• Nie Znaleziono Wyników

Near support-free multi-directional 3D printing via global-optimal decomposition

N/A
N/A
Protected

Academic year: 2021

Share "Near support-free multi-directional 3D printing via global-optimal decomposition"

Copied!
11
0
0

Pełen tekst

(1)

Delft University of Technology

Near support-free multi-directional 3D printing via global-optimal decomposition

Gao, Yisong; Wu, Lifang; Yan, Dong Ming; Nan, Liangliang

DOI

10.1016/j.gmod.2019.101034

Publication date

2019

Document Version

Final published version

Published in

Graphical Models

Citation (APA)

Gao, Y., Wu, L., Yan, D. M., & Nan, L. (2019). Near support-free multi-directional 3D printing via

global-optimal decomposition. Graphical Models, 104, [101034]. https://doi.org/10.1016/j.gmod.2019.101034

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

GraphicalModels104(2019)101034

ContentslistsavailableatScienceDirect

Graphical

Models

journalhomepage:www.elsevier.com/locate/gmod

Near

support-free

multi-directional

3D

printing

via

global-optimal

decomposition

Yisong

Gao

a

,

Lifang

Wu

a,∗

,

Dong-Ming

Yan

b

,

Liangliang

Nan

c

a Faculty of Information Technology, Beijing University of Technology, Beijing, China b NLPR-LIAMA, Institute of Automation, Chinese Academy of Sciences, Beijing, China c Delft University of Technology, Delft, Netherlands

a

r

t

i

c

l

e

i

n

f

o

Keywords: 3D Printing Multi-directional Support-free Model decomposition Global optimization

a

b

s

t

r

a

c

t

In3Dprinting,itiscriticaltouseasfewaspossiblesupportingmaterialsforefficiencyandmaterialsaving. Multiplemodeldecompositionmethodsandmulti-DOF(degreesoffreedom)3Dprintershavebeendeveloped toaddressthisissue.However,mostsystemsutilizemodeldecompositionandmulti-DOFindependently.Only afewexistingapproachescombinethetwo,i.e.partitioningthemodelsformulti-DOFprinting.Inthispaper, wepresentanovelmodeldecompositionmethodformulti-directional3Dprinting,allowingconsistentprinting withtheleastcostofsupportingmaterials.Ourmethodisbasedonaglobaloptimizationthatminimizesthe surfaceareatobesupportedfora3Dmodel.Theprintingsequenceisdeterminedinherentlybyminimizinga singleglobalobjectivefunction.Experimentsonvariouscomplex3Dmodelsusingafive-DOF3Dprinterhave demonstratedtheeffectivenessofourapproach.

1. Introduction

3Dprinting,alsoknownasadditivemanufacturing,hasbeenwidely usedforbothrapidprototypingandsmallbatchproduction,producing objectsrangingfrommicrostructuresusedinbiomedicaltolarge-scale complexpartsappliedintheaerospaceindustry.Theproliferationof3D printingtechniquesisdrivenbytherequirementsofflexibilityand effi-ciency.Comparedtotraditionalmanufacturingmethodssuchascarving andmolding,3Dprintingiscapableoffabricatingobjectswith arbitrar-ilysophisticatedshapessuchashollowstructures.

Conventional3Dprintersarelimitedto3degreesoffreedom(DOFs), i.e.,X,Y,andZ.Themajorlimitationofsuchprintersisthatthe mate-rialaccumulatingdirection(i.e.,fabricationdirection)oncesetcannot bechangedineverysingleprintingtask.Therefore,ittypicallyrequires auxiliarysupportingstructurestobeaddedandprintedtopreventthe growingobjectsfromdeformingandevencollapsingundertheeffect ofgravity.Introducingsupportingstructureshaveafewdrawbacks.For example,itconsumesmorematerials(andthuslesscost-effective), pro-longsprintingtime,restrictsprintingflexibility,andrequiresadditional post-processingtoremovethesupportingstructuresthatmayharmthe surfacequalityoftheprintedobjects.

Tobeflexibleforobjectswithincreasingcomplexity,various fabri-cationsystemswithmoreDOFshavebeendeveloped.TheextraDOFs providethecapabilitytoadjustthedirectionofmaterialaccumulation duringthefabrication,whichprovidesmoreflexibilitytotheprinting

Correspondingauthor.

E-mailaddresses:ysgao@emails.bjut.edu.cn(Y.Gao),lfwu@bjut.edu.cn(L.Wu),yandongming@gmail.com(D.-M.Yan), liangliang.nan@gmail.com(L.Nan).

systemandmeanwhilereducesbothmaterialandenergyconsumption. Inprinciple,moreDOFsleadtomoreflexibilitybutloweraccuracyin theprintedobjectsduetotheaccumulationofthepositioningerrors oftheservomotors.AssuggestedbyDaietal.[1],a5-DOFcomputer numericalcontrol(CNC)systemcanprovidehigherprintingaccuracy thanusinga6-DOFroboticarmsystem.Inthiswork,weexploitaCNC 3Dprintingsystem(i.e.,translationinX,Y,andZdirectionstodrive theprintheadsplustwoadditionalrotationalaxestochangethe ori-entationoftheplatform)designedbyourselves.Insteadofexploiting thecapabilityoftheextrafreedoms(i.e.,thetwocontinuousrotational axes),werelyonsmartmodelpartitiontechniquesanddiscrete rota-tionoftheextrafreedomstoensurebothflexibilityandhighprinting accuracy.Thesystemworksina“discrete-rotational” style:themodel is decomposedintoseveralpartsbyplanesandthepartsareprinted onebyone(thesubsequentpartsareprinteddirectlyontopofthe pre-viouslyprintedparts).Theprintingprocessof eachpartissimilar to theconventional 3-axis3Dprintingwhiletheplatformcanrotate to thedirectionsuitingthenextpartwhenthepreviouspartisfinished.

Fig.1showstheprintingprocessoftheStanfordbunnymodelusingour system.Withthediscrete-rotationalprintingstrategy,highly-accurate traditionalCNCsubtractivemanufacturingmovementsandexisting ma-turedtool-pathplanningmethodscanbedirectlyappliedtoeachpart of the model.So boththemoving velocityof thesystem and print-ingprecisioncanreachthatofconventional3Dprintersandmachine

https://doi.org/10.1016/j.gmod.2019.101034

Received24February2019;Receivedinrevisedform8May2019;Accepted28May2019 Availableonline11June2019

(3)

Fig.1. OursystemprintingtheStanfordbunnymodel.

tools.Moreover,unidirectionalgeometryoptimizationmethodssuchas support-freehollowing[2],andtopologyoptimizationmethodssuchas surfaceremeshingwithsegmentation[3],canalsobeappliedtoeach partofthemodel.

