatmentinsmallchoroidalmelanomasresultedinan80%rateoflocaltumorcontrol[229],whichslightlylowert haninclassicalbrachytherapy.

PDTt reatmento f s k i n m e l a n o m a w a s revieweda n d i t s e fficacyw a s d e p e n d e n t o n t h e photosensitizerused,andmoderateeffectswereseenwhenPDTwasusedincombinationwithimmun otherapy,butnotwithradiation[230].

5.3.5.Radio-ChelationTherapyinClinicalTrials

CuprenilandChelaton(Polfa)wereusedasradiosensitizersinpatientstreatedwith60Cogammarays( b r a c h y t h e r a p y ) f o r c h o roidalm e l a n o m a i n a p i l o t s t u d y.Chelatorsw e rea d m i n i s t e redf o r 7–

10daysbefore,and9–

14daysduringthebrachytherapy.Tumorsizewasdetermined8weeksand16weeksaftertreatment.Tumorsizevolum edecreasedapproximately45%at16weeksafterCupreniltreatment.T h e sensitizingactionofchelatorsma ybeduetotheinhibitionofoxygenconsumptioninm e l a n o t i c c e l l s b y t h o se c o m p o u n d s [231],a n d i n h i b i t io n o f m e l a n o g e n e s i s a s s h o w n ino t h e r models[206,210].

(20)

6. Conclusions

Sincemalignantmelanomasareresponsibleforthehighestmortalityrateamongpatientswithskincancers,andexhibit ahighincidencerateinthewhitepopulation,itisofutmostimportancetodevelopandtestmultipletherapeuticstrategies,usin gappropriateanimalmodels.Thisiscrucialforadvancedmelanomasattheverticalgrowthphaseormetastaticdisease.An impressiveprogresshasbeenmadeinthedevelopmentofnewstrategiesintargetedtherapyandimmu notherapyandothertreatmentmodalities.However,t h e reisalackofop timism, wi t h respecttolo n g -te rm survivalof melanomapatients,becauseofthepre-

existingoracquiredresistancedevelopingtotheappliedtherapies.

Radiotherapyisusedintheintraocularmelanomaswithsatisfactoryoutcomes.B o t h extern albeamandbrachytherapyareutilizedinthetreatmentofuvealmelanomas.Forbrachytherapy,60Co,106Ru,

125I,103Pd,90Sr,and130Csaretheavailableradiationsources,withthemostcommonlyusedbetaemitterbeing106Ru,andgam mairradiation(125I)preferredfortumorswithdeeperpenetration.Protonbeamradiotherapyconstitutesthesecond methodofradiotherapythatenablesefficientlocaltumorcontrolwithrelativepreservationoftheeyeball, depending ondiseaseprogression.R a d i o t h e r a p y israrelyusedincutaneousmelanomas,e xceptforapalliativeapproachinselectedpatients,likelyduetothelong-

heldopinionthatmelanomasareresistanttoradiation.Theresistancemayinpartbeexplainedbytheradioprotect ivepropertiesofmelanin.Interestingly,desmoplasticmelanomas,whichareamelanotic,areresponsivetoradiother apy.Therefore,radiotherapyrepresentsaviablealternativeinthetreatmentofmelanomas,dependingonthetumor phenotypeandlocation.

Thediscussedmodelsofrodentmelanoma, n a m e l y theBomirskiandZemanmelano malinestransplantableinhamstersandgerbils,respectively,constituteremarkableanimalmodels tostudyandtestdifferentradiotherapeuticapproachesbeforeclinicaltreatmentofstage3and4dis eas e. S p e c i f i c a l l y,n o n -

p i g m e n t e d BH Mmel an omais responsivetoradio therap y,e i t h e r aftersubcutaneoustrans plantationorimplantationintotheeye.S i m i l a r l y,Zemanmelanomaisradiosensitive,butindepende ntlyonpigmentation,whilepigmentedBHMmelanomasaremarkedlymoreresistanttoXirradiationthannon-

pigmentedones.Moreover,high-

LETradiation(fastneutrons)iseffectiveintheinhibitionofBHMtumorgrowthindependentlyonitspigmentation.

Thus,BomirskihamsterandZemangerbilmelanomasrepresentacomprehensivesetofpreclinicalmodels—

resistantandsensitivetotherapies,allowingtodefineoptimalconditionsforradiotherapysuchasinh ibitionofmelanogenesisinX-

raytherapyorselectionofproperradiation,whichwouldefficientlytreattumorsindependentlyofth elevelofpigmentation.

