• Nie Znaleziono Wyników

An estimate for the Lebesgue (0, 1 (-functions of some polynomial-like systems

N/A
N/A
Protected

Academic year: 2021

Share "An estimate for the Lebesgue (0, 1 (-functions of some polynomial-like systems"

Copied!
4
0
0

Pełen tekst

(1)

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria I: PRACE MATEMATYCZNE X I (1967)

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X I (1967)

H. Ratajski (Poznań)

An estimate for the Lebesgue (0, 1 (-functions of some polynom ial-like systems

1. Introduction. Let {<-pn{x)} be an orthonormal system with respect to a positive Lebesgue-integrable weight-function q(x) in < —1 , 1>, i.e.

I (0 when n Ф Tc,

\ (pn{cc)(pk{x)Q{x)dx = \

_ ■i [ 1 when n = к .

The system {cpn(x)} is called polynomial-like in <—1, 1) if the kernel

K v{t, x) = <Pj{t)cpj(x)

7 —0 is of the form

Г p

(!) K ( t , x) = ^ F k(t,x ) £ 7i%(Pv+i{t)(pv+i{x),

i l,7 = - p

where p and r are positive integers independent of v, the coefficients y[jl are uniformly bounded for all i, j, Tc and all v, and F k(t,x) are measu­

rable functions of two variables satisfying the condition

(2) F k(t, x) = 0 -

\t—x\

uniformly in t, x e ( —l , 1>, t Ф x\ if г+г < 0, we set 9ov+i(x) = 0. The definition of the polynomial-like orthonormal system was given by G. Alexits (see [1], p. 158).

In this note we deduce a certain estimate for the Lebesgue (O,1)- functions

L4?(x) = 1

n-\-1 П у р С А , ®)

r = 0

Q(t)dt

of a given polynomial-like system. This estimate is important for (0,1)- summability problems of Fourier series with respect to the orthonormal system {(pn{x)}. In our considerations we restrict ourselves to the interval

(2)

1 4 2 H. R a t a j s k i

<—1,1>; the case of an interval <u, 6) can easily be reduced to the pre­

vious by the substitution и = —1+2(x —a)/{b—a).

2. We shall present an extension of Theorem 3.4.3 of [1], p. 186.

Theorem. Let {(pn(x)} be a polynomial-like orthonormal system with weight function q{x) in the interval <— 1, 1)>. Suppose that there exist con­

stants Сг > 0, 0 + C2 < 1, C3 > 0, C4 > 0 such that for all x e ( —l , 1) П

(3) q(x) + x Ca , ^ < p l ( x ) < C s?in (П = 0 , 1 , 2 , . . . ) ,

where l n > 0, K+il^n < 04 and Xk -> oo us ft -> oo.

Then

П

(4) < ОД^°2)/4^(С2-3)/4( ^ + ) (1+С2)/4 v = 0

for every x e ( —l, 1) and n + 1, where C is a positive constant depending neither on x nor on n.

Proof. Let en be positive numbers tending to zero (en < |).

A specific definition of en will be given later. The characteristic functions

П П

of sets of points {t, x) for which £ A„(t, x) + 0 or £ K v(t, x) < 0 will

v=0 v = 0

be denoted by P n(t, x) and N n{t, x), respectively.

Then

n 1

1 $ (oo) = -——-

V f

P n (tj x) K v (tj x) q (t) dt — n -\-1 Z-J J

v = 0 -1 1

1 n 1

. f -^n{f x)K v(tj x) g{t)dt = A n-\-Bn.

n-\-1 J

v = 0 -1

1° We shall consider in detail the case 0 < ж + 1 — 2en. Write i

f P n(t, x ) K v(t, x)g(t)dt - i

x ~ en 1 X+ En

= ( / + / ) p n(t, oo)Kr(t, x)g{t)dt+ j P n{t, x )K v(t, x)g(t)dt = I vl-\-Iv2

— 1 x + en X~ En

and set

\P n( t,x )F k{t,x) for te<— 1, x —eny w <a?+en, 1>, gk(t, x) =

I 0 for te ( x —en, x-\-en).