Whenamulti-DOFprintingsystemisenhancedbymodel decomposi-tion,achievingcollision-freemotionbecomesmorechallengingbecause bothprintingorder andtool-path planningarehighlydependent on eachother.Existingapproachesdecomposemodelsintomultiplesolid parts[4]orlinesegments[5,6]andprinteachpartinaspecificorder. Thisallowseachparttobeprintedinawaysimilartotheconventional printerswithonly3DOFs.Effortshavealsobeenmadetodecompose amodelintocurvedsurfacelayers[1],furtherincreasingtheflexibility andmakingsupportingstructuresunnecessary.Inourwork,wefocus onplanar-layeredfabricationandourgoalistoachievebetter decom-positionresultsformulti-directionalprinting.

Givenanarbitrary3Dmodel,ourmethoddecomposesitintoseveral partswithanoptimalprintingorder,withwhichthemodelpartscanbe printedonebyoneandfinallybuildsupthecompleteobjectinasingle printingpassusingtheleastsupportingmaterials.Wecomprehensively analyzethecollisionsituationsandconvertthesupport-freeconditions fromaconstantdirectiontovaryingdirections.Weproposea heuris-ticdecompositionmethodusingcuttingplanestoavoidthecollision. Weminimizethesurfaceareatobesupportedusingglobal optimiza-tionwithwhichtheprintingsequencecanbedeterminedinherently.In additiontotheprintabilitywithleastsupports,ourmethodimproves surfacequalityaswellbyreducingthenumberofmodelpartsand com-pensatingrefinementalongthepartorientations.Wetestouralgorithm onvariouscomplexmodelstodemonstrateitseffectivenessandwe com-pareourmethodtothepreviouswork[4]ofthesamefabricationstyle toshowitsmerits.

Inshort,ourworkmakesthefollowingcontributions:

• Asetofcollision-freeandnear support-freeconditions for multi-directionalfabrication;

• Aheuristicdecompositionmethodusingcuttingplanestoavoid col-lisionbetweentheextruderandtheprintedparts;

• Amethodbasedonasingle-objectiveglobaloptimizationthatcan simultaneouslyoptimizeforboththedecompositionandprinting or-der.

2. Relatedwork

2.1. Multi-DOFhardwaresystem

Intermsofhardware,multi-DOFprintersarebeingconstantly ex-ploredstarting withanattempton proof-of-concept printingusing a 6-DOFroboticarm[7].A5-axismotionsystemsimilarto5-axisCNC machiningwasproposedtofabricatesimpleshapeonanexistingmodel

[8].Themulti-directionaladditivemanufacturingwaspresentedinthe work[9]using6-DOFparallelkinematicStewartplatform.Afterthat, multi-DOFsystemswith shape decomposition tool-path planningfor multi-directional fabricationwas built up one after anothersuch as

[4–6,10,11],tremendouslyincreasingtheflexibilityofprintingand free-domofdesign.

2.2. Modeldecomposition

Onthesoftwareside,modeldecompositionanddeformationarethe twomainapproachestoimproveprintability.Modeldecompositionis favored for its multifunctionandpreservation of theoriginal shape. Shapiraetal.[12]decomposedmodelsaccordingtotheshapeand vol-umediametertoachievecoherentresultswithdifferentgestures.Luo etal.[13]focusedondecomposinglargemodelsintoprintingvolume withaconsiderationofprintability,numberofparts,feasibility, struc-turalsoundness,andaesthetics.Huetal.[14]decomposedmodelsinto approximatepyramidalparts,whichcouldbeprintedwithoutsupports. Herholzetal.[15]presentedmethodsusingaheightfieldforthe print-abilityinasupport-freemanner.Chenetal.[16],catertoprinting effi-ciencyproblem,decomposedmodelintopartsandpackedtheminthe printingvolumesoallthepartscouldbeproducedinonepass.Song etal.[11]builtcoarseinternalbasestructureswithinthegiven3D ob-jectandattachthin3D-printedpartsontothebasetorecoverthefine surfacedetails.Wangetal.[17]improvedoverallsurfacequalityby de-composingandoptimizingtheprintingdirectionsofeachparttoavoid thestaircaseeffectthatharmssurfacequality.Weietal.[18] decom-posedmodelsguidedbytheskeletonsforsupport-free printing espe-ciallytowardsshellmodels.Chenetal.[19]manufacturedtheinnerof theobjectsusinguniversalbuildingblocksandfabricatedoutershells withpyramidaldecompositionwhichcanrealizesupport-freeprinting. Most of the methods mentioned above produce objects in a decompose-and-assemblemanner,whichconsumesextratimeto assem-blethepartstogether.Wuetal.[4]firstlydecomposedsolidmodelinto support-freepartswhichcanbefabricatedonebyone(directly accumu-latedontheprintedparts)inonepassbya6-DOFroboticsystem. Mod-elsarefinallyslicedintoplanarlayersalongdifferentorientationsand printedina‘discrete-rotational’style.Wuetal.[20]improvedtheir pre-viousmethod[4]bypartitioningmodelsusingplanessothatthemethod couldworkwithmodelswithcomplextopologyoneither4-DOFor 5-DOFsystems.Oneofthemoststate-of-the-artmethodsisproposedto decomposeamodelintocurvedsurfacelayers[1],furtherincreasing theflexibilityandmakingsupportstructuresunnecessaryinmostcases. Thisnovelworkfirstlyrealized“3Dprinting” withthefulluseofDOFs.

3. Methodology

Considering printability, material consumption,quality, and effi-ciency, achieving optimalmodeldecomposition is challenging.Hard constraints,i.e.,collision-freeandsupport-free,areunlikelytobefully satisfiedandwithwhichthetoolpathplanningbecome computation-allyexpensive.Inthiswork,wetransformthenecessaryconstraintsto aformthatsimplifiesthecalculation,andwerelaxunnecessarilystrict constraintsforrobustnessconsiderations.

Wedecomposea3Dmodelusingasetofplanes(i.e.,cuttingplanes) forplanar-layeredfabrication.Everytimeacuttingplaneisappliedtoa modelcomponent,themodelcomponentispartitionedintotwoparts. Duringprinting,thepartwillbeprintedontopofthecuttingplanelayer bylayeralongthenormaldirectionofthecuttingplane.

(4)

Y. Gao, L. Wu and D.-M. Yan et al. Graphical Models 104 (2019) 101034 Fig.2.Extruder-platformcollision.(a)Collisionsmayoccurbetween theextruder(inpink)andtheplatform(indarkblue)whenprinting theobjectparts.(b)Theexpandedplatformboxisusedforsimpler collisiondetection.(Forinterpretationofthereferencestocolourin thisfigurelegend,thereaderisreferredtothewebversionofthis article.)

Fig.3. Extruder-objectcollision.(a)Anexampleofthe extruder-objectcollision.(b)(c)Theexpandedconvex hullofthemodelpartisusedtosimulatetheworkspace oftheextruderwhenprintingthepart.

