• Nie Znaleziono Wyników

Electroweak single-pion production off the nucleon: effective implementation in Monte Carlo event generators

N/A
N/A
Protected

Academic year: 2021

Share "Electroweak single-pion production off the nucleon: effective implementation in Monte Carlo event generators"

Copied!
36
0
0

Pełen tekst

(1)

Electroweak single-pion production off the nucleon:

effective implementation in Monte Carlo event generators

Kajetan Niewczas

Kajetan Niewczas New SPP in NuWro 21.10.2019 1 / 36

(2)

Neutrino oscillation experiments

P2fµ→ νµ) = 1−sin2(2θ) sin2

∆m2L 4Eν



0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

(expected)

normed νµ fux

Eν [GeV]

Eνrec= 2(Mn− EB)Eµ− (EB2− 2MnEB+m2µ) 2[Mn− EBEµ+|~kµ| cos θµ]

Kajetan Niewczas New SPP in NuWro 21.10.2019 2 / 36

(3)

Nuclear response

µ0.8 < cos ✓µ< 0.9

Elastic

N DIS

Coherent

GR

QE

N DIS

2N

Nucleon

Nucleus

Nucleonresponse Nucleusresponse !

T. Van Cuyck

Kajetan Niewczas New SPP in NuWro 21.10.2019 3 / 36

(4)

Cross section in the factorized scheme

νµ

µ

n p

Neutrino-nucleon scattering

+

Initial nuclear state

+

Extra nuclear effects

+

Final state interactions

Neutrino-nucleon scattering: elementary interaction cross section

Initial nuclear state: modeling nucleons in the nuclear medium before the weak interaction

Extra nuclear effects: multiple-nucleon interactions or correlations

Final state interactions: in-medium outgoing particle propagation

Kajetan Niewczas New SPP in NuWro 21.10.2019 4 / 36

(5)

NuWro blueprint

Initial state Interaction channel FSI

quantum mechanical semi-classical

SF

hole spectral function

effective spectral function

FG globalfermi gas

LFG localfermi gas

effective momentum dependent potential

Bodek-Ritchie fermi gas

CC

NC

QE

quasi elastic scattering

RES

resonant pion production

DIS

deep inelastic scattering

COH

coherent pion production

MEC

meson exchange current

RPA

Cascade

energy transfer modification in the SF model

Kajetan Niewczas New SPP in NuWro 21.10.2019 5 / 36

(6)

Pion production in NuWro

πproduction

-resonance

Adler-Rarita-Schwinger

Quark-parton model

RES

resonant pion production

DIS

deep inelastic scattering

W > 1.6 GeV W<1.6GeV

Kajetan Niewczas New SPP in NuWro 21.10.2019 6 / 36

(7)

Resonant pion production

Single pion

production through Delta excitation

3

The following channels are considered for SPP (labeled as RES):

The following channels are considered:

ν + p→ l+ ∆++→ p + π+

ν + n→ l+ ∆+→ p + π0or n+ π+ ν + n¯ → l++ ∆→ n + π

¯

ν + p→ l++ ∆0→ p + πor n+ π0

ν(¯ν) + p→ ν(¯ν) + ∆+→ p + π0or n+ π+ ν(¯ν) + n→ ν(¯ν) + ∆0→ p + πor n+ π0

Kajetan Niewczas New SPP in NuWro 21.10.2019 7 / 36

(8)

Dimensionality of the problem

-resonance

excitation (free nucleon)

Pion production

off a nucleon

Pion production

on a nucleus

d2σ dQ2dW

d4σ dQ2dWdΩπ

d8σ

dQ2dWdΩπdEmd~pm

+1 invariant variable: the cross section is always symmetric w.r.t. 1 azimuthal angle, e.g.,φµ

Kajetan Niewczas New SPP in NuWro 21.10.2019 8 / 36

(9)

Adler-Rarita-Schwinger formalism

Double-differential cross section for theproduction:

dW dQ2 = G2cos2θC

Wg(W ) π2MEν2



−(Q2+ m2)V1+ V2 M2



2(pq)(pk0)M2

2 (Q2+ m2)



V3

M2



Q2(kp)1

2(Q2+ m2)(pq)