Acknowledgments:Thisreviewincludesworkperformedovermorethan40years.Sourcesoffundingarementionedint herespectivecitedoriginalmanuscripts.KUwasarecipientofgrantnoUMO-

2012/07/B/NZ4/01657fromPolishNationalScienceCentre.F a c u l t y ofBiochemistry,Biophysics,andBiotechnologyo ftheJagiellonianUniversityisapartneroftheLeadingNationalResearchCenter(KNOW)supportedbytheMinistryofScienceandHigh erEducation(GrantKNOW35p/10/2015toPMP).Partialsupportfromgrants1R01AR056666-01A2,R21AR066505,and1R01AR071189–

01A1toASfromNIHand2014/15/B/NZ4/00751toAABfromNationalScienceCentre,Poland,isalsoacknowledged.Thegraphicalabstractc ontainsanillustrationelementmadebyServierMedicalArt(https://smart.servier.com/).AuthorsaregratefultoDr.RadomirSlominskiforpro ofreadingthemanuscript.

AuthorContributions: Martyna S

´niegockap reparedi l l u s t r a t i o n s , andp e r f o r m e d l i t e r a t u rere search,

EwaPodgórskamanagedthereferences,andperformedliteratureresearch,PrzemysławM.Płonkadescribedtherol eo f m e l a n i n s a n d h a m s tera s a m o d e l a n i m a l , MartynaE l a s e d i t e d a n d revisedt h e t e x t , Boz˙enaRo manowska-

DixondescribedtheradiosensitivityofUMtumors,MałgorzataSzczygiełdescribedgerbilsasmodelanimals,ZemanUJ90melanomares ults,andpreparedagraphicalabstract,MichałA.Z˙mijewskiandMirosławaC i c h o rekd e s c r i b e d B o m i r s k i h a m s t e r m e l a n o m a , A n n a M a r k i e w i c z d e s c r i b e d U M b r a c h y t h e r a p y andp rotonb e a m t h e r a p y,AnnaA . B roz˙ynad e s c r i b e d theroleofi n h i b i t i o n o f melanomap i g m e n t a t i o n , AndrzejT.Słominskidelineatedthe conceptofthepaper,anddescribedclinicalaspectsofhumanskinmelanomaandcontributedtothesectiononrodentmelanomas,Kry stynaUrban

´skawasresponsiblefortheconceptofthepaper,describedtheradiophototherapy,radiosensitivityofBHM,andthepr oteomicstudy.

ConflictsofInterest:Theauthorsdeclarenoconflictsofinterest.

(21)

References

1. Urteaga,B.O.;Pack,G.T.Ontheantiquityofmelanoma.Cancer1966,19,607–610.[CrossRef]

2. Slominski,R.M.;Zmijewski,M.A.;Slominski,A.T.Theroleofmelaninpigmentinmelanoma.Exp.Dermatol.

2015,24,258–259.[CrossRef][PubMed]

3. Bomirski,A.;Dominiczak,T.;Nowinska,L.Spontaneoustransplantablemelanomainthegoldenhamster(Mesoc ricetusauratus).ActaUnioInt.ContraCancrum1962,18,178–180.[PubMed]

4. Bomirski,A.BiologicalPropertiesofTransplantableMelanomasintheSyrianHamsterduring16YearsofMainten ancebySerialPassages.HabilitationThesis,MedicalSchoolofGdansk,Gdansk,Poland,1977.

5. Bomirski,A.;Słominski,A.;Bigda,J.Thenaturalhistoryofafamilyoftransplantablemelanomasinhamsters.

CancerMetastasisRev.1988,7,95–118.[CrossRef][PubMed]

6. Slominski,A.;Paus,R.Bomirskimelanomas:A versatileandpowerfulmodelforpigmentcellandmelanomare search.Int.J.Oncol.1993,2,221–228.[CrossRef][PubMed]

7. Pajak,S.;Cieszka, K.;Plonka,P.;Lukiewicz, S.;Mihm, M.;Slominski, A.Transplantablemelanomasi ngerbils(Merionesunguiculatus).I.Origin,morphologyandgrowthrate.AnticancerRes.1996,16,1203–1208.[PubMed]

8. Plonka,P.M.;S l o m i n s k i , A . T.;P a j a k , S . ; U r b a n s k a , K . Transplantablem e l a n o m a s i n g e r b i l s (Meri onesunguiculatus).II:Melanogenesis.Exp.Dermatol.2003,12,356–364.[CrossRef][PubMed]

9. Billingham,R.E.;Silvers,W.K.Themelanocytesofmammals.Q . Rev.B i o l . 1 9 6 0 ,35,1–40.[CrossRef]

[PubMed]

10. VanDenBossche,K.;Naeyaert,J.-M.;Lambert,J.TheQuestfortheMechanismofMelaninTransfer.Traffic 2006,7,769–778.[CrossRef][PubMed]

11. Lazova,R.;Pawelek,J.M.Whydomelanomasgetsodark?Exp.Dermatol.2009,18,934–938.[CrossRef][PubMed]

12. Lazova,R.;Klump,V.;Pawelek,J.Autophagyincutaneousmalignantmelanoma.J.Cutan.Pa thol .2010 ,37,25 6–268.[CrossRef][PubMed]