3.1. Constraintanalysis

ConstraintI:Collision-free.Toensureprintability,nocollisioncan occurduringtheprintingprocess.Normally,thefollowingtwotypesof collisionsareconsidered:

Extruder-Platform.Intheprevious work[4], theworkspaceofthe multi-DOFprinterisrestrictedtotheupperhalfspaceabovethe hori-zontalplane.Weobservethattherestrictionofrotationalangularrange isunnecessarilystrictandmaymisscollision situationswhen consid-eringtheactualvolumeoftheextruder(i.e.,thenozzlesthatmeltand extrudethematerials).Weseekforanapproximatesolutionthat guaran-teescollision-freebetweentheextruderandtheplatform.Specifically, wecheckifcollisionoccursbetweeneachmodelpartandtheexpanded platformbox(i.e.,acuboidobtainedbyexpandingtheplatformtoa dis-tanceoftheradiusoftheextruderalongallthemajoraxes.SeeFig.2

(b)),allowingtheplatformtorotatewithoutlimitingtheangularrange (e.g.,[−90◦,90◦]in[4]whiletheplatformcanrotateupto180∘from itshorizontalpositionwiththeextrarotationalDOFs)withoutcollision. Inourwork,wesettheangularrangetobe[−135◦,135◦](reduced45∘ consideringtheself-supportingangleofthematerials).

Extruder-Object.Decomposition of themodel usingcutting planes

typicallyintroducessharpcornersintheprintingprocess(seeFig.2(a)). Forthe cornerregions, collision usuallycannot be avoidedeven by switchingtheprintingorderoftheparts.Thepreviouswork[4]does notallowintersectionsbetweencuttingplanestooccurwithinthe vol-umeoftheobjecttobeprinted.Wefoundittoostrictandrelaxitto allowacertaintypeofcuttingplaneintersections.Ourobservationis thatcollisioncanbeavoidedwhenpartswithhigherprintingpriority lieunderthebaseplaneofthesubsequentparts.Withthisobservation, weproposeaheuristicmethodtodecomposea3Dmodelintopartswith planesandmeanwhileobtainproperprintingprioritiesforcollision-free printing(seeFig.7foranexampleandSection3.2fordetails).

Inthegeneralcase,extruder-objectcollisionscanbedetectedby us-inganexpandedconvexhullofeachpartofthemodel.Similartothe expandedplatformbox,wecalculatetheconvexhullofeachpartand ex-panditbytheradiusoftheextruder(expandeveryvertexalongits

nor-Fig.4.Inclinationangle(illustratedin2D).

mal’scomponentperpendiculartotheprintingdirection.SeeFig.3(b)). Intersectiondetectionisthenappliedbetweentheexpandedhulland thepartswithhigherprintingpriorityforcollisiondetection.

ConstraintII:Support-free.Giventhefactthatthereisstillno the-oreticalproofoftheexistenceofastrictsupport-freedecompositionof arbitrary3Dshapes[1],werelaxthesupport-freerequirementtoasoft constraint.Insteadofminimizingthematerialcostforthesupporting structure,weattempttominimizetheareaoftheregionsthatrequire supportstoensureprintability.Inourproblemsetting,thesupporting analysisismuchmoresophisticatedthanconventionalmodel decompo-sitionmethodsbecauseofthevaryingprintingorientationsforthe de-composedparts.Weconsiderthreesituationsinmulti-directional print-inganddiscussthemindetailsasfollows.

Overlargeinclinationangle:Wedefinetheanglebetweenthemodel

surfaceanditsprintingorientationasinclinationangle,asshownin

Fig.4.InFDM-basedfabrication,materialscanbeaccumulatedwithout extrasupportingstructures(i.e.,themodelcansupportitselfwithout causingdeformation)whenthesurfaceinclinationangleissmallerthan acertainvalue.Thisthresholdangleiscalledthemaximalself-support angleasusedin [1,2,4,14],andthisthresholdangleisusuallysetto be45∘orlargerdependingonthestiffnessofthematerial.Inprinting, deformationcouldbeobservedandtheprintingobjectmayeven col-lapseundertheeffectofgravityiftheactualinclinationangleisgreater thanthis threshold.Normally,thesurfaceregions withanexceeding

(5)

Fig.5.Twotypesoflocalminimumpoint.ForthelocalminimumpointA, sup-portingstructures(shadedregions)areneededforitsneighboringfaces.ForB, supportisneededonlyatpointB(withacertainradius)whileitisnotnecessary foritsneighboringfacesbecauseofthesmallinclinationangles.

inclinationangle(calledoverhangingregions)shouldbesupported us-ingadditionalstructurestoensureprintability.Inthiswork, weaim tominimizetheareaoftheoverhangingregions.Whentheareaofthe overhangingregionscanbereducedtozero,thissupport-freeconstraint canbesatisfied.

Localminimumpoints:Thesurfacepointwiththesmallestdistance totheplatform(orthebaseplaneofeachpartinthemulti-directional case),comparedwithallitsneighbors(exceptthoselyingonthebase plane),iscalledthelocalminimumpoint.Obviously,regionsarounda minimumpointareoverhangingandsupportsarerequired.Toreduce supportingstructures,wedecomposethemodelinawaysuchthatthe leastnumberofminimumpointspresents.Iftheadjacentfacesofalocal minimumpointdonotneedsupports(i.e.,theinclinationangleissmall. SeethepointBinFig.5),weonlyneedacylinder-likestructurethat supportstheminimumpoint.Insuchcases,thesupportingsurfacearea isdefinedasthecross-sectionalareaofthesupportingcylinder.

Fragileregions:In3Dprintingwithmodeldecomposition,partsare printedinapredefinedorderandonepartisalways(exceptforthefirst one)printedontopofotherpreviouslyprintedparts.Suchaprocess re-quirestocheckifthereexisttoofragileregionsthatcannotaffordother partstobe printedontopofthem.In3Dprinting,typicalfragile re-gionsarethinfinsorbridgesonthepreviouslyprintedparts.Inspired bytheworkofLuoetal.[13],wedetectfragileregionsbycheckingif thereexistsaregionwhosedistancetothebaseplaneofthefollowing partissmallerthanaspecifiedthresholdandmeanwhilewhosenormal issufficientlyclosetothenormalofthebaseplanes(seeFig.6).Here, wesetthedistance thresholdto5mmandthemaximalallowed an-gledeviationissetto10∘.Fragileregionscanbedetectedandhandled moreefficientlyinsuchanapproximatemanner,comparedtoaccurate analysis-basedapproachessuchasfiniteelementanalysis(FEA,which isfairlytime-consuming).Inaddition,preciselydeterminingwhethera regionrequiressupportsandhowmuchmaterialitwillhaveconsumed arerathercomplicated.Duetothesereasons,westrictlydisallowany fragileregions,forwhichwetrysimplymovingthecuttingplanea cer-taindistancealongitsnormaldirectionincaseoffragileregions.