 + V4

m2 m2

2 − 2V5

M2m2(kp)



whereVi are structure functions made ofhadronic tensor elements and

g(W) = Γ/2

(WM)2+ Γ2/4 is theBreit-Wigner formula introducing thewidth (Γ)

S. L. Adler, Annals Phys. 50 (1968) 189-311; S. L. Adler, Phys.Rev. D12 (1975) 2644

Kajetan Niewczas New SPP in NuWro 21.10.2019 9 / 36

(10)

Rarita-Schwinger field Ψµ

Thefinal hadronic state is a 32-spin resonance described as a Rarita-Schwinger field

Thetransition from the nucleon to, e.g.,++state is given as a matrix element of theweak hadronic current:JµCC =JµV+JµA

++(p0)

JµV|N(p)i =

3Ψ¯λ(p0)

 gµλ

CV3(Q2) M γν+C

V 4(Q2)

M2 p0ν + C

V 5(Q2)

M2 pν

 qνqλ

CV3(Q2) M γν

+C

V 4

M2p0ν+ C

V 5(Q2)

M2



γ5u(p)

++(p0)

JµA|N(p)i =

3Ψ¯λ(p0)

 gµλ



γνC3A(Q2)

M +C

A 4(Q2)

M2

 qν

qλ

C3A(Q2) M γµ+C

A 4(Q2)

M2 pµ0



+gµλCA5(Q2)+q

λqµ

M2 C6A(Q2)

 u(p)

Kajetan Niewczas New SPP in NuWro 21.10.2019 10 / 36

(11)

Hadronic tensor Wµν

Defined as Wµν = 1

4MM 1 2

X

spin

++(p0)

JµCC|N(p)i

++(p0)

JνCC|N(p)i

× Γ/2

(WM)2+ Γ2/4

Γ(W)is thewidth, for which we assume the P-wave (l=1) expression

Γ= Γ0

 qcm(W) qcm(W)

2l+1

M W

with

qcm(W) =

sW2+M2m2π

2W

2

M2

Γ0 =120MeV, M=1232MeV, mπ =139.57MeV

Kajetan Niewczas New SPP in NuWro 21.10.2019 11 / 36

(12)

Form Factors

Elementary information lies invectorandaxialform factors CV,Ai

There areseveral parametrizations available in NuWro Our default choice:

C5Aaxial form factor from bubble chamber experiments

[K. M. Graczyk, D. Kielczewska, P. Przewlocki, and J. T. Sobczyk, Phys.Rev. D80 (2009) 093001]

Aconsistent fit to both ANL and BNL data

Only++channelassuming there is no background

Consistency with NuWro: only++in the given channel Dipole parametrization, MA=0.94GeV, C5A(0) =1.19 !

+ vector part from[O. Lalakulich, E. A. Paschos, G. Piranishvili, Phys.Rev. D 74 (2006) 014009]

Kajetan Niewczas New SPP in NuWro 21.10.2019 12 / 36

(13)

Comparison with ANL/BNL data

Comparison with ANL / BNL data

8

ANL

BNL

a simultaneus fit to ANL and BNL that shows their consistency !

K. M. Graczyk, D. Kielczewska, P. Przewlocki, and J. T. Sobczyk, Phys.Rev. D80 (2009) 093001

Kajetan Niewczas New SPP in NuWro 21.10.2019 13 / 36

(14)

Dimensionality of the problem

-resonance

excitation (free nucleon)

Pion production

off a nucleon

Pion production

on a nucleus

d2σ dQ2dW

d4σ dQ2dWdΩπ

d8σ

dQ2dWdΩπdEmd~pm

Include angular information about thedecay (π)

+2

+1 invariant variable: the cross section is always symmetric w.r.t. 1 azimuthal angle, e.g.,φµ

Kajetan Niewczas New SPP in NuWro 21.10.2019 14 / 36

(15)

Pion production off a nucleon

To produce an event, one needs information about the produced pion Delta decays in the hadronic CMS:

d2σ

dQ2dW d4σπ

dQ2dWdπ ×f(Ωπ)

Pion angular distributions are essential togenerate the kinematics InNuWro, it is taken from experimental results (ANL or BNL):

S.J. Barish et al., Phys.Rev. D19 (1979) 2511 G.M. Radecky et al., Phys.Rev. D25 (1982) 1161 T. Kitagaki et al., Phys.Rev. D34 (1986) 2554

( ( ˜ / )⇤( ⇤ (✓) ) p

⇤( ⇤ ˜ (✓) (✓) ( )+ ˜ (✓)⇤( ⇤ ( ) ))).