(3)

Estimate for the Lebesgue (0, 1)-functions 143

By Schwarz inequality, (I) and (3), we get

n r p n n 1

Ż !y[rS]V+*M у [/?*«, *)?>,+<«)e(o««rr

j>=0 k = \ i , j = —p v =0 v=0 —1

r p n 1

= 0 (1)w 2 Ś {2d / » ( * ’ “O^W eW ***]2}1'2.

k = l i = —P v =0 —1

The condition \t—x\ ^ en implies |</&(/, x)\ ^ P n(t, x)\Fk(t, x)\ = 0 ( l / e n).

Therefore, if n is fixed, the function gk(t, x) is bounded. Consequently, the integrals under the sign of summation are Fourier coefficients of the square-integrable function gk(t, x). Applying Bessel inequality together with (2) and (3), we obtain

n 1 1

J

gk(t, ®)?V+<(<)e(t)^J < J 9k{t, x)g(t)dt ..= 0 -1

9C- 6 /yj 1

- » , „ ( / + / ) dt Further,

/

{ t - x ) 2{ i - t 2f 2dt

X + e ,

Analogously,

Hence,

1— e„ 1 0(11

(/ + J)

— 1 XĄ-er

dt

( t - x ) 2( l —t2f 2

X+En ^~Bn (it - x ) 2( l - t f 2 О (1) £-(i+o2)

/ « Г dt

(t—x)2{ l - t 2r 2 = 0( l ) ^ 1+a‘K

A I i,A = 0 (1) «2%<1+CW2.

Similarly, the Schwarz inequality, and (3) yield

Х -\ -ег

l l 2 < Pn{t, x) g(t)dt J" Kl(t, x) g(t)dt

X— X— £fi

X + e n 1 X Ą -B n

<

J

Q{t)dt

j

Kl(t, x)Q(t)dt =

0(1) J c2

x+en ^

= 0(1)1, Г ^ - = 0(1)A,4“°2.

J £„2

^ <Pk{x) k= 0

(4)

1 4 4 H . R a t a j s k i

Hence,

П

v = 0

Now let

П

v = О

n

0(1)пЧ*е«-с^ ( 2 к ) т -

v=0

-4~Г

n 2 К /

v=0 '

for n large enough. Then

Af ^< 1 +°2),2 = о (1) и 1'2 eL 1-c^>'2 (^ Л„)1,2.

П

v = 0

Combining the results Ave get inequality (4) for A n. The same estimate also holds for B n.

i

2° If 1 — 2sn < x < 1, we write j P nK vgdt as the sum of the in- - i

tegrals

1—Зе^ 1

ivl = f Pn(t, x)K,{t, x)Q(t)dt, Iv2

=

J Pn(t, x)Kv(t, x)q{t)dt.

1 1—Zsn

Eeasoning as in 1°, it can easily be observed that П

y i t i l =

v = 0

and П П

y ; i i « i = о ( 1 ) «1'г41- с^ ( у л ) 1,а.

v = 0 v=0

Thus, estimate (4) is established.

In case of — 1 < x < 0 the proof runs analogously. We may notice that conditions (3) are satisfied by the normalized Jacobi polynomials (a > —1, > —1) and q(x) — (1— х)а{1-\-х)^ with Xn — n 2 a +2, where a = max(a, /9) ^ (see [2], p. 418).

R eferences

[1] Gr. A le x it s , Konvergenzprobleme der Orthogonalreihen, Berlin 1960.

[2] И. П. Н а т а н с о н , Конструктивная теория функций, Москва-Ленинград

1 9 4 9 .

Cytaty

Powiązane dokumenty

Probability analysis of monthly daily mean of maximum temperature of Mid- dle East was carried out by employing three probability distributions namely lo- gistic, Rayleigh and

If (x, y) are the coordinates of the center of mass, then denoting the

Abstract: In this paper, we investigate and study the existence of solutions for perturbed functional integral equations of convolution type using Darbo’s fixed point theorem, which

We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of

The problem of choosing the regres- sion order for least squares estimators in the case of equidistant observation points was investigated in [4].. In order to investigate

The rate of decrease at infinity of the Fourier transform of the characteristic function χ of a compact set C has been studied by several authors under various regularity assumptions

Clunie, On meromorphic schlicht functions,

In general these generalizations have required complete restatem ents of the theorem s and their proofs, however, whenever possible we have simply made reference to