3.2. Modeldecomposition

Avoidingextruder-object collision. Intheprevious workofWu etal.[4],collisionisavoidedbystrictlyprohibitingintersectionsthat occurwithintheinteriorofthemodel,whichiscomputationally expen-sive.Besides,duetosuchastrategyexposestoomuchconstraintonthe locationandorientationofacuttingplane,betterdecompositionsare likelytobeignored.Weobservethatifnoprintedobjectexistsontop ofacutting plane,therewouldnot beanycollision betweenthe ex-truderandtheobjectbecausethemotionoftheextruderiscompletely on/abovethecuttingplane.Basedonthisfact,weutilizeaheuristic methodtosegmentamodelintocollision-freeparts.Giventhecutting planes,themodelispartitionedusingamethodsimilartobinaryspace partitioning(BSP)[21](wecallit‘planecut’).Specifically,thecutting planesareappliedreverselyinatop-downsegmentationorder,which

iscontrarytotheprintingpriority(seeFig.7foranexample).This de-compositionstrategyensuresthatthenumberofpartsincreasesbyone foreverypartition,leadingtoasimplerprintingprioritydetermination. Asaresult,themodelisdecomposedinto𝑁+1partswithout extruder-objectcollisionsbygivenNcutting planes.However,inanother cut-tingcase thatonly onebranchis chosentodecomposethemodelif theplaneintersectsthemodelatseveralbranches(called‘branchcut’), extruder-objectcollisiondetectionisstillindispensable.Asweobserved, the‘branchcut’ismoresuitablefortree-likemodelswhilethe‘planecut’ suitsmodelswithring-likestructuresbetter(applyingonlyone‘branch cut’onring-likestructuresmayleadtounseparatedresults).

Overhangingdetection.Inpractice,duetothecohesiveandelastic forcesoftheplasticmaterialitself,theobjectwouldnotcollapse im-mediatelywhenprintingtheseverelyslopingregionswithoutsupports.

Fig.8showssuchanexample.However,deformationshouldnotbe ne-glectedastheinclinationangleincreasesforacertaindistance.Sucha distance(wecallitsafedistance)definesasaferegionforwhich support-ingstructureisnotnecessary.Experimentsshowthatthesafedistance canbeupto10mmfora60∘inclinationangle.Duetothewide distri-butionoftheinclinationanglesandthecuttingplaneorientations,itis difficult(andalsonotnecessary)toaccuratelycomputeasafedistance foreveryfaceinthemodel.Inourwork,wesetthesafedistancetobe halfofthemaximumdistanceobservedinourexperiments,i.e.,5mm. Withthissafedistance,thedetectionofoverhangingregionsisdetailed inAlgorithm1andillustratedinFig.9.

Algorithm1 Detectionofoverhangingsurfaceregions.

Input:

Modelpart𝑝𝑎𝑟𝑡𝑖anditsorientation𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑖;

Output:

Theoverhangingregionsin𝑝𝑎𝑟𝑡𝑖;

1: Computetheinclinationangles,relativeto𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑖,forallfaces

in𝑝𝑎𝑟𝑡𝑖 andmarkthepotentialoverhangingfaces(ignoreregions

withsmallareas);

2: Projecttheborderlinesofeachoverhangingregion𝑎𝑟𝑒𝑎𝑗 ontothe

plane𝑃𝑙𝑎𝑛𝑒𝑖(thatpassesthroughthemasscenteroftheregionand

isorthogonalto𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑖);

3: Calculatethemasscenter𝐶𝑒𝑛𝑡𝑒𝑟𝑗 of thelowerboundaryofeach

regionandprojectitonto𝑃𝑙𝑎𝑛𝑒𝑖;

4: Computeanenlargedoffsetoftheprojectedcloserboundary(the sidethatis closertotheprojectregioncenter) withthespecified

safedistanceon𝑃𝑙𝑎𝑛𝑒𝑖.Theoffsetregionsarewithinthesafedistance

andaresupport-free,whiletheremainingregionsrequiresupporting structures.

5: Mapthe2Dregions thatrequiresupportsbacktothe3Dmodel, resultingintheoverhangingregionsfor𝑝𝑎𝑟𝑡𝑖.

4. Implementation

4.1. Objectivefunction

Withtheaforementionedanalysisoftheconstraints,collision detec-tionandapproximation,andoverhangingdetection,belowwedetail ourobjectivefunction.AsstatedinSection3.1,werelaxthe support-freeconstraintsrequirementtoasoftrequirementandweminimizethe areaoftheregionsthatrequiresupports(insteadofminimizingthe ac-tualmaterialcostforthesupportingstructure)foranyarbitraryinput models.GivenNcuttingplanes,wepartitiontheinputmodelinto𝑁+1 componentsbyminimizingthefollowingobjectivefunction

min 𝑁𝑖=0 𝑎𝑟𝑒𝑎𝑖 s.t. 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑖⋅ 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛0≥−0.5,𝑖=1,2,,𝑁; 𝑝𝑎𝑟𝑡𝑖𝐵𝑜𝑥𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚=∅,𝑖=1,2,,𝑁;

(6)

Y. Gao, L. Wu and D.-M. Yan et al. Graphical Models 104 (2019) 101034 Fig. 6. (a) An example of fragile regions in the hanging-ballmodel.RegionAisafinandregionBisa bridge.(b)Illustrationoffragileregionsin2D.

Fig.7. ThedecompositionoftheStanfordbunnymodelintothreepartsusing twocuttingplanes.Therednumbersdenotetheactualcuttingorderandthe blacknumbersdenotetheprintingpriority.(Forinterpretationofthereferences tocolourinthisfigurelegend,thereaderisreferredtothewebversionofthis article.) 𝑇ℎ𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛𝑖=∅,𝑖=0,1,,𝑁−1; 𝐻𝑢𝑙𝑙𝑖𝑖−1 ⋃ 𝑗=0𝑝𝑎𝑟𝑡𝑗 =∅,𝑖=1,2,,𝑁(𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙). (1)

whereareaidepictstheprojectedareaoftheoverhangingregionsofparti

thatrequiresupportingstructure.∑𝑁𝑖=0𝑎𝑟𝑒𝑎𝑖denotesthetotalareaof

thesupportingregions.partiisthedecomposedpartwiththeithplane asitsbaseplaneandwillbe printedalongtheplane’snormal direc-tionOrientationi.Boxplatformrepresentstheexpandedplatformbox,and ThinRegioni denotesthefragileregions.Hulli is theexpandedconvex hullofparti and⋃𝑗=0𝑖−1𝑝𝑎𝑟𝑡𝑗 representstheprintedobjectparts,which

areonlyneededwhenapplying‘branchcut’.ByminimizingEq.(1),we obtaintheparametersforeachcuttingplanes.