Radecky et al. [ANL Collaboration], PRD 25 (1982) 1161

Kajetan Niewczas New SPP in NuWro 21.10.2019 15 / 36

(16)

Pion production in NuWro

πproduction

-resonance

Adler-Rarita-Schwinger

Quark-parton model

RES

resonant pion production

DIS

deep inelastic scattering

W > 1.6 GeV W<1.6GeV

Kajetan Niewczas New SPP in NuWro 21.10.2019 16 / 36

(17)

Deep inelastic scattering in NuWro

Deep inelastic scattering

Events with invariant mass W > 1.6 GeV are

considered within quark-parton model and labeled as DIS

10

Events with invariant mass W >1.6GeVare considered within the quark-parton model and labeled as DIS:

ν +N l+X ν +¯ N l++X ν(¯ν) +N → ν(¯ν) +X

Kajetan Niewczas New SPP in NuWro 21.10.2019 17 / 36

(18)

DIS cross section

Double-differential cross section expressed in terms of x =Q2/2Mω, y = ω/Eν:

dxdy = G

2MEν π(1+Q2/MW,Z2 )2

 y



xy+ m

2

2EνM



F1(x,Q2)

+



1yMxy 2Eν m

2

4Eν2 m

2

2MEνx



F2(x,Q2)

±

 xy

 1y

2

y m

2

4MEν



F3(x,Q2)



whereF1,2,3are expressed by the parton distribution functions

GRV95 parametrization + low-Q2Bodek-Yang corrections

Kajetan Niewczas New SPP in NuWro 21.10.2019 18 / 36

(19)

Hadronization

Hadronization

The hadronization is performed using Pythia6 routines

with hand-crafted parameters tuned to experimental data

e.g. average pi0 multiplicity:

12

J. Nowak, PhD thesis

Performed using Pythia6 routines

Hadronization

The hadronization is performed using Pythia6 routines

with hand-crafted parameters tuned to experimental data

e.g. average pi0 multiplicity:

12

J. Nowak, PhD thesis

Multiplicity ofπ0

Hard-craftedparameters tuned to experimental data

13 Mean charged multiplicities in charged-current neutrino scattering on hydrogen and deuterium K. S. Kuzmin, V. A. Naumov

Phys.Rev. C88 (2013) 065501

A lot of effort put into tuning Pythia6 parameters

Hadronization works very well in the broad range of invariant mass

Charged Hadron Multiplicity

Multiplicity ofπ+

Kajetan Niewczas New SPP in NuWro 21.10.2019 19 / 36

(20)

Transition region & Non-resonant background

Thebackground extrapolated from the DIS region (SPP + more) Smooth SPP transition from RES to DIS in the W range(1.3,1.6) GeV:

SPP

dW =

dW(1− α(W)) + DIS

dW FSPPα(W)

whereα(W)assures asmooth transition and FSPP is thefraction of single pion production in DIS

α(W) = Θ(WminW) WWth

WminWth

α0

+ Θ(Wmax W)Θ(WWmin)W Wmin+ α0(Wmax W) Wmax Wmin

+ Θ(W Wmax)

channel νlp→ lpπ+ νln→ lnπ+ νln→ lpπ0 ν¯ln→ l+nπ ν¯lp→ l+pπ ν¯lp→ l+nπ0

α0 0.0 0.2 0.3 0.0 0.2 0.3

For all NC SPP channels:α0= 0

Kajetan Niewczas New SPP in NuWro 21.10.2019 20 / 36

(21)

Pion production in NuWro

We have

a very good description on thepeak

but

an incoherent sum of the resonant part and the background

disentangled pion angular distributions

only one resonance

Kajetan Niewczas New SPP in NuWro 21.10.2019 21 / 36

(22)

The Hybrid model of the Ghent group

Kajetan Niewczas New SPP in NuWro 21.10.2019 22 / 36

(23)

The Hybrid model of the Ghent group

References:

Neutrino-induced pion production from nuclei at medium energies, C. Praet, O.