13. Lembo,S . ; DiC a p r i o , R . ; Micillo,R . ; Balato,A . ; Monfrecola,G . ; Panzella,L . ; Napolitano,A . L i g h t - independentpro-inflammatoryandpro-

oxidanteffectsofpurifiedhumanhairmelaninsonkeratinocytecellcultures.Exp.Dermatol.2017,26,592–594.[CrossRef]

[PubMed]

14. Płonka,P.M.;Picardo,M.;Slominski,A.T.Doesmelaninmatterinthedark?Exp.Dermatol.2017,26,595–597.

[CrossRef][PubMed]

15. Slominski,A.;Paus,R.;Mihm,M.C. Inhibitionofmelanogenesisasanadjuvantstrategyinthetreatment ofmelanoticmelanomas:Selectivereviewandhypothesis.AnticancerRes.1998,18,3709–3716.[PubMed]

16. Broz˙yna,A.A.;Józ´wicki,W.;Carlson,J.A.;Slominski,A.T.Melanogenesisaffectsoverallanddisease-free survivalinpatientswithstageIIIandIVmelanoma.Hum.Pathol.2013,44,2071–2074.[CrossRef][PubMed]

17. Englaro,W.;Rezzonico,R.;Durand-Clement,M.;Lallemand,D.;Ortonne,J.-P.;Ballotti,R.Mitogen-

activatedproteinkinasepathwayandAP-1areactivatedduringcAMP-inducedmelanogenesisinB- 16melanomacells.J.Biol.Chem.1995,270,24315–24320.[CrossRef][PubMed]

18. Ortonne,J.-P.;Ballotti,R.Melanocytebiologyandmelanogenesis:What’snew?J. Dermatol.Treat.2000 , 11,15–26.[CrossRef]

19. Slominski,A . T.;Tobin,D . J . ; S h i b a h a r a , S . ; Wortsman,J . M e l a n i n P i g m e n t a t i o n i n M a m m a l i a n S k i n a n d I t s HormonalRegulation.Physiol.Re v.2004,84,1155–1228.[CrossRef][PubMed]

20. Spagnolo,F.;Queirolo,P.Upcomingstrategiesforthetreatmentofmetastaticmelanoma.Arch.Dermatol.Res.

2012,304,177–184.[CrossRef][PubMed]

21. Jean,D . ; Bar-

Eli,M . R e g u l a t i o n o f t u m o r g rowtha n d m e t a s t a s i s o f h u m a n m e l a n o m a b y t h e C R E B trans criptionfactorfamily.Mol.Cell.Biochem.2000,212,19–28.[CrossRef][PubMed]

22. Buscà,R.;B e r t o l o t t o , C.;O r t o n n e , J.-P.;B a l l o t t i , R.Inhibition ofthephosphatidylinositol 3- kinase/p70(S6)-kinasepathwayinducesB16melanomacelldifferentiation.J.Biol.Chem.1996,271,31824–

31830.[CrossRef][PubMed]

23. Curtin,J.A.;Busam,K.;Pinkel,D.;Bastian,B.C.SomaticactivationofKITindistinctsubtypesofmelanoma.

J.Clin.O n c o l . 2 0 0 6 ,24,4340–4346.[CrossRef]

24. Albino,A.P.;LeStrange,R.;Oliff,A.I.;Furth,M.E.;Old,L.J.Transformingrasgenesfromhumanmelanoma:Amanifestationoftu mourheterogeneity?Nature1984,308,69–72.[CrossRef][PubMed]

Cytaty

Powiązane dokumenty

Table VII presents the mean survival periods of patients with MBM depending on the number of metastatic foci in the brain, and thus in the case of isolated metastases the

Indications for sole or adjuvant radiotherapy of the primary lesion are limited and include desmo- plastic melanoma, the presence of satellite lesions and/or in-transit metastases,

Obie grupy leków cechuje inna kinetyka odpowiedzi (ipilimumab — późne, ale często długo utrzymujące się odpowiedzi, jednak występujące tylko u części chorych; wemurafenib

Results: The in vitro results revealed that kaempferol obviously inhibited cell viability of melanoma B16 cells, in- duced cell cycle arrest and cell apoptosis. The

In a phase III study comparing the efficacy of dacarbazine and vemurafenib, 675 patients with treatment-naive metastatic melanoma (positive BRAF V600 mutation) participated..

Obecnie limfadenektomię u chorych na czerniaki skóry wyko- nuje się tylko w przypadku potwierdzenia obecności przerzutu w wartowniczych węzłach niepodejrza- nych klinicznie

Analiza molekularna linii komórkowych czerniaka ludzkiego w zakresie wybranych eksonów genów BRAF, NRAS i HRAS.. Badaniu PCR poddano siedem linii komórkowych

As shown in Figure 1, human adiponectin gene contains binding sites for many transcription factors including PPAR (peroxisome proliferator-activated receptor gamma [36] and