4.2. Optimization

Wecombinegeneticalgorithm(GA)withelitism,adaptive probabil-itiesofcrossoverandmutationandsimulatedannealingforbetter con-vergence rateandconstraintsimplementation. Thegeneticalgorithm canbeseenasaMarkovprocessandGAwiththeelitistmodel(i.e., pre-servingthebestindividualineachgeneration)hasbeenproventobe probabilisticconvergent[22],whichguaranteethesolutionis approxi-matelyglobaloptimal.Adaptiveprobabilitiesofcrossoverandmutation realizethetwingoalsofmaintainingthediversityofthepopulationand sustainingconvergencecapacity[23].Simulatedannealingisusedto refusethesolutionsout ofconstraintsandimproveconvergence effi-ciency.SeeAlgorithm2forabetterunderstandingoftheoptimization process.

Parametersetting.ThenumberofcuttingplanesNisspecifiedbythe usertakingintoaccountthecomplexityofthemodel.Thesizeofthe populationNpopissetto200andtheuser-specifiedterminating

thresh-oldNtermissetto100.

We use 5 variablesto determinethe parameters of each cutting planeandthebranchthatwillbecutbythisplane,includingapoint

𝐩=(𝑎,𝑏,𝑐)andtworotationalangles𝛼,𝛽.Thepointpisusedto deter-minethespecificbranchtobecut(i.e.,if‘branchcut’isallowed,the branchwiththeshortestdistancetothepointischosen)andthetwo ro-tationalanglesdeterminetheorientationoftheplane.Weconcatenate thevariablesofallcuttingplanesintoahighdimensionalvector

𝑖𝑛𝑝𝑢𝑡_𝑠𝑒𝑡={𝑎1,𝑏1,𝑐1,𝛼1,𝛽1,𝑎2,𝑏2,𝑐2,𝛼2,𝛽2,…}. This vector is then encodedinbinarymodefortheconvenienceofgeneticoperations.

Fitness.Wesetthenegativevalueofthetotalprojectedareaofthe overhangingregions asfitness(GAalwaysaimstomaximizefitness). Thetotalprojectedareaincludestheprojectedareaofeachfinal over-hangingregionandthecross-sectionalareaofthesupportingcylinder (i.e.,𝑐𝑠𝑎𝑟𝑒𝑎=𝜋𝑅2.Rrepresentstheradiusofthecylinder.Hereweuse

𝑅=1mm)ofeachlocalminimumpoint.Foreachiterationinthe op-timization, planesthat donotsatisfythecollisionsandfragility con-straintsarerejectedbyusingsimulatedannealing.

Fig.8. Aprintedobjectwithincreasinginclination an-gles.

(7)

Fig. 9.Overhanging detection. (a)Potential faces(markedinorange)withoverlarge incli-nationangles.(b)Theprojectionofthe poten-tialregionsin2D.Theredregionsdenotethe areasrequiresupportingstructures.(c) Map-pingtheoverhangingregionsto3D.(For in-terpretationofthereferencestocolourinthis figurelegend,thereaderisreferredtotheweb versionofthisarticle.)

Algorithm2 Minimizingthetotaloverhangingarea∑𝑁𝑖=0𝑎𝑟𝑒𝑎𝑖.

Input:

Theinputmodel𝑀andnumberofcuttingplanes𝑁;

Output:

Thedecompositionofthemodel𝑝𝑎𝑟𝑡𝑖(0≤𝑖𝑁)withprinting

or-der; 1: 𝑔𝑒𝑛max⇐ 100 2: 𝑔𝑒𝑛⇐ 0

3: Initializationreturnsthebestfitnessoftheinitialpopulation; 4: while(𝑔𝑒𝑛<𝑔𝑒𝑛max)

and(𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑔𝑒𝑛𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑔𝑒𝑛−20>0.99) and(𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑔𝑒𝑛≠ 0)do

5: gen++;

6: Preservetheindividualwiththebestfitness; 7: Selection;

8: Crossover;

9: Mutation;

10: Calculatefitnessofthenewgeneration;

11: SimulatedAnnealing;

12: Replacetheworstindividualbythepreservedone; 13: endwhile

14: Decomposethemodelusingthesolutionwiththebestfitness.The solutionrevealsboththecuttingplanesandthecuttingsequence.

Initialization.GiventhenumberofpartitionplanesN(specifiedby theuser),solutionsareinitializedbyrandomlysamplingtheparameter spaceundercollision-freeconstraintsandoverhangingtest.

Selection.Theclassicalroulettewheelselectionisapplied,i.e., indi-vidualswithhigherfitnessvalueshavehigherprioritytobeselected. TheprobabilityPs ofeachindividual𝐼𝑛𝑑𝑣𝑖(𝑖=1,2,,𝑁𝑝𝑜𝑝)is

calcu-latedas

𝑃𝑠(𝐼𝑛𝑑𝑣𝑖)=𝑁𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑝𝑜𝑝 (𝐼𝑛𝑑𝑣𝑖) 𝑗=1 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐼𝑛𝑑𝑣𝑗)

. (2)

Every twoselected individuals arethenpairedas parents𝑝𝑘(𝑘=

1,2,,𝑁𝑝𝑜𝑝∕2).

Crossover:Uniformcrossoverisused.Eachpairofbitsintheencoded genesofthetwopairedindividualsisexchangedbythecrossover prob-abilityPc.HerePcissetadaptivelyforfasterconvergence:

𝑃𝑐(𝑝𝑘)= { 1.𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑘) 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑔, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑘)≥𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑔 1.0, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑘)<𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑔 (3)

where𝑓𝑖𝑡𝑛𝑒𝑠𝑠maxandfitnessavgdenotethemaximalandtheaverage

fit-nessofthegenerationandfitness(pk)isthehigherfitnessofpk,meaning thattheindividualswithhigherfitnessvaluesarelikelytobepreserved.

Mutation:Adaptivemutationisutilizedtoaccelerateconvergence. TheprobabilityofmutationPmisdefinedsimilarlytothatofcrossover:

𝑃𝑚(𝐼𝑛𝑑𝑣𝑖)= ⎧ ⎪ ⎨ ⎪ ⎩ 0.𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐼𝑛𝑑𝑣𝑖) 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑔 , 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐼𝑛𝑑𝑣𝑖)≥𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑔 0.5, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐼𝑛𝑑𝑣𝑖)<𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑔 0.05, 𝑃𝑚(𝐼𝑛𝑑𝑣𝑖)<0.05 (4)

Simulated Annealing: The probabilistic acceptance processis

sim-ilar to that of conventional simulated annealing, which is applied whenfitness(Indvi)≤fitnessavg.Inaddition,anextrarejectioncondition

isaddedtoexcludethemarkedindividualsthatdonotmeetthe con-straints.

Elitism:Aftersimulatedannealing,wereplacetheworstindividual withthebestonefromthepreviousgenerationtopreventthefitness

fromdecreasingasthenumberofgenerationsincreases.