Lalakulich, N. Jachowicz, J. Ryckebusch, Phys. Rev. C79 (2009) 044603, arXiv:0804.2750

Electroweak single-pion production off the nucleon: from threshold to high invariant masses, R. González Jiménez, N. Jachowicz, K. Niewczas, J. Nys, V. Pandey, T. Van Cuyck, N. Van Dessel, Phys. Rev. D95 (2017) 113007, arXiv:1612.05511

Pion production within the hybrid-RPWIA model at MiniBooNE and MINERvA kinematics, R. González Jiménez, K. Niewczas, N. Jachowicz, Phys. Rev. D97 (2018) 093008, arXiv:1710.08374

Modeling neutrino-induced charged pion production on water at T2K kinematics, A.

Nikolakopoulos, R. González Jiménez, K. Niewczas, J. Sobczyk, N. Jachowicz, Phys.

Rev. D97 (2018) 093008, arXiv:1803.03163

Nuclear effects in electron- and neutrino-nucleus scattering within a relativistic quantum mechanical framework, R. González Jiménez, A. Nikolakopoulos, N.

Jachowicz, J.M. Udias, arXiv1904:10696, accepted for publication in PRC

Kajetan Niewczas New SPP in NuWro 21.10.2019 23 / 36

(24)

Single pion production on the nucleon (Ghent)

I. Single pion production on the nucleon – low energy model

Resonances

+ ChPT background

P33 (1232), P11(1440), D13 (1520), S11 (1535)

Cfr. PRC 76, 033005 (2007), PRD87, 113009 (2013)

NATALIE JACHOWICZ NUSTEC WORKSHOP ON NEUTRINO-NUCLEUS PION PRODUCTION IN THE RESONANCE REGION, PITTSBURGH, OCTOBER 2-5, 2019

N. Jachowicz

Kajetan Niewczas New SPP in NuWro 21.10.2019 24 / 36

(25)

Single pion production on the nucleon (Ghent)

I. Single pion production on the nucleon – some issues of the LEM model …

NATALIE JACHOWICZ NUSTEC WORKSHOP ON NEUTRINO-NUCLEUS PION PRODUCTION IN THE RESONANCE REGION, PITTSBURGH, OCTOBER 2-5, 2019

N. Jachowicz

Kajetan Niewczas New SPP in NuWro 21.10.2019 25 / 36

(26)

Single pion production on the nucleon (Ghent)

I. Single pion production on the nucleon – some issues of the LEM model …

T. Corthals, PhD, UGent 2005

NATALIE JACHOWICZ NUSTEC WORKSHOP ON NEUTRINO-NUCLEUS PION PRODUCTION IN THE RESONANCE REGION, PITTSBURGH, OCTOBER 2-5, 2019

N. Jachowicz

Kajetan Niewczas New SPP in NuWro 21.10.2019 26 / 36

(27)

Implementation in Monte Carlo event generators

Kajetan Niewczas New SPP in NuWro 21.10.2019 27 / 36

(28)

Single pion production on the nucleon

3

v+N → π + N + l : counting variables

A. Nikolakopoulos

5 Four vectors = 5x4 = 20 variables - 4 : on mass shell relations - 4 : initial nucleon known (at rest) - 4 : Energy-momentum conservation - 3 : Freedom to choose reference frame

And invariance along q (known direction of one four vector)

= 5 independent variables

Ev , cosθl , El , Ωπ* or Ev, Q2,W, Ωπ*

NuSTEC workshop, Pittsburgh USA

A. Nikolakopoulos

Kajetan Niewczas New SPP in NuWro 21.10.2019 28 / 36

(29)

Single pion production on the nucleon

One can exploit certain properties of such system

6

as a free parameter that was fitted to data. Before that, the width was reinserted in the first term so that the final modification was

Pµ⌫(p )

p2 M2+ iM ! Pµ⌫(p )

p2 M2+ iM + c Pµ⌫(p ) (9)

This amounted to the introduction of new contact terms originating from Pµ⌫(p ) and with a strength controlled by c. In this way a much better agreement for the ⌫µn! µ n⇡+channel was achieved. In the new fit, the value c = 1.11± 0.21, close to 1, was obtained. Note, however, that due to the presence of the width, the prescription in Eq. (9) with c = 1 does not correspond exactly to the use of a consistent coupling (see the discussion in Ref. [22]).