Terminationconditions:Ifthegenerationhasnotexceededthe maxi-mumterminationgenerationNterm,theoptimizationterminatesonlyif

thefitnessreaches0(oranacceptablethreshold),ortherelativechange in consecutive20generationsdoesnotexceedaspecifiedpercentage (1%inourimplementation),i.e.,|𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖−20

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖−20 | ≤0.01).Forthe

lat-tercase,itrequiresthattheuserincreasesthenumberofcuttingplane

N(andrepeattheoptimization)orintroducessupportingstructuresto ensureprintability.

Supportingstructure:Toreducethematerialconsumption,weusethe tree-likecolumnsupportingstructuressimilartoVaneketal.[24].A columnstartsfromanoverhangingsurfaceregionandendsupatother printedpartsortheplatform.TheworkspaceispartitionedusingBinary SpacePartitioning(BSP)bythecuttingplanes.Weallowthecolumns toinclinenomorethan30∘fromthecuttingplane’snormaldirection. ColumncandidatesstartingandendingupwithinthesameBSPspace aregivenhigherprioritytobechosentoreducethecomplexityof sup-portingstructures.

5. Resultsanddiscussions

Wehavetestedourmulti-directionalprintingsystemonvarious chal-lenging3Dmodels.Fig.1showsoursystemintheprintingofthe Stan-fordbunnymodel.

Modeldecomposition.Figs.7,10(right),and15(right)show dif-ferentdecompositionresultsoftheStanfordbunnymodel.The advan-tageofourmodeldecompositionstrategyisthatitprovidescontrolover thenumberoftheresultedpartsandmeanwhileminimizesthematerial consumption.AnegativecorrelationbetweenNandthetotalareatobe supportedcanbediscovered,i.e.,thebesttotalareadecreases(or re-mainsconstant)whenNincreases.TodetermineN,weuseabrute-force strategy(iterativeincrementofN)withaglobal-optimalmethodtogain thebestresultsofNplanes.Theiterationterminateswhenthearea be-comessmallenough(asasuggestion,nooverhangingregionbutmaybe severallocal minimumpoints.Seetheoverhangingareas inTable1,

Figs. 12and13forexamples)ortheNexceedsanexpectingnumber (setbytheuser).Ifthedecompositionresultscannotreachnear support-free,anobjectivefunctioncanbeusedtofindabalancebetweenNand theareatobesupported

min 𝛼 ⋅ 𝑎𝑟𝑒𝑎𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑+(1−𝛼) ( 𝑁 𝑁𝑒𝑥𝑝𝑒𝑐𝑡 )2 (5)

whereweuseaquadratic(orevenhigher)termtodescribeN,simulating theboomingcalculationalcostwhenincreasingN.Theparameter𝛼 can

besetaccordingtotheexpectingnumberNexpect.

HardwaresettingsandSurfacequality.Forthehardware parame-ters,thepositioningaccuracyofeachtranslationalaxisis0.005mmfor

(8)

Y. Gao, L. Wu and D.-M. Yan et al. Graphical Models 104 (2019) 101034 Fig.10. DecompositionresultoftheStanfordbunnymodel.Left:the resultofWuetal.(5cuttingplanesand6parts).Right:Ourresult(2 cuttingplanesand3parts).

Fig.11. Surfacequalityoftheprintedbunnyobject usingourprintingsystem.Left:Theregionswith over-largeinclinationanglesaremarkedinyellow.Middle andright:thezoom-insofthedetailsinthetwoprinted regions.(Forinterpretationofthereferencestocolour inthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

Fig.12. (a)Decompositionandsupport-freeanalysis ofthedragonmodel.Thesaferegionsaremarkedin or-angeandthreelocalminimumpointsaremarkedinred pointsandlines(indicatingtheorientation).(b)The surfacequalityoftheprintedobjectusingour print-ingsystem.Left:Theprintedobject.Onesaferegion ismarkedinblueandoneregionwithtwolocal min-imumpointsismarkedinyellow.Right:thezoom-ins ofthedetailsinthetwoprintedregions.(For interpre-tationofthereferencestocolourinthisfigurelegend, thereaderisreferredtothewebversionofthisarticle.)

Table1

Statisticofourpartitionresults.

Model Faces N Initialization (in sec ) Optimization time(in sec ) Overhanging area ( mm 2 )

Kitten 10000 1 93 463 20.85 2 87 60 0 Bunny 13026 1 80 240 87.28 2 81 491 0 H-ball 11540 2 53 355 0 Dragonstand 24598 1 182 780 4 𝜋 Armadillo 9998 1 99 442 7 𝜋

therepeatabilityand0.058mmper300mmforthepositioningerror, thepositioningaccuracyofeachrotationalaxisis0.01∘forthe repeata-bility(noexactoverallaccuracy).Thediameterofthenozzleis0.4mm, thelinewidthandthelayerthicknessofmaterialextrusionare0.2mm. Thehighestprintingspeedissetto50mm/s.

Toreducethematerialconsumption,ourmethoddoesnotintroduce thesupportingstructureatthesaferegions(withoverlargeinclination anglesbutcanbeignored).Experimentsshowthattheprintingquality ofthesaferegions(evenwithlargeinclinationangles)aresatisfactory. AscanbeseenfromFig.11andtheregionsmarkedinblueinFig.12(b), thesurfacequalitylossinthesaferegionscanbeneglected.

Besides,onthedragonmodel(seeFig.12),weonlyaddsupporting structuretoonelocalminimumpointunderthemouthwhileleaving thepointsonthetailunsupported.Itcanbeseenthatwithoutadding supportstothelocalminimumpoints,thedeformationbecomesserious (theregionmarkedinyellowinFig.12(b)),whichindicatesthe neces-sityoftheanalysisonthelocalminimumpoints.

Comparetothecurved-surface-layeredprintingstyleofDaietal.[1], theoverallsurfacequalityoftheobjectsgeneratedbytheplanar-layered manner printingperforms betterthankstotheflatnessandthesame thicknessofeachlayer(whichcontributetothematerialaccumulation). Ourresultsaredecomposedbyplanesandslicedintoplanarlayersso

(9)

Fig. 13. (a) Decomposition of the ar-madillomodel.(b)(c)Theprintedobject intwoviews.Onlyseveralsupporting struc-turesareusedtofinishtheobject.The over-hangingpointsandregionscannotbe op-timizedduetotheextruder-platform colli-sionrestriction.

Fig.14. Different typesof supporting struc-tures.Left:cylinder-likesupportingstructures. Middle: Branch structures [25]. Right: Our methodresultsinsupport-freeprinting.

Fig.15. Decompositionresultsofthehanging-ballmodel.Left:theresultofWu etal.(5planes,6parts).Right:outresult(2planes,3parts).

thattheprintingqualitycouldbesuperiortothecurved-surface-layered printingresultsunderthesamehardwareconditions.

Materialsaving. The motivationof ourwork is toachieve near support-free3Dprinting.Toevaluatethis,wemeasurethevolumeof theprintedobjectstorecordthematerialcostbyassumingthatallthe modelsareprintedinthesolidform.Wechoosetwocommonsupport structuregenerationstrategy, onecompletelyfilling theoverhanging regionsandtheotheronegeneratingbranchstructures.Fig.14shows thebunnymodelprintedwithdifferenttypesofsupportingstructures. Itcosts8.8%extramaterialwiththefirststrategy(Fig.14(left))and

3.4%forthebranchtypestructures.Byminimizingthetotalsupporting areaoftheoverhangingregions,ouralgorithmcanachievesupport-free printingforthismodel,whichmeansthereductionofsupportmaterial usedis100%).

Timing.Ouralgorithmswereimplemented inC++withOpenMP parallelization enabled on a laptopwith Intel Corei7-7770HQCPU (with4cores/8threads)and8GBRAM.Therunningtimesand over-hangingareasusingdifferentnumbersofcuttingplanesarereportedin

Table1.Sincetherotationalmotionoftheplatformbetweenthe print-ingprocessesoftwopartsonlytakesupseveralseconds,theprinting timeismainlyinfluencedbythetotallengthofthetool-paths,whichis increasedbyaddingextrasupportingstructures.Therefore,theprinting timecanbesavedbyreducingtheuseofsupports.Inourexperiment, whilethematerialcostreducesabout10%,thetimeconsumptioncan reduceabout20%ifthedecompositionresultreachessupport-free(the savingpercentagedependsonmodels).

Comparison.Wefirstlycompareouralgorithmwiththeprevious workofWuetal.[4]sincethedecompositionandprintingstyleoftwo methodsaresimilar.ForthebunnymodelinFig.10andthe hanging-ballmodelinFig.15,bothmethodssuccessfullydecomposedthemodel. However,ourdecompositionresultshaveafewernumberofpartsand shorterseamlength(seeFig.10).Withfewerpart,boththecumulative error ofthemulti-DOFsystemandthetotallengthoftheconnecting seamsbetween partscanbe reduced.Besides,theircoarse decompo-sitionmethodisbasedontheshape-diameteranalysis.Thusitisonly applicabletomodelsthatcanbeabstractedbyaskeletonstructureand mayfailformoregeneralobjects,especiallyforring-likemodels.For ex-ampleinthekittenmodelshowninFig.16,theshape-diameter-based methodresultsinunfeasibledecompositionresults(seethegreenpartin theleftsub-figure)evenwithasubsequentfinetuningstep.Incontrast, ouroptimization-basedmethodis capableofdecomposing themodel intopartsrespectingprintability.

(10)

Y. Gao, L. Wu and D.-M. Yan et al. Graphical Models 104 (2019) 101034 Fig. 16. Decomposition results of the kitten model. Left: the coarse decomposition result of Wuetal. [4](thegreenpartishardtomodifyfor printability). Middle and right: our results in two views.(Forinterpretationofthereferencestocolour inthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

Fig. 17. The printed bunny: (a) The result of Wu et al. [4] (5 planes). (b) The result of Dai etal.[1](curved-layered).(c)Ourresult(2planes).

Fig.17showsacomparisonoftheprintedbunnymodel.Thenumber ofpartsandtotalseamlengthofourresultaresuperiortothecompeting methodofWuetal.[4].

ComparetothemethodofDaietal.[1],ourschemeisinferioron themotionflexibilitybutsuperioronthecomplexity of implementa-tion.Methodstowardconventional3Dprinting,suchashollowing, slic-ingandtool-pathplanning,canbedirectlyappliedoneachpartofour results.Wehaverealizedsupport-freeornearsupport-freeprintingon manymodels(seetheresultsofarmadillomodelinFig.13andbunny modelinFigs.10and17ascomparisons).Ourprintedobjectsperform betterbenefittingfrombothhigheraccuracyoftheprintingsystemand planar-layeredprintingstyle.

6. Conclusionsandlimitations

We propose a global optimization-based model decomposition methodfordiscretemulti-directional3Dprinting,whichiscapableto achievenearsupport-freeprinting.Weproposedaheuristicmethodto partitionthemodelintopartsfreeofcollisions.Thecuttingplanesand decompositionorderaredeterminedbysolvinganoptimization prob-lemthatisformulatedtominimizethetotalsurfaceareathatrequires supportingstructures.Theadvantageofourmodeldecomposition algo-rithmisthatitalwaysresultsinafewernumberofpartsandtherefore reducestheaccumulationofmechanicalsystemerroraswellasthetotal lengthofseamsbetweenpart.

Thoughourmethodcanachievenearsupport-free3Dprinting,itstill haslimitations.First,theoptimalcuttingplanesaredeterminedusinga geneticalgorithmwhichiscomputationallyinefficient,especiallywhen thenumberofcuttingplanesislarge.Second,theuserhastospecifythe numberofcuttingplanes,whichistypicallyatrialanderrorprocess re-lyingonuserexperiences.Theoretically,theoptimalnumberofcutting planescanbeautomaticallydeterminedbybruteforcesearch(i.e.,

run-ningthesameoptimizationwithdifferentNvalues).Thecomputation maybecomeunaffordablewhenNbecomeslarge.

Acknowledgments

ThisworkispartiallysupportedbytheBeijingNaturalScience Foun-dation(J170001andL182059),theNationalNaturalScience Founda-tion of China (61772523, 61702022, 61802011 and61620106003),

ChinaPostdoctoralScienceFoundation(2018T110019),“Rixin” Train-ingProgrammeFoundationfortheTalentsbyBeijingUniversityof Tech-nology,andtheConstructionProjectforNationalEngineering Labora-toryforIndustrialBig-dataApplicationTechnology(312000522303).

References

[1] C. Dai, C.C.L. Wang, C. Wu, S. Lefebvre, G. Fang, Y.-J. Liu, Support-free volume printing by multi-axis motion, ACM Trans. Graph. 37 (4) (2018) 134:1–134:14, doi: 10.1145/3197517.3201342 .

[2] W. Wang, Y.-J. Liu, J. Wu, S. Tian, C.C.L. Wang, L. Liu, X. Liu, Support- free hollowing, IEEE Trans. Visual. Comput. Graph. 24 (10) (2017) 2787–2798, doi: 10.1109/TVCG.2017.2764462 .

[3] D. Khan, D.-M. Yan, F. Ding, Y. Zhuang, X. Zhang, Surface remeshing with robust user-guided segmentation, Comput. Vis. Media 4 (2) (2018) 113–122, doi: 10.1007/s41095-018-0107-y .

[4] C. Wu, C. Dai, G. Fang, Y.-J. Liu, C.C.L. Wang, RoboFDM: a robotic system for support-free fabrication using FDM, in: 2017 IEEE International Conference on Robotics and Automation, 2017, pp. 1175–1180, doi: 10.1109/ICRA.2017.7989140 .