Another good feature of this modification was that the Olsson phases needed to satisfy Watson theorem were smaller in this case. This means that after the latter modification, the model without the Olsson phases was closer to satisfying unitarity than before the modification in Eq. (9) was implemented.

In this work we refer to the HNV model as the original model introduced in Ref. [10] with the modifications discussed above and that were added in Refs. [20–22]. It contains the contributions shown in Figs. 1 and 2, the modified propagator of Eq. (9), and it implements Watson theorem through the procedure just sketched here and explained in detail in Ref. [21]. In the case of pion photo or electroproduction, the corresponding HNV model derives directly from the vector part of that constructed for weak pion production by neutrinos. The di↵erent contributions to the hadronic current are given in the appendix of Ref. [22]. Watson theorem as well as the propagator modification of Eq. (9) are also taken into account in those cases.

III. PION PRODUCTION DIFFERENTIAL CROSS SECTION. PARITY VIOLATING TERMS

Let us consider the case of a CC process induced by neutrinos

l(k) + N (p)! l (k0) + N (p0) + ⇡(k) (10)

FIG. 3. Definition of the scattering and reaction planes. The XYZcoordinate axes move along with the CM system of the final pion-nucleon and their orientation has been chosen in such a way that the lepton momenta lie in the OXZplane with the positive Zaxis chosen along ~q and the positive Yaxis chosen along ~k^ ~k0.

The cross section in the laboratory (LAB) system is given by

CC+= G2F 4⇡2|~k|

Z d3k0 E0

d3k

E Lµ⌫(k, k0) Wµ⌫(q, p, k), (11) where kµ = (|~k |, 0, 0, |~k |), k0 µ = (E0, ~k0), pµ= (M, 0, 0, 0), with M the nucleon mass, and kµ = (E, ~k) are respectively the four-momenta of the initial lepton, final lepton, initial nucleon and final pion in the LAB frame.

Besides, q = k k0is the four-momentum transfer and GF = 1.1664⇥ 10 11MeV 2is the Fermi constant. The leptonic tensor is given by

Lµ⌫(k, k0) = kµk0 ⌫+ kk0 µ gµ⌫k· k0+ i✏µ⌫↵k0k , (12) where we use ✏0123= +1 and the metric gµ⌫= diag (+1, 1, 1, 1). The expression is valid both for CC and NC processes induced by neutrinos2. For the case of antineutrinos the antisymmetric part of the leptonic tensor changes

2 Note that for NC processes there is an extra factor of 1/4 in the definition of the cross section when using the normalization of the NC current used in the HNV model. In the DCC and SL models, the NC current is defined with an extra factor of 1/2, as compared to the one used in the HNV model, and thus there is no need to correct the expression of the cross section in that case.

as proposed in [J.E. Sobczyk et al., Phys.Rev. D98 (2018) 073001]

Kajetan Niewczas New SPP in NuWro 21.10.2019 29 / 36

(30)

Single pion production on the nucleon

4

v+N → π + N + l : Born approximation

A. Nikolakopoulos

Leptonic part ( PW approximation ) known Hadronic part modelling effort

Exploit these facts:

-Lepton tensor is known -Hadronic part is invariant under rotation along q and is the product of Hadronic current with its conjugate

Separate the φ* dependence

NuSTEC workshop, Pittsburgh USA

A. Nikolakopoulos

Kajetan Niewczas New SPP in NuWro 21.10.2019 30 / 36

(31)

Single pion production on the nucleon

5

Separating the variables

A. Nikolakopoulos Example for the A structure function:

Here the Hadron tensor depends on 3 variables:

W, Q2 , cosθπ* and φπ*= 0

And in total one needs 15 elements of the hadron tensor

For inclusive:

Only A survives integration over pion angles:

And responses depend on Q2 and W

NuSTEC workshop, Pittsburgh USA

A. Nikolakopoulos

Kajetan Niewczas New SPP in NuWro 21.10.2019 31 / 36

(32)

Implementation in Monte Carlo event generators

The first step:

tabularize 5 hadronic tensor elements as functions of (W , Q2)

each time obtain the structure function A

sample events with double-differential cross section formula

add experimental pion angular distributions

The second step:

compute the structure functions A,B,C,D,E (W , Q2,cosθπ) directly from a model

sample events with a full 4-differential cross section formula

Kajetan Niewczas New SPP in NuWro 21.10.2019 32 / 36

(33)