[5] R. Wu, H. Peng, F. Guimbretière, S. Marschner, Printing arbitrary meshes with a 5D of wireframe printer, ACM Trans. Graph. 35 (4) (2016) 101:1–101:9, doi: 10.1145/2897824.2925966 .

[6] Y. Huang, J. Zhang, X. Hu, G. Song, Z. Liu, L. Yu, L. Liu, FrameFAB: robotic fabrication of frame shapes, ACM Trans. Graph. 35 (6) (2016) 224:1–224:11, doi: 10.1145/2980179.2982401 .

[7] S. Keating, N. Oxman, Compound fabrication: a multi-functional robotic platform for digital design and fabrication, Rob. Comput.-Integr. Manuf. 29 (6) (2013) 439–448, doi: 10.1016/j.rcim.2013.05.001 .

[8] Y. Pan, C. Zhou, Y. Chen, J. Partanen, Multitool and multi-axis computer numerically controlled accumulation for fabricating conformal features on curved surfaces, J. Manuf. Sci. Eng. 136 (3) (2014) 031007, doi: 10.1115/1.4026898 .

(11)

[9] X. Song, Y. Pan, Y. Chen, Development of a low-cost parallel kinematic machine for multidirectional additive manufacturing, J. Manuf. Sci. Eng. 137 (2) (2015) 021005, doi: 10.1115/1.4028897 .

[10] W. Gao, Y. Zhang, D.C. Nazzetta, K. Ramani, R.J. Cipra, RevoMaker: enabling multi- directional and functionally-embedded 3d printing using a rotational cuboidal plat- form, in: Proceedings of the 28th Annual ACM Symposium on User Interface Soft- ware & Technology, 2015, pp. 437–446, doi: 10.1145/2807442.2807476 .

[11] P. Song, B. Deng, Z. Wang, Z. Dong, W. Li, C.-W. Fu, L. Liu, Cofifab: coarse-to- fine fabrication of large 3d objects, ACM Trans. Graph. 35 (4) (2016) 45:1–45:11, doi: 10.1145/2897824.2925876 .

[12] L. Shapira, A. Shamir, D. Cohen-Or, Consistent mesh partitioning and skele- tonisation using the shape diameter function, Vis. Comput. 24 (4) (2008) 249, doi: 10.1007/s00371-007-0197-5 .

[13] L. Luo, I. Baran, S. Rusinkiewicz, W. Matusik, Chopper: partitioning mod- els into 3d-printable parts, ACM Trans. Graph. 31 (6) (2012) 129:1–129:9, doi: 10.1145/2366145.2366148 .

[14] R. Hu, H. Li, H. Zhang, D. Cohen-Or, Approximate pyramidal shape decomposition, ACM Trans. Graph. 33 (6) (2014) 213:1–213:12, doi: 10.1145/2661229.2661244 .

[15] P. Herholz, W. Matusik, M. Alexa, Approximating free-form geometry with height fields for manufacturing, in: Computer Graphics Forum, vol. 34, 2015, pp. 239–251, doi: 10.1111/cgf.12556 .

[16] X. Chen, H. Zhang, J. Lin, R. Hu, L. Lu, Q. Huang, B. Benes, D. Cohen-Or, B. Chen, Dapper: decompose-and-pack for 3d printing, ACM Trans. Graph. 34 (6) (2015) 213:1–213:12, doi: 10.1145/2816795.2818087 .

[17] W.M. Wang, C. Zanni, L. Kobbelt, Improved surface quality in 3d printing by optimizing the printing direction, Comput. Graph. Forum 35 (2) (2016) 59–70, doi: 10.1111/cgf.12811 .

[18] X. Wei, S. Qiu, L. Zhu, R. Feng, Y. Tian, J. Xi, Y. Zheng, Toward support-free 3d printing: a skeletal approach for partitioning models, IEEE Trans. Visual. Comput. Graph. 24 (10) (2018) 2799–2812, doi: 10.1109/TVCG.2017.2767047 .

[19] X. Chen, H. Li, C.-W. Fu, H. Zhang, B. Chen, D. Cohen-Or, 3D fabrication with univer- sal building blocks and pyramidal shells, ACM Trans. Graph. 37 (6) (2018) 189:1– 189:15, doi: 10.1145/3272127.3275033 .

[20] C. Wu, C. Dai, G. Fang, Y.-J. Liu, C.C.L. Wang, General support-effective decompo- sition for multi-directional 3d printing, CoRR (2018) arXiv: 1812.00606 .

[21] H. Fuchs, Z.M. Kedem, B.F. Naylor, On visible surface generation by a priori tree structures, 1980, pp. 124–133, doi: 10.1145/965105.807481 .

[22] D. Bhandari, C.A. Murthy, S.K. Pal, Genetic algorithm with elitist model and its convergence, Int. J. Pattern Recognit. Artif. Intell. 10 (06) (1996) 731–747, doi: 10.1142/S0218001496000438 .

[23] M. Srinivas, L.M. Patnaik, Adaptive probabilities of crossover and mutation in genetic algorithms, IEEE Trans. Syst. Man. Cybern. 24 (4) (1994) 656–667, doi: 10.1109/21.286385 .

[24] J. Vanek, J.A.G. Galicia, B. Benes, Clever support: efficient support structure gen- eration for digital fabrication, Comput. Graph. Forum 33 (5) (2015) 117–125, doi: 10.1111/cgf.12437 .

[25] R. Schmidt, N. Umetani, Branching support structures for 3d printing, ACM SIG- GRAPH 2014 Studio, 2014, doi: 10.1145/2619195.2656293 . 9:1–9:1

Cytaty

Powiązane dokumenty

Co więcej, jeżeli w y ­ obrazimy sobie d w a punkty materii w stanie rów now agi trw ałej (przy bardzo sil­ nym wiązaniu), wówczas dla trzeciego punktu materii

First, the accurate detection of somatic mutations from cancer genome sequencing data and second, to identify the driver potential of detected somatic mutations.. We also

Mając na uwadze firmy z branży eksport-import, może się wydawać, że za- gadnienie wpływu ryzyka walutowego na ryzyko obsługowe firm transportowych jest mało istotne, jednak

W badanej grupie ponad 90% dzieci z podejrzeniem autyzmu w wieku 12 miesięcy różniło się swoim zachowaniem od 10-miesięcznych niemowląt roz- wijających się prawidłowo oraz

Przedm iotem obrad Komisji było rozpatrzenie i ocena zgłoszonych do Nagrody siedm iu publikacji dotyczących dziejów średniow iecza Polski i Europy.. Podstawą formalną obrad

W dniach 30 marca–2 kwietnia 2017 roku Muzeum Niepodległości uczestniczyło w Targach Wydawców Katolickich, zorganizowanych przez Stowarzyszenie Wydawców

[r]

Między pokła­ dami tradycji w poezji Norwida „ciężkiej od wspomnień i rem iniscencji historyczno- -kulturow ych“ (s 45) a jego nowatorstwem nie widzi Jastrun