Implementation of the Ghent model

0 1x10-47 2x10-47 3x10-47 4x10-47 5x10-47 6x10-47 7x10-47 8x10-47 9x10-47

1050 1100 1150 1200 1250 1300 1350 1400 dσ/dQ2 dW [cm2 / (GeV/c)2 / GeV]

W [GeV]

Q2 = 0.2 (GeV/c)2, Eν = 3 GeV Ghent NuWro (2d) NuWro (4d) Adler

5x10-48 0 1x10-47 1.5x10 2x10-47-47 2.5x10 3x10-47-47 3.5x10 4x10-47-47 4.5x10 5x10-47-47

1050 1100 1150 1200 1250 1300 1350 1400 dσ/dQ2 dW [cm2 / (GeV/c)2 / GeV]

W [GeV]

Q2 = 0.5 (GeV/c)2, Eν = 3 GeV

2x10-48 0 4x10-48 6x10-48 8x10-48 1x10-47 1.2x10-47 1.4x10-47 1.6x10-47 1.8x10 2x10-47-47

1050 1100 1150 1200 1250 1300 1350 1400 dσ/dQ2 dW [cm2 / (GeV/c)2 / GeV]

W [GeV]

Q2 = 1.0 (GeV/c)2, Eν = 3 GeV

0 1x10-48 2x10-48 3x10-48 4x10-48 5x10-48 6x10-48 7x10-48 8x10-48 9x10-48

1050 1100 1150 1200 1250 1300 1350 1400 dσ/dQ2 dW [cm2 / (GeV/c)2 / GeV]

W [GeV]

Q2 = 1.5 (GeV/c)2, Eν = 3 GeV

νµ+p→ µ+p+ π+

Kajetan Niewczas New SPP in NuWro 21.10.2019 33 / 36

(34)

Implementation of the Ghent model

14

Angular distributions for neutrinos

A. Nikolakopoulos

HNV, DCC and LEM vary in structure functions, still more or less agree on angular cross section. (Around Delta peak)

Could this influence neutrino oscillation analysis ?

NuSTEC workshop, Pittsburgh USA

A. Nikolakopoulos

Kajetan Niewczas New SPP in NuWro 21.10.2019 34 / 36

(35)

Implementation of the Ghent model

20

How to introduce the fivefold CS ?

A. Nikolakopoulos

given a Q2 and W, distribution of cosθ* is determined by A

A is a smooth function and can usually be interpolated by a polynomial of degree 2

Calculation of A(cos) for fixed Q2 and W is very cheap

Interpolation with degree 2 polynomial means:

Cumulative distribution function

Is a monotonic degree 3 polynomial

→ Can be inverted analytically

→ Inversion sampling NuSTEC workshop, Pittsburgh USA

A. Nikolakopoulos

Kajetan Niewczas New SPP in NuWro 21.10.2019 35 / 36

(36)

Problems and issues

Kajetan Niewczas New SPP in NuWro 21.10.2019 36 / 36

Cytaty

Powiązane dokumenty

Tak nie jest, choć nadzór nad budową i eksploatacją statków oraz innych obiektów pływających stanowi bardzo ważną, tradycyjną dziedzinę naszej działalności.. Z powodzeniem

where the factor i is put in for convenience. Therefore, К is an operator, which in addition to reverting the time, also changes a neutron into a proton a.v.v.. a pair of orbitals

The theoretical predictions for NOTTE were achieved through basic Monte Carlo simulations. To understand why a basic Monte Carlo simulation was used and considering the impact of

C65 (2002) 024002 for electron scattering show that correlations play a key role in two body current enhancement of the cross section. in their approach correlations are present

Microscopic models predicting inclusive cross sections: (local) Fermi gas ground state → two (or three) random nucleons from local denstiy distribution (NuWro). Problem: around

Both figures: uncorrected data, black curve - events from polyethylene target, red curve and red dashed area events from carbon target, green thick curve behind red - events

In this work we present high statistic invariant mass and angular distributions on double pion production in np and pp collisions at an incident beam energy of 1.25 GeV obtained

A more advanced approach was realized by one-pion (OPE, see [3–5]) or by one-boson exchange (OBE) models, de- veloped by several groups (see i.e. The improved version of the OPE